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Glossary

Boundary condition Conditions that need to be satisfied in the solution of
a differential equation. Common boundary conditions for the atmosphere
are that the velocity component normal to the earth’s surface vanishes and
that the individual derivative of pressure vanishes at the upper surface [1]
.

Ensemble forecast Collection of simulations that conform to a probabilistic
prediction. Each simulation of the ensemble forecast is known as a En-
semble member. Several members are needed to capture the signal of the
chaotic nature of the climate system. The climate model is run many times
from very slightly different initial conditions. Often physics of the model
is also slightly perturbed, and some ensembles use more than one model
within the ensemble (multi-model EPS) or the same model but with dif-
ferent combinations of physical parameterization schemes (multi-physics
EPS) [2] .

Ensemble member Forecast simulation. Several members conform an ensem-
ble forecast .

General Circulation Models (GCM) Series of processes to predict future
atmospheric conditions by solving dynamics and physics equations that
explain the movements and changes of the atmosphere. Also known as
climate or dynamical models .

Geopotential height “The height of a given point in the atmosphere in units
proportional to the potential energy of unit mass (geopotential) at this
height relative to sea level.” [3] .

Modes of variability “Natural variability of the climate system, in particular
on seasonal and longer time scales, predominantly occurs with preferred
spatial patterns and time scales, through the dynamical characteristics
of the atmospheric circulation and interactions with the land and ocean
surfaces” [4] .

Operational prediction “They are short-term forecasts at a detailed level
(e.g., SKU) used to drive production schedules, transfer of goods in the
distribution network, procurement of materials required to meet schedules,
etc. The planning horizon used for operational forecasting varies with the
lead time required to execute supply planning.” [5] .
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CMIP6 Coupled Model Intercomparison Project version 6.

CRPS Continuous Ranked Probability Score.

cVAE Conditional Variational AutoEncoder.

cVAE0 Deep learning baseline.

ECMWF European Center for Medium-range Weather Forecasts.

ELBO Evidence Lower Bound.

ENSO El Niño-Southern Oscillation.

ERA5 fifth generation of ECMWF reanalysis for the global climate and
weather.

GCM General Circulation Model.

GPU Graphical Processing Unit.

JJA June, July, August.

KL Kullback-Leibler.

LOESS Locally estimated scatterplot smoothing.

ML Machine Learning.

MSE Mean Squared Error.

netCDF Network Common Data Form.

PCA Principal Component Analysis.

ix



PERS Persistence.

ReLU Rectified Linear Unit.

SEAS5 ECMWF’s fifth generation seasonal forecast system.

SGD Stochastic Gradient Descent.

SST Sea Surface Temperature.

t-SNE t-distributed stochastic neighbor embedding.

TAS Temperature 2-meter Above Surface.

VAE Variational AutoEncoder.

VI Variational inference.

WCRP World Climate Research Programme.

ZG500 500 hectopascal geopotential height.

x



Notation

Random variable X

Realizations of a random variable x

Marginal probability distribution of a random variable p(X = x)
with shorthand notation as p(x)

Conditional probability distribution p(X = x|Z = z)

Joint probability distribution p(X,Z)

Expectation E(·)

Kullback-Leibler Divergence DKL(·||·)

Normal distribution parameters µ as the mean and σ as the standard
deviation
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Abstract

While traditional numerical models are the primary source of seasonal pre-
dictions, they are computationally expensive to run and induce drifts and biases
in their outputs. Machine learning offers an alternative by learning complex
patterns from data, potentially overcoming these limitations. This project inves-
tigates the use of generative neural networks to create computationally efficient
seasonal forecast models. These models can incorporate randomness (stochas-
ticity) and generate ensemble forecasts, mimicking the capabilities of established
methods at a lower cost. We implement a Conditional Variational AutoEncoder
(cVAE) approach, previously successful in six-month predictions. Here, we focus
on predicting summer’s average temperature (three months) based on May’s cli-
mate data. The network learns from data generated by the sixth Coupled Model
Intercomparison Project (CMIP) and is evaluated against real-world observa-
tions from the fifth generation of ECMWF reanalysis for the global climate and
weather (ERA5) reanalysis dataset. To isolate the method’s performance, we
employ detrending, e.g. removing long-term trends from the data using a ref-
erence period independent of the testing data. Finally, we compare our model’s
predictions to established baselines commonly used in seasonal forecasting for a
comprehensive evaluation. Our approach managed to deliver seasonal forecasts
that matched the performance of SEAS5, the leading model, across various re-
gions. Although the general proficiency of our model falls short of SEAS5, it
surpasses standard benchmarks like climatology and persistence. Consequently,
our predictions provide a rapid and computation-light estimate of the seasonal
climate, retaining the skillfulness from numerical methods to a certain degree.
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1 Introduction

Weather forecasting becomes increasingly challenging beyond a two-week time-
frame, primarily due to the stochasticity nature of the atmosphere [6]. How-
ever, certain components of the climate system, such as the land surface and the
ocean, can force the atmosphere dynamics extending the predictability limit, to
a certain extent, beyond two weeks. Predicting the earth’s system state beyond
two weeks is known as climate prediction, and is designed to bridge the gap
between weather forecasting and climate projections.

Climate predictions are generally classified into three categories: sub-
seasonal (2-12 weeks), seasonal (1-15 months), and decadal (1-30 years). Beyond
the decadal forecasts, we have climate projections, that range from 20 to 100
years. These different timescale predictions are important to make decisions at
different levels in the decision-making process. In this work, we focus specifi-
cally on the seasonal timescale. This type of prediction has demonstrated high
importance in the decision-making of different socio-economical sectors such as
hydrology, agriculture, or economy [7–10].

Current approaches to seasonal forecasting rely on General Circulation Mod-
els (GCM) [11,12]. These models are designed to simulate the physical processes
that govern the climate. The numerical equations of the process involved in the
climate system are known but can only be solved with discrete numerical meth-
ods. Since representing the Earth in a continuous space is computationally
infeasible, scientists adopted a grid system. This allows us to apply equations,
but it also means that processes smaller than the grid cells are not accurately
represented. The phenomena that cannot be represented due to the grid resolu-
tion are approximated by parameterizations that differ between GCMs. Every
GCM uses the same equations, but the parameterizations allow them to model
the induced biases and drift differently, aiming to reflect the actual climate
behavior more accurately.

On the other hand, recent Machine Learning (ML) advancements in different
fields, such as computer vision, natural language processing, and weather fore-
casting [13–19] show how this approach can identify patterns and relationships
that traditional modeling may miss. This unique ability offers a high potential
for improving seasonal prediction. For example, ML algorithms can identify
hidden correlations between ocean temperatures, the atmospheric state, or cli-
mate events like El Niño-Southern Oscillation (ENSO), leading to more accurate
predictions [20–22]. Still, the application of ML is yet to be further explored
in this context, as the literature available is relatively short.

In this thesis, our objective is to explore the use of Variational AutoEncoders
to produce global seasonal predictions of mean temperature. Variational Au-
toEncoders (VAEs) are used in this context because they are powerful tools for
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capturing complex patterns in data. VAEs also provide a probabilistic frame-
work, introducing uncertainty in the predictions, which is crucial for reliable
seasonal forecasting. We aim to assess their efficacy in improving prediction
accuracy, and their reliability in predicting real-world large-scale climate data,
while also proposing a more cost-effective method for obtaining these forecasts.
Through a series of experiments and analysis, we seek to highlight the potential
advantages and challenges of this approach.

The following sections of this thesis are organized as follows: Section 2
presents a more in-depth explanation of seasonal predictions, general circula-
tion models, along with a review of the related work focused on machine learn-
ing. Section 3 describes the methodology employed, covering the method, the
data, and the metrics used in the development of this work. Section 4 presents
the results obtained as the outcomes of the experiments conveyed as well as a
comparison with other existing approaches. Additionally, includes a discussion
about the project’s accomplishments, and the limitations that we encounter.
Finally, section 5 presents the conclusion of this thesis and potential avenues for
future work.
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2 Background and related work

2.1 Seasonal prediction

Seasonal forecasting plays a crucial role in decision-making across various sce-
narios, including the estimation of energy consumption, preparation for extreme
events, and crop yield predictions. However, deterministic forecasts alone can-
not capture the stochasticity and complexity inherent in the climate system.
Thus, providing reliable probabilistic information and addressing the associated
uncertainties is critical. The effectiveness of seasonal forecasts is evaluated based
on their skill [2] – e.g. how accurately the forecasts reflect the behavior of the
climate system. Before any forecasts reach users, a rigorous assessment of the
model’s skill is performed to ensure they meet user needs and maintain trust.

To generate a forecast for a specific period, it is very important to first
understand the factors that are influencing it. In figure 1, we can observe
the contribution of three different sources (atmosphere, land, and ocean) to the
general weather and climate predictability for the forecast time. We can observe
that the predictability of the atmosphere decreases significantly after two weeks,
which is the main reason for the limited accuracy of weather forecasts beyond
this timeframe. On the other hand, the predictability coming from the ocean
decreases more gradually, due to the slow and persistent changes occurring
over weeks or even months in the ocean, therefore playing an important role in
seasonal forecasts [23].

One example of the ocean’s influence on seasonal predictability is the El
Niño-Southern Oscillation (ENSO). This event is characterized by strong devi-
ations in the eastern and central equatorial Pacific sea surface temperature that
repeat, on average, every four years. The pattern that repeats over the years
oscillates between two opposing phases: El Niño, which refers to the warming of
the central equatorial Pacific, and La Niña, the opposing cold phase. Although
ENSO occurs in the tropical Pacific, it impacts not only its surroundings but
also the global climate. These remote influences are also known as teleconnec-
tions, and can occur with other modes of variability. It is important to provide
skillful seasonal predictions to capture the teleconnections affecting the target
variable, region, and time scale.

2.2 General circulation models

General Circulation Models (GCM), also known as climate or dynamical mod-
els, are the main tool to perform climate predictions nowadays. GCMs sim-
ulate different climate and physical processes (eg. rain, carbon cycle, rivers,
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Figure 1: Impact of atmosphere, land, and ocean on predictability as a function
of lead time [24]. The predictability inherent in the atmosphere decreases rapidly
due to its chaotic nature, while processes related to the land are valuable for
producing short to medium-range forecasts. For seasonal predictions, the main
source of predictability is the ocean since changes in the oceans are slow and
persistent over weeks or months.

oceans, etc) via numerical methods. The climate system is discretized into a
spatiotemporal grid of the entire globe. For each time step (e.g. every 6 hours)
and grid section, the equations are resolved numerically, consequently requir-
ing high computational resources. To manage the high computational demand,
both the spatial and temporal resolution of the climate models are restricted,
along with the number of ensemble members generated for a ensemble forecast.
Climate models are used for different applications that range from research to
operational prediction. A key difference among these models is whether they
are initialized or forced by boundary conditions.

When climate models are initialized, they incorporate observations of the
Earth’s current state as their starting point, being later executed for the desired
duration. This procedure is important when the initial state of the system is key
to predicting its target state i.e. sub-seasonal (next month), seasonal (next 6
months), and decal (next 10 years) predictions. As an example, the fifth seasonal
forecasting system SEAS5 [25] from the European Center for Medium-range
Weather Forecasts (ECMWF) is an initialized dynamical model that runs at
the start of every month to predict the next 3 seasons. This model is considered
the state-of-the-art for most seasonal prediction applications.
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Contrary to initialized models, forced models don’t assimilate the current
conditions of the Earth system. They start from a control run in which the
model is executed until reaching a stable state, known as a spin-up (or also
called warm-up) period. After the control run, the simulation is run imposing
boundary conditions (mostly radiative forcings). These models are useful when
impacts due to changes in boundary conditions are way more important than
initial conditions i.e. long-term climate projections. The Coupled Model Inter-
comparison Project (CMIP) fromWorld Climate Research Programme (WCRP)
provides in each iteration a set of forced climate models from different institu-
tions that perform climate projections. In each CMIP iteration (the latest being
CMIP6), different models are run several times under common green-houses sce-
narios to capture plausible climate change trends until the end of the century.
Even though climate models are not used to provide seasonal predictions, they
are a big source of data about the climate system that can be used to train
Machine Learning models.

2.3 Autoencoders, Variational AutoEncoders and Condi-
tional Variational AutoEncoders

AutoEncoders (AEs) [26–28] are a type of artificial neural network designed to
identify efficient encodings of unlabeled data, typically used for reducing the
data’s dimensionality or to extract features from the data. Formally, these
neural networks seek to learn two functions [29, 30]: an encoder function Eϕ :
Rn → Rp and a decoder function Dθ : Rp → Rn, where n is the dimensionality
of the input space and p is the dimensionality of the encoded space, generally
being p < n.

The encoder function Eϕ maps an input x ∈ Rn to a reduced representation
y ∈ Rp. The decoder function Dθ aims to reconstruct the original input from
this reduced representation, producing x̂ ∈ Rn, such that they satisfy:

argmin
ϕ,θ

E[∆(x,Dθ(Eϕ(x)))]

where E is the expectation over the distribution of the input data, and
∆ is the reconstruction loss function, which measures the distance between the
decoder output and the input, often the l2-norm or Mean Squared Error (MSE).

Considering its characteristics, the Encoder segment of the architecture
shows similarities to various dimensionality reduction methods. If the encoder
and decoder segments execute linear operations while non-linear operations are
excluded, the autoencoder would achieve a latent representation similar to a
Principal Component Analysis (PCA). Consequently, an autoencoder can be
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described as a generalization of PCA, with the capability of not only discover-
ing a low-dimensional hyperplane where the data reside but also identifying a
non-linear manifold [30].

However, it is important to note that the latent space representation of these
networks does not follow any probability distribution. Consequently, the output
of autoencoders primarily consists of reconstructions rather than attempts to
generate new data. This characteristic is evident in the design of the loss func-
tion, which focuses on reconstruction accuracy, without incorporating elements
that would encourage the generation of new data.

To address this issue, Variational AutoEncoder (VAE) [31] have been intro-
duced. These neural networks are designed to learn the probability distribution
of the input data, enabling them to generate unseen samples. To accomplish
this, VAEs are structured so that their latent space follows a specific and pre-
defined probability distribution.

Given an input data X = {x1, x2, ..., xn}, the objective of generative mod-
els like Variational AutoEncoders is to estimate the marginal distribution
p(X = x)1. This approach assumes that X represents a random variable influ-
enced by an underlying latent variable Z, which dictates its distribution. With
that in mind, Z will follow a known probability distribution such as a Gaussian.
Subsequently, a parametric function pθ is defined, with θ adjusting this distri-
bution to more closely resemble p(x). In practice, a neural network is utilized
to learn and optimize the set of parameters θ.

Directly estimating the posterior distribution pθ(z|x) is computationally in-
feasible. By following Bayes’ theorem [32] it would require integrating over Z
to obtain the marginal of X. Thus, instead of directly calculating the posterior
distribution, VAEs rely on Variational Inference (VI) to approximate it [33].
Specifically, amortized stochastic VI is used. Here, the term “amortized” means
that the encoder is trained to learn the distribution of the latent variable Z,
allowing the decoder to focus on a generation task. “Stochastic” refers to using
mini-batches instead of the entire training data at once.

To apply VI, we consider the prior distribution pθ(z), its likelihood pθ(x|z),
and the unknown posterior distribution pθ(z|x). In addition, we consider ψ as
the variational parameters that adjust the distribution of the selected family of
distributions (Gaussian). The probabilistic encoder will learn the variational
parameters ψ to alleviate the learning process of the decoder. The loss function
considered is known as the Evidence Lower Bound (ELBO) which acts as a
lower bound for the “evidence” pθ(x). By minimizing the -ELBO, we obtain an
estimated posterior predictive distribution that converges to a locally optimal
maximum likelihood estimation.

1We will use p(x) as a shorthand notation for p(X=x)
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The ELBO, defined in equation (1), captures two key aspects of a Variational
AutoEncoder. The first term, called the reconstruction term, is the expected log-
likelihood, which measures how well the model reconstructs the input data. The
second term, the Kullback-Leibler (KL) divergence [34] quantifies the difference
between the model’s estimate of the latent variable’s distribution (posterior)
and a predefined distribution (prior). The KL divergence acts as a regularizer,
encouraging the model’s latent space to resemble the prior while still capturing
the necessary information for reconstruction. Thus, by having both terms the
VAE aims at generating samples that are similar to the input data, while also
learning a meaningful latent variable that defines the creation of new data.

L(ψ|θ, x) = Eqψ(z)[log pθ(x|z)]−DKL(qψ(z)||pθ(z)) (1)

While VAEs offer speed and unique properties for climate forecasting, a lim-
itation is their need for paired input-target data.Conditional Variational Au-
toEncoder (cVAE) addresses this by allowing targets to be conditioned on ad-
ditional inputs. CVAEs share the same fundamental purpose as VAEs, but the
probability distributions approximated during the training process are shaped
by this extra conditioning information available.

2.4 Related work

General Circulation Models (GCMs) face significant drawbacks, including uncer-
tainties associated with the initial conditions, the high computational cost, and
the significant drifts and biases in their predictions. A major source of uncer-
tainty is the diverse and unevenly distributed set of observations that define the
current climate state. This uncertainty propagates quickly as the simulations
run. Additionally, the big computational cost of GCMs imposes a reduction in
the spatial and temporal resolution of climate simulations. Thus, key physi-
cal processes (i.e. cloud dynamics) are not explicitly resolved by the numerical
equations and need to be parametrized (approximated). These parameteriza-
tions introduce biases and errors, often leading to inaccurate simulations of
teleconnections, which are crucial for seasonal prediction [35].

In this scenario, Machine Learning (ML) offers a promising approach to
overcoming the limitations faced by traditional dynamical models. Its ability
to learn complex, non-linear patterns and its low computational cost for predic-
tions, make it a compelling tool for climate prediction (in inference time). ML’s
success in fields like computer vision, Natural Language Processing (NLP), and
healthcare has triggered interest among climate scientists, with several applica-
tions to weather forecasting already proposed. These include, foundational mod-
els [36–38], transformer-based models [16–19, 39], graph neural networks [13],
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diffusion models [14] and hybrid physics-ML models [15].

One of the key challenges when it comes to applying ML to seasonal fore-
casting is the limited availability of training data. Most existing observational
climate datasets began in the 1950s, offering only around 70 to 100 data points
relevant to the predictions (focusing on interannual fluctuations) if only obser-
vational records are used. This number is significantly less than the millions of
samples typically required by deep learning algorithms, posing a significant bot-
tleneck for applying ML in these cases. Training on climate model simulations
from CMIP has shown the potential to deal with this limitation.

Akin to advances in weather predictions, recent approaches using machine
learning have emerged in the field of seasonal forecasting. Gibson et al. [40] ex-
plored the potential of training machine learning models on climate simulations
(e.g. the output of the CMIP climate model) to improve seasonal precipita-
tion forecasts. For that, they use 40 CMIP5 historical simulations of 1920-2005
leading to a total of ∼3400 years. As the predictors, PCA was applied on each
month of the data to extract key features from input variables (e.g., Sea Sur-
face Temperature (SST), precipitation). For the targets, the proposed approach
opts for K-means clustering of precipitation anomalies over the western US. Two
separate seasonal predictions were considered: November through January and
January through March. With these inputs and targets, multiple ML mod-
els are trained and their generalization is tested with historical reanalyses (e.g.
ERA5 and others) showing how their deterministic forecasts outperform climate
models from the North American Multi-Model at predicting precipitation in the
western US.

Andersson et al. [41] proposed an approach to seasonal sea ice forecasting
called IceNet. The model was trained on historical simulations and climate
projections from two CMIP6 models from 1850-2100 (with 2200 years in total)
and tested using reanalysis data from ERA5 from 1979-2011 to forecast the next
6 months of monthly-averaged sea ice concentration maps (of different classes) at
25 km resolution. Using 25-member ensemble forecasts, this model advanced the
range of accurate sea ice forecasts, outperforming a state-of-the-art dynamical
model (ECMWF SEAS5) in seasonal forecasts of summer sea ice, particularly
for extreme sea ice events.

Ling et al. [42] focus on improving the skill at predicting the interannual
variability Indian Ocean Dipole (IOD) as the existing predictions were limited
to three months ahead. For that, they propose a multi-task learning model
named MLT-NET. The model was first trained on historical simulations of a
wide range of CMIP5 and CMIP6 climate models (∼2000 years) and tested
with reanalysis data from 1983 to 2019. The resulting 10-member ensemble
predictions indicate that the model can predict the IOD up to 7 months of lead
time while outperforming state-of-the-art methods.
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Pan et al. [43] proposes an approach to the seasonal forecasting task using
a sample size that is an order of magnitude larger. This is achieved by con-
sidering historical simulations as well as climate projections from CMIP5 and
CMIP6 climate models (30 models in total) having a total of 52.201 years of
simulations. The model was trained using both historical simulations and cli-
mate projections while reserving the last 30 years of the historical period to test
the model. Entity embeddings (learned numerical representations) are used as
a way of representing the different biases in the climate models which allows the
trained model to potentially produce seasonal forecasts that mimic their behav-
ior. Contrary to previously covered works, where reanalysis data (from ERA5)
was used to fine-tune the entire network, it was used here to create a fine-tuned
embedding such that the embeddings closer to it are from models better suited
for the corresponding prediction task. One of the key problems of considering
multiple climate models is that the different biases are not corrected by giving
them average weight in the training but the use of the embeddings to account
for their differences can help in compensating those biases and benefit from the
existing data.

Seeking to address limitations of existing methods, especially the restricted
ensemble sizes, Pan et al. [43] used a Conditional Variational AutoEncoder
(cVAE) as a probabilistic method to obtain ensemble forecasts for 6-months
averaged with two months of lead time. The use of CVAEs allows for a quick
inference time and thus, the capability of producing large ensemble forecasts.
The proposed cVAE architecture utilizes residual blocks of convolutions to en-
code information from the upper ocean thermal state (at 8 different height levels)
to predict monthly averages of Temperature 2-meter Above Surface (TAS) and
precipitation. The data was standardized point-wise independent of the simula-
tions. The same was applied to the target after taking its monthly average. The
results demonstrate that the proposed method excels at model-world forecasts
of a specific climate model (e.g. CanESM), where model-world refers to predic-
tions made using the learned embedding that corresponds to this climate model.
Additionally, they do real-world forecasts by considering reanalysis data from
the Ocean Reanalysis System 5 (ORAS5) were used as predictors to predict
precipitation (from the Global Precipitation Climatology Project) and temper-
ature (from ERA5). Using the predictions conditioned on the embedding of a
specific model for real-world forecasts, they achieve comparable performance to
a dynamic seasonal forecasting model. Finally, the model is benchmarked on
the North American Multi-Model Ensemble (NMME). To do so, they create two
300-member ensemble forecasts, one where each climate model has the same in-
fluence and another using the fine-tuned embedding on ERA5 data. The results
show that both approaches achieve similar performance results compared to the
NMME ensemble forecast with a significantly reduced computational time.

This project stands out for its ability to generate global probabilistic pre-
dictions, similar to state-of-the-art ensembles from dynamical models utilized
by operational centers worldwide. A key feature of this model is its use of
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“entity embeddings”, which captures the unique dynamics present in different
CMIP models and reveals their similarities and differences in representing cli-
mate behavior. Furthermore, the proposed architecture allows for fine-tuning
using reanalysis data like ERA5, offering the flexibility to adjust specific com-
ponents or the entire model. This fine-tuning process can be either complete
or partial by only fine-tuning a specific module, such as the entity embeddings.
Additionally, it allows for tailoring the model to specific tasks by using select
subsets of climate models and facilitates experimentation with various predic-
tors, targets, and climate models. By leveraging insights from climate model
projections, the project overcomes limitations associated with traditional forced
models, ultimately aiming to produce insightful seasonal forecasts.
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3 Methodology

This section presents the methodology implemented in this work, inspired by
[43]. The goal of this thesis is to test the applicability of the proposed model in
predicting a 3-month average seasonal forecast with different lead times. There-
fore, we implement a conditional Variational AutoEncoder that allows condi-
tioning the desired target on different variables. During the implementation of
the methodology, we customized it specifically for 3-month predictions. This
involved applying a combination of architectural and data modifications.

Among these modifications, we implement the proposed cVAE methodol-
ogy tuning it to be a cβVAE to overcome posterior collapse issues caused by
the increment in complexity of the task. In terms of the variables considered,
we swap the upper ocean thermal state with Sea Surface Temperature (SST)
and include Temperature 2-meter Above Surface (TAS) and 500 hectopascal
geopotential height (ZG500) as predictands to predict TAS of 3-month aver-
aged predictions. As for the climate models considered, we use a relatively
small number of CMIP6 models for accessibility reasons. From them, we only
use historical simulations (with a large number of ensembles) for the training
of the model as we consider that climate projections can be far from real-world
forecasts. We split the available ensemble members of each climate model to
create the training and validation sets. Similarly to their approach, we use re-
analysis data from ERA5 to create a fine-tuned embedding, but, we only use a
reduced period of it. With the remaining years from the reanalysis, we test the
generalization of the model as in other mentioned works.

In the following sections, we present the implementation of our method (sec-
tion 3.1), the data used (section 3.2), and the evaluation metrics considered in
this work (section 3.3).

3.1 Method

Here, we utilize X to represent the predictor variables, Y for the predictand
variables, and M for the indices of the General Circulation Model (GCM). The
implemented Conditional Variational AutoEncoder (cVAE) aims to estimate
the probability of a target variable y ∈ Y occurring given specific predictor
variables x ∈ X and GCM indices m ∈ M . This is written mathematically as
the conditional probability distribution p(y|x,m).

To achieve this, the cVAE introduces a latent variable, Z, which is assumed
to follow a normal distribution defined by a specific mean (µ) and standard
deviation (σ). This latent variable is independent of the original input data
(X,M) [44]. During the prediction stage, when the target variable is unknown,
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the model assumes a standard normal distribution for Z. Additionally, the
cVAE utilizes a parametric function, denoted as pθ(y|x,m), parameterized by
θ, to approximate the true target distribution as closely as possible.

To approximate pθ(y|x,m) we use the Variational inference (VI) framework
as explained in section 2.3. This involves a probabilistic encoder (qϕ), modeled
by a neural network, that approximates the posterior distribution of a latent
variable Z. Additionally, a probabilistic decoder (pψ), also a neural network,
approximates the conditional likelihood pθ(y|z, x,m). Both the encoder and
decoder are assumed to be Gaussian distributions parameterized by ϕ and ψ
respectively.

Then, we can formulate the Evidence Lower Bound (ELBO) or L as was
shown in equation (1) obtaining the equation:

logpθ(yi|xi,mi) ≥ Ez(log pψ)−DKL(qϕ||p(z|xi,mi)) = L (2)

where the ELBO L acts as a lower bound for the log-likelihood of the pre-
dictand given the predictors and model index logpθ(yi|xi,mi). The ELBO itself
is formed by the two terms previously mentioned, where the reconstruction and
the regularization terms. The intuition is the same as in section 2.3.

To train the network using Stochastic Gradient Descent (SGD), backprop-
agation needs to be employed to efficiently calculate the gradients needed for
parameter updates. However, directly calculating the gradient concerning a la-
tent variable like Z, which is inherently stochastic, is impossible. To address
this challenge, we leverage the properties of Gaussian distributions. We intro-
duce a new variable ϵ, following a standard normal distribution N(0, I) so that
z = µ+ σ ∗ ϵ. This reparametrization of the Gaussian distribution is known as
reparametrization trick [31]. This transformation ensures that Z retains the
desired Gaussian distributionz N(µ, σ) while allowing for gradient calculations
as ϵ is no longer stochastic. It is important to note that SGD is an optimiza-
tion technique for minimizations, and in this context, we aim to minimize the
negative evidence lower bound instead of maximizing it.

While the reparametrization trick enables the gradient computation, an an-
alytical form of the loss function is still required. The loss function consists of
two terms: a reconstruction term, measured using Mean Squared Error (MSE),
and a regularization term penalizing the divergence between the approximate
posterior and the prior distribution of the latent variable.

Our goal is to find a closed-form solution (analytical solution) for the
Kullback-Leibler (KL) divergence, DKL(qϕ||p(z|xi,mi)), between two Gaussian
distributions. Here, qϕ is assumed to be a Gaussian distribution with param-
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eters µϕ and Σϕ, while p(z|xi,mi) represents a standard normal distribution.
Fortunately, since Gaussian distributions belong to the exponential family, a
closed-form expression for the KL divergence between two Gaussians exists, as
shown below:

DKL(qϕ||p(z|xi,mi)) = DKL(N (µϕ,Σϕ)||N (0, I))

=
1

2

(
tr(Σϕ) + µTϕµϕ − k − ln|Σϕ|

) (3)

Once the model is trained, the inference can be done on the posterior predic-
tive distribution obtained by sampling z and using the log-likelihood function
learned by the decoder. During inference, the model does not have access to
the target and is not able to sample z from the encoder. Instead, z is sampled
from p(z|x,m) which is assumed to be a standard Gaussian.

This method offers significant flexibility in training models suited for differ-
ent sets of variables, lead times, timescales, and seasons between others. But
the benefits extend beyond that. VAEs are inherently designed to learn mean-
ingful representations of the data. This learned representation, similar to how
principal components capture most of the variance, should translate to more
informative data for forecasting. Furthermore, unlike many VAE applications,
the generative network directly produces the desired forecasts, eliminating the
need for additional downstream tasks that might introduce bias. Finally, the
fast inference allows for generating large ensembles of forecasts, which can be
computationally challenging with other deep learning methods like diffusion
models.

3.1.1 Architecture

Figure 2 illustrates the architecture used in our model, which contains two
separate encoders. One encoder focuses on processing the predictor variables
(X), while the other handles the predictand (Y). These encoded representations
are then combined with embeddings to create a unified representation within
the latent space. Finally, the decoder uses samples from this latent space to
generate seasonal forecasts.

The encoders and the decoder are composed of residual and transposed resid-
ual blocks respectively [45]. Residual blocks are used here to reduce the input
size during encoding (down-sampling) and compress the important information
in the data. In contrast, transposed residual blocks are essential for expanding
the data (up-sampling) in the decoder. This expansion aims to decompress the
information necessary to create accurate predictions.
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Figure 2: Model overview: Our model contains two encoding processes. First,
separate encoders compress the information from the predictor variables (X)
and the predictand (Y). Second, embeddings are created based on additional
information (model indices). These embeddings, along with the encoded data
from both X and Y, are then combined to form a unified representation in
the latent space. Finally, the decoder utilizes random samples from the latent
space, together with the encoded predictors and predictand, to generate multiple
seasonal forecasts, forming an ensemble forecast.

These blocks are composed of several core operations, such as convolutions
and transposed convolutions, max-pooling, batch-normalization, Rectified Lin-
ear Unit (ReLU), and dropout, which are explained below.

Convolutions are matrix operations in which a kernel (filter) slides across
the input applying element-wise multiplication and summing its results into
the output, as it is shown in figure 3. Convolutions depend mainly on two
parameters, the padding (p), which refers to the the number of rows and columns
of zeros added around the input, and the strides (s), which indicate the number
of columns the filter moves after every operation. Convolutions are generally
purposed to down-sample the data.

Transposed convolutions, on the other hand, work differently than standard
convolutions. They are designed for upsampling. However, it is important to
note that they differ from deconvolutions, which aim for a perfect reversal of
the convolution operation. Figure 4 shows a step-by-step illustration of the
transposed convolution operation. If we consider strides of 2 and padding of
1 pixel on all sides, we can compute z, p′, and s as shown in figure 4. A
larger matrix is created by adding z zeros between the input elements and p′

rows around the matrix. Later, a standard convolution with strides of s′ = 1
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Figure 3: Illustration of the convolution operation [46]

is applied to this expanded matrix producing the output of the transposed
convolution operation as a result. This process, as shown in the figure, effectively
doubles the output size compared to the original input. In our architecture,
we used transposed convolutions of strides = 2 and padding of either 1 or 0
(depending on preserving the original shape) to consistently achieve upsampling
by a factor of 2.

Figure 4: Illustration of a transposed convolution operation [46]. Transposed
convolutions are used as up-sampling operations. The explanation considers
s=2, k=3, p=1 and as such, z=1 and p′=1

Similar to convolutions, max-pooling utilizes a sliding kernel that iterates
across the input data. However, unlike convolutions that perform element-
wise multiplication and summation, max-pooling identifies the maximum value
within the kernel region and uses that as the output value.

Batch Normalization improves training efficiency. For this, each batch of
data goes through normalization which involves subtracting the mean and di-
viding by the standard deviation of the batch. Thus, the output will be a linear
regression with a learnable slope and intercept.

For the activation function, we used ReLU. This activation function adds
non-linearity to the network. It simply outputs the input value if it’s positive,
and zero otherwise (f(x) = max(0, x)).

Dropout is a technique used to help prevent overfitting. It randomly deletes
a certain proportion of neurons during training. By doing this, it “turns off”
some neurons with a specific probability, forcing the network to learn more

15



robust features.

With these core operations in mind, we can delve into the structure of resid-
ual blocks used in the encoders. Residual blocks (illustrated in figure 5) lever-
age “shortcut connections” to achieve the functionality of F (x) + x, where x
represents the input data and F (x) refers to the output of the stack of con-
volutions (showing at the top of figure 5). These connections (represented at
the bottom of figure 5), as described in [47–49], bypass one or more layers in
the network. In our implementation, the shortcut connections are applied as a
convolution with a 1x1 kernel (equivalent to a linear layer), adding the linearly
transformed input directly to the output of the stacked convolutional layers.
This not only preserves valuable information throughout the block but also
potentially mitigates vanishing gradients.

The main operations of these blocks are convolutions, used here to learn the
spatial features of the data. Every convolution uses a stride and padding as
one (and everything else is set as the default implementation of PyTorch) which
preserves the input shape. The residual blocks rely on a sequence of stacked
convolutions. Each convolution is followed by batch normalization and a ReLU
activation function. However, the final convolution in the block deviates slightly.
Here, the outputs from the “main” and “residual” paths (refer to figure 5) are
aggregated together before applying the final ReLU activation. After the last
activation function, max-pooling is applied to downsample the data by half.

Figure 5: Structure of a residual block. The input is processed through
two different paths: the “main path” that contains three convolutional layers
and the “residual path” with a single convolutional layer. Each convolution
is followed by batch normalization to improve training stability and a ReLU
activation function to introduce non-linearity. The final ReLU is applied after
the summation of the main and residual outputs. Finally, a max-pooling is
applied to reduce the input shape by half.
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In the decoder, we employed a series of transposed residual blocks. The
structure of this block is illustrated in figure 6. While similar to the structure
of the residual blocks, these blocks utilize transposed convolutions and omit the
max-pooling operation at the end. Each path contains a transposed convolution
with strides of 2, which upsamples the input shape by a factor of two, effectively
doubling the shape after a transposed convolution is applied.

Figure 6: Structure of a transposed residual block. Similarly to the
residual blocks, we used a skip connection to pass the input information to the
following layers as a residual. Transposed convolutions are applied to double
the shape of the input allowing decompression of the information every time
a transposed residual block is applied. After every convolution and transposed
convolution the batch is normalized and the ReLU activation function is applied
where the last activation is applied after adding the result of the two paths.

In addition to the encoders and the decoder, we also apply a entity embed-
ding [50] of the climate models. We refer to entity embeddings as a numerical
codification assigned to each climate model. To do so, the index of the cor-
responding model is first one-hot encoded. The one-hot encoding consists of
creating an array of zeros as long as the number of categories and assigning a
1 for the current category. Then, a linear layer is applied creating a numerical
representation for each one-hot encoded index. On top of the one-hot encoding
and the linear layer, a sigmoid activation function is used such that the out-
puts are in the range of [-1,1]. We use the embeddings to learn a numerical
representation that is different from the climate models considered.

To gain a clearer understanding of the latent space, we analyze the con-
nections between the various components of the encoders, the decoder, and
the entity embedding block. As previously discussed, the latent space requires
the extraction of the mean and standard deviation that characterize the latent
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Gaussian distribution. Figure 7 illustrates the process where the outputs of the
encoders are flattened and concatenated with the embeddings. This concate-
nated vector is later fed into two distinct linear layers to derive the mean and
standard deviation, which define the latent distribution. To maintain a differ-
entiable computational graph, we apply a reparametrization trick [31], where
ϵ is sampled from a N(0, 1) distribution, and z is computed as z = µ + σ ∗ ϵ.
Finally, the output is reshaped to a format compatible with the decoder.

Figure 7: Structure of the components involved to learn the mean and standard
deviation used for the latent space Z. First, the encoded inputs and target
are flattened at concatenated together along with the entity embeddings. With
that, two linear layers are applied, one for the mean (µ) and the other for the
standard deviation (σ) of z since we assumed it to be Gaussian. Then, we apply
the parametrization trick z = µ + σ ∗ ϵ sampling ϵ from a standard Gaussian
and concatenate the output with the encoded inputs and target again. Finally,
we apply a linear layer and reshape the data to match the input shape of the
decoder.

A detailed overview of the final architecture is presented in figure 8. The final
architecture contains two encoders consisting of residual blocks and a decoder
composed of transposed residual blocks. Each residual or transposed residual
block applied, doubles or halves the shape of the data, respectively, where the
output channels of the convolutions and transposed convolutions of each block
are defined in figure 8. Note that the processes of flattening, reshaping, and
the linear layers involved in the latent space are not detailed here, but are
explained in figure 7. After passing through the transposed convolution blocks
of the decoder, the final step is to apply a convolution that restores the target’s
original shape.
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Figure 8: Complete overview of the final architecture. On the left, we can
find the two encoders and the entity embedding block. The encoders use residual
blocks where the numbers in the blocks represent the number of channels in each
of its convolutions. The model indices are one-hot encoded and then passed
through a fully connected layer to obtain the entity embeddings. The encoded
inputs and target along with the entity embeddings are used to create the latent
space (see figure 7 for details). Samples from the latent space along with the
encoded input and the entity embeddings are fed into the decoder. Contrary to
the encoders, the decoder uses transposed residual blocks where the number of
the transposed residual blocks refers to the channels considered. Lastly, a final
convolution is applied to restore the shape of the targets. Selecting a random
year, we show the inputs (TAS, SST, and ZG500 from May), the target (TAS
from summer), and the mean ensemble forecast of a 256 ensemble forecast.

3.1.2 Extension to Beta-VAE

While training the method for 3-month predictions we encountered instabil-
ity issues in the loss function [51, 52] leading to posterior collapse. Notably,
these problems were not mentioned in [43] potentially because we approached a
more complex task. To stabilize the training and mitigate the risk of posterior
collapse, we explored the use of Beta-VAEs [53], in which the KL divergence
term of the Evidence Lower Bound (ELBO) is adjusted using a hyperparame-
ter. This was considered since the mean squared error and the Kullback-Leibler
divergence were on different scales during the training causing the MSE (used
for the reconstruction term) to not be considered less in the loss reducing the
focus of reconstruction. An extended discussion of this imbalance in the loss
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function can be seen in [54,55].

Fu et al. [56] have demonstrated the effectiveness of KL divergence anneal-
ing in improving the training process. This technique involves cyclically varying
the weight of the KL divergence loss term between a starting and ending value
throughout training. The weight increases from 0 to 1 and repeats this cycle as
many times as the pre-defined number of cycles. A defined monotonic function
(e.g., linear, sigmoid, or tanh) dictates the weight’s growth pattern, where a
proportion adjusts the weight’s growth speed in each cycle. Annealing the KL
divergence term allows the model to give more importance to the reconstruction
term at the start of each cycle. Annealing the weight of the KL divergence en-
courages the importance of the reconstruction term in the loss function. Thanks
to that, the training becomes more stable and less propense to posterior collapse.

3.2 Data

The model was trained with climate model data from the Coupled Model Inter-
comparison Project version 6 (CMIP6). Table 1 shows a summary of the models
used and the total number of members available for each of them. Due to the
imbalanced amount of simulations available from each climate model (with some
of them containing less than 10 simulations available), a stratified training and
validation split was employed. This strategy ensures that each climate model
is represented in both the training and validation sets. Specifically, 70% of the
simulations from each model were allocated to the training set, while the re-
maining 30% were used for validation. This approach mitigates potential biases
arising from the uneven distribution of simulations across climate models.

Dynamical model Members

ACCESS-CM2 3
CNRM-CM6-1 29
CanESM5 25
EC-Earth3 8
MIROC-ES2L 30
MIROC6 50
NorCPM1 30

Table 1: Dynamical models used for this project. All of them come from CMIP6

The climate model data is stored in Network Common Data Form (netCDF)
files, a format suitable for multidimensional arrays and metadata. The data has
a spatial resolution of 5◦ x 5◦ and covers the period from 1850 to 2013. In this
project, we used historical simulations instead of climate projections. These
simulations offer a more reliable foundation for the model compared to future
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projections due to their closer alignment with observed data, reducing the po-
tential for drift. The data is standardized using the selected reference period
from 1950 to 1985 (further explained in section 4.2.1). To perform standard-
ization, we obtain the trend of this period using Locally estimated scatterplot
smoothing (LOESS) [57] and its standard deviation. Grid-point wise predictors
and predictand were subtracted from their trend and divided by the standard
deviation. The predictand was standardized after obtaining the month-average
of the selected months in the prediction. For both predictors and predictand,
each simulation was standardized independently.

More specifically, the following predictors were used: Sea Surface Temper-
ature (SST) since the ocean is the highest predictability source for seasonal
predictions, the Temperature 2-meter Above Surface (TAS) for land represen-
tation, and the 500 hectopascal geopotential height (ZG500) for atmospheric
representation. These input variables were selected as a reduced set of variables
that could provide the highest predictability for seasonal predictions. The se-
lection was guided by the collaboration of climate scientists. This combination
of three variables provides compreensive information on the state of the land,
ocean, and atmosphere, all corresponding to May averages. For the predictand,
we used the three-month average temperature (TAS) for June, July, August
(JJA)

3.3 Evaluation Metrics

Based on related research and especially the suggestions from [58], we selected
metrics to fulfill three main purposes: measure the skillfulness of the predictions,
assess the quality of the ensemble forecasts, and test how well we can predict
extreme events.

To measure the skillfulness of the predictions, we use the Pearson correlation
coefficient [59] as defined in equation (4). The correlation is computed between
the mean forecasts (x) and observations (y) as a measure of association between
them. Additionally, the statistical bias is used to measure how the mean value of
our forecasts differs from the true value of our estimation (observations) and it
is computed as the difference between the mean forecast and mean observation.
We consider the bias between the mean of observations and the mean of the
mean ensemble forecasts (note that it’s the bias between means and not the
mean of biases). For interpretability, we compute the negative of the bias so that
a positive bias represents that the forecasts are warmer than the observations
and the opposite for negative values. Both the correlation and bias are used as
deterministic comparisons and their focus is not on the probabilistic properties
of the forecast.
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rx,y =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(4)

Continuous Ranked Probability Score (CRPS) was used to assess the qual-
ity of the ensemble forecasts produced. We can understand the CRPS as “a
quadratic measure of the difference between the forecast Cumulative Distribu-
tion Function (CDF) and the empirical CDF of the observation” [60]. Equa-
tion (5) shows how the CRPS is computed where F represents the true CDF
and the indicator function checking for x ≥ y would serve as the empirical CDF.
We compare the empirical CDFs from the observations (as the true CDF) and
the mean forecasts. CRPS will have values in the [0,1] where 1 implies that
the forecasts are accurate for the observations considered whereas a value of 0
is the opposite, therefore, a higher CRPS is desirable. When we refer to the
Continuous Ranked Probability Skill Score (CRPSS), the CRPS is computed
using climatology as a reference. It can be computed as shown in equation (6).
As such, positive values can be interpreted as the forecasts being more accurate
than climatology, and the opposite for negative values.

CRPS(F, y) =

∫
(F (x)− 1{x≥y})

2dx (5)

CRPSS = 1− CRPSforecast
CRPSclimatology

(6)

To test the prediction of extreme events, we use the Area Under the
Precision-Recall Curve (AUPRC). This is computed as in equation (7) consid-
ering different classification settings that define how to calculate the precision
(see equation (8)) and recall (see equation (9)). For that purpose, four different
scenarios will be considered where the classifications will focus on predicting
correctly the forecasts at ±1 and ±2 standard deviations. In each scenario, the
positive will be considered events that are in the target range (for example, +1
standard deviations away from the mean, 0). The higher the auprc, the better
the predictions are in terms of precision and recall for the classification scenario.

AUPRC =
∑
n

(RN −Rn−1)Pn (7)

P =
Tp

Tp + Fp
(8) R =

Tp
Tp + Fn

(9)
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4 Results

This section presents a methodology implemented in this thesis inspired by the
model presented in [43] but specifically tailored for 3-month seasonal predic-
tions, by considering a β-Variational AutoEncoder. We begin by outlining the
experimental setup, including detailed implementation choices. This is followed
by a description of the ablation studies conducted to refine and develop the
final model. Finally, we present the final results evaluating the performance of
the 3-month predictions generated by our model compared to the established
benchmarks.

4.1 Experiment setup

Here, we delve into the key components of an experiment, conceptualizing ex-
periments as the act of training either a single model or a collection of models.
First, we will cover the task definition used to focalize the results in a certain
prediction. Then, we will briefly describe how the metrics will be visualized for
a forecast and to perform forecast comparisons. Next, the benchmarks used to
compare the final results. Finally, a comprehensive explanation of the method’s
implementation and the training procedures.

Task definition. We define a specific task based on a 3-month prediction,
where we focus on forecasting Temperature 2-meter Above Surface (TAS) using
monthly-averaged inputs from May to predict the average of June, July, August
(JJA) of the same year. We changed the prediction objective compared to [43],
to make the prediction task closer to what is done in operational weather and
climate services providers [35]. Figure 9 illustrates an example forecast for the
summer of 1986 generated using the first embedding which corresponds to the
ACCESS-CM2 model.

Metric visualizations Considering a certain forecast, we visualize the metrics
as a map, however, this complicates the process of comparing between two
forecasts. For that, we use scorecards. We refer to scorecards as heatmaps
showing the relative difference between two forecasts, where one is considered
the reference. Each row of the heatmap represents an evaluation metric, and
each column represents a geographical region (see figure 10). The color maps
of the heatmap are limited to [-1, 1] to enhance visual clarity and facilitate the
comparisons within the scorecards. As an illustration, figure 20 shows the first
time where we use a scorecard to compare between forecasts.
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Figure 9: Example forecasts predicting the summer of 1986 using ERA5 as
inputs. The first column contains individual predictions, the second column
contains the mean ensemble forecast and the last column presents the ERA5
observation

Figure 10: Illustration of the IPCC climate reference regions for subcontinental
analysis of climate model data [61]

Benchmarks. The performance of our model is evaluated using ERA5 for the
period 1986-2020 against several baselines. The simplest baselines include Cli-
matology (CLIM) and Persistence (PERS), representing the average historical
value and the previous season’s value, respectively. Additionally, we compare
against a Deep learning baseline (cVAE0) that uses an initial configuration and
ECMWF’s fifth generation seasonal forecast system (SEAS5), the current state-
of-the-art dynamical model for seasonal predictions.
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The climatology (CLIM) baseline represents the average scenario from the
climate perspective. It is calculated by averaging the target variable (e.g., TAS)
over a chosen reference period (here we choose 1950-1985), essentially repre-
senting the expected value without considering any specific year. This approach
generates an ensemble forecast composed of all historical possibilities within the
reference period. Importantly, forecasts using climatology are independent of
lead time as they simply reflect the long-term average. As a consequence, the
mean ensemble forecast of the climatology will be approximately null, reflect-
ing the averaging of detrended (i.e., having the linear trend removed) historical
values.

The persistence model (PERS), represents a simple yet informative baseline.
It assumes that the upcoming climate conditions will remain unchanged from the
initial state of the forecast.For instance, if a JJA (June-July-August) summer
prediction is issued in May (lead time of two months), the predicted JJA average
TAS (near-surface air temperature) would simply be the observed TAS from
May. This essentially replicates the observed value with a one-to-one mapping,
functioning as an identity function.

The deep learning baseline (cVAE0) uses the basic configuration file defined
in listing 1. Note that the Kullback-Leibler divergence scheduler is not consid-
ered and the kl weight is set to 1, thus, the deep learning baseline would be
a conditional VAE instead of a conditional Beta-VAE. At each lead time, the
same configuration is used to predict summer.

Source Code 1: Fixed hyperparameters after hyperparameter tuning

model:

num_in_features: 6

embedding_size: 100

z_size: 1000

first_in_channel: 32

trainer:

lr: 1.e-4

kl_weight: 1.e-1

kl_ratio: 0.5

The seasonal forecasting climate model (SEAS5) is a state-of-the-art dy-
namical seasonal forecasting model. Differently from our model, which focuses
on 3-month predictions, SEAS5 natively predicts the following 6 months using
data from the day it is initialized, i.e. as we are predicting JJA, it would use
information from July 1st.

Implementation details. The code was implemented in Python using Py-
Torch to define the network and Xarray to load and manipulate Network Com-
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mon Data Form (netCDF) files. The reference paper does not provide code,
thus, it was designed from scratch taking inspiration and suggestions from other
works like [13]. The implementation is flexible enough to support multi-month
predictions and the use of any set of variables at any desired region, not only
globally. The latter allows running forecasts on a certain region of interest, like
Europe, using global inputs or even from another region as long as every input
comes from the same grid.

The model is trained on a single Graphical Processing Unit (GPU) NVIDIA
V100 from the CTE-POWER cluster of MareNostrum4 taking 40± 5 minutes.
In every experiment where we train the model, we test different learning rates
in the range[1.e-5, 1.e-3] as suggested in [62]. To manage multiple trainings, we
use Autosubmit [63], a Python-based workflow manager that can launch and
monitor tasks.

4.2 Ablation studies

Numerous factors can influence the performance of the results, and it is not
feasible to address them all. In this thesis, we will conduct the following ablation
studies to help us determine the final model and achieve the results presented
in section 4.3. First, we explore the standardization process that can be used
to overcome the biases in the input data. Then, we study the impact of the
ensemble size to decide which size to use on further tasks. Afterward, we tune
the hyperparameters to optimize the results. Finally, we use ERA5 (1950-
1985) to fine-tune the entity embedding layer and obtain a fine-tuned embedding
that could help understand which climate models were more appropriate for a
prediction task.

4.2.1 Extracting the trend from the data

The purpose of seasonal predictions is frequently to predict how warmer or
colder a season is compared to a reference. In that regard, the interest is more
on the anomalies around the trend than the trend itself. With that in mind,
we consider detrending the data and standardizing it against the arbitrarily
decided reference period 1950-1985, which we do not use for model testing.
Figure 11 shows the members of 4 climate models (data from 1850-2013) as well
as the ERA5 observations (from 1950-2013). The different simulations of the
climate models are represented with thin continuous lines. The figure shows
in discontinuous lines, the detrended data using Locally estimated scatterplot
smoothing (LOESS), a local regression method used to smooth time series data.
It can be seen that different climate model data contain different biases regarding
the observational data. To deal with those biases, we extract the trends obtained
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respectively using loess for ERA5. However, to perform this process with CMIP6
data it is computationally infeasible. Instead, we consider the trend as the
ensemble mean by year. The standard deviation used to standardize the data
is obtained from the reference period previously mentioned.

Figure 11: Plot showing CMIP6 and ERA5 data before the standardization pro-
cess. We show only four climate models described in the legend for visualization
purposes. The thinnest lines represent the different simulations associated with
the model of their color. In thicker continuous lines, the ensemble mean by year
is shown and the discontinuous ones are the time series obtained from applying
loess. The bias between the climate model data and ERA5 data varies depend-
ing on the model before the trend is removed

Figure 12 shows the effect of the standardization of both types of data. The
reference period is highlighted in grey, from which the trend is computed in its
respective way and it is applied to the rest of the data. Detrending the data,
which successfully removes the long-term trend, allows us to focus on predicting
anomalies. When the trend is included in the data, it can mask the actual
predictive skill of the model. For instance, the correlation coefficient might
be artificially inflated due to the inherent increasing or decreasing trend over
time. Removing the trend could denoise the performance and show how well
the methodology captures anomalies around the trend. For operational use of
the forecasts, the trend could be added back in the same way it was removed.

It is important to note that in the work of [43], it was not mentioned any
details about the detrending. The data used in their work was standardized
(targets after monthly-averaged) for each simulation, but a reference period
was not specified. As an example, we perform an experiment where the data
is not detrended and instead, the standardization is done as mentioned in the
original paper. CMIP6 and ERA5 data are subtracted from their mean and
divided by the standard deviation of the entire period. The mean was calculated
independently for each model, with every simulation of a model having the same
mean each year. Figure 13 shows the performance of the model when only this
standardization is considered. We can observe that the performance excels at
predicting warm events (+1 +2 sigma AUPRC) at the expense of having a low
correlation with the observations, a worse ensemble quality, and a huge bias.
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Figure 12: The data is standardized in two steps: first, successfully detrending
it by subtracting the trend (loess for ERA5 and ensemble mean for CMIP6) and
second, dividing by the standard deviation obtained from the reference period
highlighted in grey. The resulting anomalies of the climate models and ERA5
are now aligned and the initial bias has been solved. Additionally, having the
data centered around zero facilitates the convergence of the training and avoids
vanishing or exploding gradients.

After testing the standardization approach described in [43], the results are
strongly biased which does not occur in their work. We can assume the imple-
mentation was wrong or some steps were not detailed. Thus, we will standardize
the data as shown in figure 12, which successfully detrends the data and the
resulting anomalies are normalized correctly.
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Figure 13: Experiment standardizing the climate model and ERA5 data only
by the model mean. The trend is not sufficiently removed. The model is highly
biased to predicting warmer temperatures thus having high AUPRC on +1 and
+2 standard deviations at the expense of predicting badly cold anomalies

4.2.2 Impact of the ensemble size

A key advantage of our methodology compared to established approaches like
SEAS5 lies in its ability to readily scale the ensemble forecast size with minimal
computational overhead. This characteristic allows for potentially improved
performance by leveraging larger ensembles without significant computational
costs. Figure 14 shows the importance of the size of the ensemble for 3-month
seasonal predictions. For that, we obtain a 300-member forecast from May
to summer and perform bootstrap resamples at different sample sizes (similarly
done in [43]). For each resample, the mean ensemble forecast is used to compute
the spatial average correlation globally (y-axis). This is done 100 times at
each sample size (x-axis). The result displays that an increase in the ensemble
size helps achieve consistently better performance in terms of correlation, but
the difference is exponentially lower as the sample size increases. Increasing
the ensemble size further from 256 would not imply a significant increase in
performance, because of that, the ensemble forecasts will be performed on this
ensemble size.

29



Figure 14: Effect of the increase on ensemble size on the global correlation.
The results are obtained on cβVAE with the first embedding available (climate
model ACCESS-CM2) using the mean ensemble forecast. The horizontal axis
represents the number of samples and the vertical one the global correlation.
From an original ensemble forecast of 300 members, the distribution shown at
each step is formed by 100 bootstrap resamples of the corresponding samples

4.2.3 Hyperparameter tuning

Using the experiment setup explained in section 4.1, we tested different values
for a set of hyperparameters. Table 2 shows the subset of the parameters used
for tunning. The hyperparameter tuning followed the suggestions from [62]. We
analyze the results from these experiments to determine optimal hyperparam-
eters for the subsequent 3-month prediction tasks (excluding the learning rate,
which was left unfixed). The performance for each trial is evaluated based on
the model with the lowest training-validation loss. In cases where a KL diver-
gence scheduler is implemented, the best model is chosen by considering only
epochs where the annealed weight for beta reaches its maximum value (1). This
approach ensures we select a model that achieves peak performance during the
period with the strongest KL divergence influence.

We define hyperparameter ranges for our experiments using a JSON
(JavaScript Object Notation) file, as illustrated in figure 15. The ranges where
neither the start nor the end of the range are floating values will be considered
integer hyperparameters. Following the guidebook mentioned [62], we use a
version of a quasi-random search algorithm, called Sobol sequence. The config-
uration files are created by iterating over the Sobol sequences considering the
different hyperparameter ranges.
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Part to optimize Hyperparameters

Embedding layer embedding size - Output size of the embeddings

Bottleneck
z size - Size of the latent mean and standard deviation

first input channel - Channels of the first decoder residual block

Trainer epochs - Number of training steps

Optimizer lr - Learning rate (step size) of the stochastic gradient descent

KL Divergence
kl weight - Fixed weight for the KL term of the loss

For the scheduler: kl ratio kl n cycles kl monotonic function

Dropout
fixed dropout - Fixed dropout value

dropout pressence - Dropout on encoder/decoder or both

Table 2: Hyperparameters considered for the different parts of the methodol-
ogy. The only optimizer considered is Adam for the moment, for which only
the learning rate was considered to be tuned, having: beta1=0.9, beta2=0.999,
epsilon=1e-07 as their default values. The option to schedule the dropout was
implemented but discarded for the sake of simplicity.

The hyperparameter tuning starts on a basic configuration (no Kullback-
Leibler (KL) scheduler nor dropout) which was the one used for the model
cVAE0. As an example, the first experiment was run using the hyperparameter
ranges shown in figure 15 to define 128 configurations following a Sobol sequence.
figure 16 shows the experiment results in terms of each trial’s validation loss
history. The training that achieved the lowest validation loss is highlighted in
green and the lowest five are indicated in the top-right legend. Along with
this initial experiment, we ran others to fix the hyperparameters’ values and
determine the usefulness of the KL Scheduler and the dropout. In terms of
the KL Scheduler, the decision was to include it since it helped stabilize the
training even though the results did not noticeably improve. Regarding the
dropout, it was included solely in the decoder based on the results obtained.
This decision is supported by studies that show how a weak decoder can help
prevent posterior collapse [64]. Finally, the YAML code in listing 2 shows the
final set of hyperparameters.
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Figure 15: JavaScript Object Notation (JSON) file with the ranges of the hy-
perparameters for a certain experiment. With these ranges, a Sobol sequence is
started to define multiple configurations that are ran and compared to tune the
hyperparameters

Source Code 2: Fixed hyperparameters after hyperparameter tuning

model:

num_in_features: 6

embedding_size: 200

z_size: 2000

first_in_channel: 25

trainer:

lr: 1.e-4

kl_weight: 1

kl_ratio: 0.5

kl_n_cycles: 4

kl_monotonic_fn: "linear"

kl_start: 0

kl_stop: 1

dropout_pressence: ["Decoder"]

fixed_dropout: 0.5

The resulting model after the hyperparameter tuning experiments is denoted
as cβVAE. We compare its performance against the cVAE0 created on the afore-
mentioned starting configuration in appendix A. For that comparison, we use
a scorecard as defined in section 4.1 where we focus on correlation, CRPS, and
AUPRC at ±1 standard deviations (see section 3.3 for metric interpretations).
We use the model cVAE0as the reference. Thus, positive (red) values show
an improvement by the cβVAE in the specific region and metric. Except for
the CRPS where negative differences (blue) imply better quality of the ensem-
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Figure 16: Validation losses of the different trials of the first experiment by
epoch. Highlighted in green is the training that achieved the lowest validation
of all the trials in the experiment

ble forecast. Figure 17 shows the difference between cβVAE and cVAE0 both
predicting summer from May and using the first embedding available that corre-
sponds to the model ACCESS-CM2. We can conclude that the results improved
significantly in most regions after the experiments.
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Figure 17: Scorecard comparing cβVAE to cVAE0 at predicting summer from
May on verification period using the first embedding that corresponds to the
climate model ACCESS-CM2. cVAE0 uses the configuration before hyperpa-
rameter tuning and cβVAE is the result of the hyperparameter tuning strategy.
We find overall improvements in the correlation of most regions, a lower CRPS,
and better classification of both colder and warmer events. We can conclude
that tuning the hyperparameters improved the overall performance of the model

4.2.4 Fine-tuned embeddings using observational data

Based on the experiment done in [43] on obtaining an “optimal embedding”
by fine-tuning a trained model on ERA5 data, we perform a similar experiment
and compare the results with the other embeddings. For fine-tuning, every layer
except the entity embedding one is frozen. Then, we run 40 training epochs with
everything as the initial training but using the training split of ERA5 (which uses
the reference period 1950-185) and substituting the first embedding available.
After the fine-tuning of observational data of the first embedding, we make
use of t-distributed stochastic neighbor embedding (t-SNE), a statistical tool
used for dimensionality reduction purposes, to display the embedding space in 2
dimensions. Figure 18 shows the result of running t-SNE from scikit-learn [65]
on a perplexity of 15. The smaller the distance between points in the t-SNE
representation, the closer their entity embeddings are. It can be noticed that
the original embeddings tend to be as much separated as possible, implying
that the learned representations differ a lot between themselves. Regarding the
ERA5 fine-tuned embedding, it is almost equidistant to any of the other points
that represent the original embeddings from the climate models used.

Considering how none of the original embeddings are close to the fine-tuned
one we can assume that no model performs considerably similarly to ERA5
on 3-month temperature prediction. If some embeddings were much closer to
the “optimal” one, they can be considered by themselves for the corresponding
prediction task. To test the performance implications of using the fine-tuned
embedding, figure 19 compares the two of them showing how there are regions
where the metrics improve and others where they worsen. Overall, the use of
the fine-tuned embedding does not make a significant enough improvement.
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Figure 18: 2D visualization of the original embeddings and the fine-tuned em-
bedding using ERA5 data. The dimensionality reduction performed using t-SNE
was considering 15 nearest neighbors (perplexity) and the default parameters
from the method sklearn.manifold.TSNE. Distances in the two dimensions can
be interpreted as distances between the embeddings. The fact that the points
are evenly distributed in the latent space hinders that the representation may
not be meaningful since there should be a certain degree of similarity between
the climate models

Since the fine-tuned is not as useful as desired, we compare it with the mean
embedding (by first acquiring every embedding and then averaging them) which
should be similar based on figure 18. We can see in figure 20 that using the mean
embedding is not significantly better than the optimal embedding either. This
is to be expected since the mean embedding is not distant from the fine-tuned
one if it was included in the t-SNE representation previously. Lastly, to check if
any embedding is better than the mean one, figure 21 shows a comparison where
the mean embedding is used as the control group. Overall, the mean embedding
seems to lead to slightly better performance but any embedding could be used
and the results would not be heavily affected. We can conclude that either the
fine-tuned, the mean, or any of the learned embeddings influence considerably
the resulting forecasts. Thus, the learned embedding representations are not
meaningful in this setting. The mean embedding will be used for further tasks
since the performance is similar to using the optimal embedding and much easier
to compute.
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Figure 19: Scorecard considering the comparison between cβVAE using the
fine-tuned embedding on ERA5 data against using the first one (climate model
ACCESS-CM2) predicting summer from May on the reference period set for
verification. Overall, There are no significant differences that can be noticed in
the comparison

Figure 20: Scorecard considering the comparison between cβVAE using the
mean embedding against the fine-tuned embedding at predicting summer from
May on the reference period set for verification. The mean embedding is ob-
tained as the mean of the embeddings. There is no significant differences to
choose of the two options. Considering that the fine-tuned embedding is ap-
proximately equidistant to the original embeddings, it makes sense that it is
similar to the mean embedding

4.3 Final results

The ablation studies conveyed in section 4.2, helped us make decisions to define
the final model used to obtain the final results. The Final model (cβVAE) has
its hyperparameters tuned as in listing 2, the ensemble forecasts will have 256
simulations, we will use the mean embedding for inference, and the data will be
standardized and detrended by simulation and year. To measure the relative
performance of this model, the results will be compared against the different
benchmarks described in section 4.1: Deep learning baseline (cVAE0), SEAS5,
Climatology (CLIM), and Persistence (PERS).

Figure 22 shows the scorecard (see section 4.1) comparing cβVAE using
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Figure 21: Joined scoreboard that shows the difference of the results considering
each embedding against the results obtained using the mean embedding for the
task of predicting summer from May on the reference period set for verifica-
tion. The rows are separated into groups showing the considered metrics where
each group is associated with the comparison between the results using the cor-
responding embedding and the results using the mean embedding. It can be
considered that no embedding leads to significantly better results, concluding
that the impact of the embeddings on the predictions is not relevant

the mean embedding and the modifications mentioned above against the three
baselines considered. The correlation between climatology and cβVAE was
excluded since the mean ensemble forecast of the climatology is full of values
close to zero. It can be seen that overall ECMWF’s fifth generation seasonal
forecast system (SEAS5) surpasses the performance of the proposed approach
(a lower CRPS is better), the persistence model achieves similar correlations
but the other metrics are generally worse and, the results of climatology are
comparably poor. Still, it is noticeable that even if SEAS5 surpasses the pro-
posed approach, there are multiple regions like SPO, SWS, or SOO where the
metrics are fairly similar. Most of the regions where the performance is matched
correspond to ocean regions, they are easier to predict than land areas since the
Sea Surface Temperature (SST) is closely related to the Temperature 2-meter
Above Surface (TAS) (the target) of the same region.

We are interested in evaluating how the lead time affects the skillfulness of
the predictions using the proposed final model cβVAE compared to the differ-
ent benchmarks defined in section 4.1. For that purpose, the predictions were
obtained using as input May to January to predict the summer of the same
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Figure 22: Scorecard with comparisons against cβVAE using the mean em-
bedding considering the correlation and Area Under the Precision-Recall Curve
(AUPRC) at ±1 standard deviation. It can be seen that the predictions from
SEAS5 are better in almost every region whereas the persistence performs gen-
erally worse or equally. On the other hand, the climatology is worse than
cβVAE at almost every region.

year. Figure 23 displays the averaged ensemble mean correlation of the North
South-America (NSA) region from the IPCC climate reference regions. This
region is mostly formed by land which is harder to predict since the changes
occur faster than those in the ocean. We can clearly see that the ensemble
mean correlation decays as the lead time increases except for the climatology
which is the same. As expected, the highest correlation of the ensemble mean
for the observations was achieved by SEAS5 at every lead time. On the other
hand, CLIM stands at a null correlation since the mean ensemble forecast is
almost null as a result of averaging the anomalies of multiple years. In May and
April, we find the following order: the final model (cβVAE), the deep learning
baseline (cVAE0), PERS. This shows again how our proposed model serves as a
middle point between persistence and SEAS5. At the following lead times, the
superiority of the proposed models is not maintained showing similar results.

4.4 Discussion and Limitations

Several constraints have emerged throughout this project. Many of these con-
straints arise from the complexity of working with climate data; others stem
from the limitations imposed by the Variational AutoEncoder (VAE) architec-
ture.

Fundamental data limitations include the number of climate models used and
the performance of these models representing the natural climate dynamics, the
spatial resolution of the grid, and the quantity and quality of the variables con-
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Figure 23: Impact on lead time at the North South-American region compar-
ing the average ensemble mean correlation. As expected, the best correlation
was achieved in the SEAS5 forecasts. Next, we find that for May and April,
cβVAE stands over the other consider baselines having cVAE0 next in correla-
tion. At March our both approaches join and after that they perform similarly
to the persistence method. This is just the conclusion of focusing on a certain
land region, but as we can see in figure 22, at most regions cβVAE will achieve
a lower correlation than SEAS5 and a higher one than the persistence model.

sidered. Likewise, several pre-processing steps are needed to accommodate the
data for the training pipeline; these include re-gridding to a joint spatial and
temporal resolution or de-trending and standardizing the data. This thesis has
shown that minor changes in these pre-processing steps might lead to drastic
changes in the final model’s performance and validation. Additionally, the het-
erogeneous availability of the number of simulations for each climate model can
affect the data split, unbalancing their representation and potentially contribut-
ing to the ineffectiveness of the entity embeddings. This issue was left out of
the scope of this thesis and remains to be further explored.

The decision to use VAEs (Variational Autoencoders) over other generative
models has certain limitations. One major issue is that the generated samples
can often appear blurry. This is primarily because VAEs optimize a trade-off
between reconstruction accuracy and the smoothness of the latent space, which
can lead to less sharp images. Additionally, VAEs are prone to a phenomenon
known as posterior collapse, where the learned latent representations become
too simplistic and do not effectively capture the variability of the data. This
results in the encoder producing nearly identical outputs for different inputs,
undermining the model’s generative capabilities.
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When it comes to seasonal predictions, these limitations can have significant
impacts. Blurred generation of fields can lead to less precise predictions, as the
model may need to capture the finer details and variations in seasonal patterns.
Furthermore, posterior collapse implies the model is not correctly predicting
the range of potential climatic scenarios, leading to generalized predictions that
fail to account for extreme weather events or unusual seasonal shifts. This lack
of specificity can result in less valuable predictions for planning and decision-
making in sectors reliant on accurate seasonal forecasts, such as agriculture and
disaster management.

Overall, while many factors have hindered the performance of our forecasts,
these limitations also provide opportunities for future work. Thus, we foresee
the following future steps:

• Expanding the Dataset: Incorporate more and better climate mod-
els, enhance the spatial resolution, and consider additional variables to
improve the representation of the climate system.

• Improve the model architecture: Explore more recent architectures
like transformers, graph neural networks, or other generative approaches
like score-based models that better capture the nonlinear and stochastic
nature of the climate system.

• Refining Entity Embeddings: Investigate alternative methods to de-
velop more meaningful entity embeddings and how the information of this
embedding is merged into the network for better model performance.

By addressing these areas, we can enhance the performance and applicability
of VAEs in seasonal climate predictions.
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5 Conclusion and future work

This thesis investigates the application of conditional variational autoencoders
(cVAEs) for seasonal temperature prediction. Inspired by the methodology
presented in [43], we propose an approach that incorporates a conditional β-VAE
with dropout regularization in residual blocks. The proposed model aims to
predict the average June-July-August (JJA) temperature based on the climate
state of the preceding month.

While the achieved performance did not surpass established methods like
ECMWF’s fifth generation seasonal forecast system (SEAS5), it demonstrates
potential as a viable alternative. The cVAE framework outperforms climatol-
ogy and persistence at early lead times while offering valuable flexibility. This
flexibility allows for its application as a shared pipeline for various weather and
climate machine-learning tasks.

In addition to the implementation of the proposed methodology, rigorous
data handling procedures were employed. Both climate model and observa-
tional data undergo standardization with detrending to focus on anomalies.
Evaluation involves comparisons with frequently used baselines like climatol-
ogy, persistence, and SEAS5, the current leading seasonal forecasting model.
We also utilize metrics like correlation and CRPS to capture key aspects of
forecast performance.

This project contributes to the growing field of machine learning applica-
tions in weather and climate prediction. By leveraging observations and climate
model data, machine learning offers promising avenues for improved seasonal
forecasts. Our work serves as a starting point for further research, providing
valuable insights into the current state-of-the-art methods and establishing a
flexible pipeline for future advancements in seasonal forecasting with machine
learning.

In future work, we foresee different venues to improve the performance of
the proposed model. As an example, expanding the dataset by incorporating a
greater number of simulations, extending the time period covered, or including
additional variables, could contribute to better performance. On the same line,
the flexibility of the implementation allows for modifications such as using differ-
ent loss functions, alternative distributions for the latent space, or extensions to
the architecture. Additionally, post-processing calibrations of the results could
be considered as suggested in [41] to adjust the distribution of the ensemble
forecasts.

Although other generative approaches were considered, Variational AutoEn-
coders were chosen for specific reasons; however, future research could investi-
gate a similar setup using diffusion models. The challenge with diffusion models
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lies in the potential trade-off between improved accuracy and slower inference,
possibly resulting in smaller ensemble forecasts. Nonetheless, given that the
current ensemble size does not compensate for quality deficiencies, diffusion
models might enhance the overall quality of the ensemble forecast. Further-
more, considering the limited impact of entity embeddings for the three-month
prediction task, we propose using the reserved observations for fine-tuning the
entire network after pre-training with climate model data.
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A Annotated configuration file

Source Code 3: Example yaml config

# Random seed used to initialize every random process, not forgetting

# about the DataLoaders to secure a reproducible execution.

seed: 1357

# Output directory for the experiment where each trial will have its own directory

output_dir: '/esarchive/scratch/lpalma/tmp/'

# Sets the threshold level required to log a message.

# Being at INFO, every logging will be shown.

DEBUG_level: 'INFO'

# Configuration for the data from the CMIP6 climate models

dataset_cmip6:

# NetCDF file containing the target data from the climate models

target_path: '/esarchive/scratch/lpalma/esmvaltool/V23_INPUTS/work/inputs/cmip/inputs.nc'

# NetCDF file containing the input data from the climate models

input_path: '/esarchive/scratch/lpalma/esmvaltool/V23_INPUTS/work/inputs/cmip/inputs.nc'

# Input variables to be selected

input_vars: &input_vars ['tos','zg500','tas']

# Target variable to be selected. Only one

target_var: &target_vars 'tas'

# Months of the year used for input. Working with one or the mean of them

input_months: &input_months [4]

# Months of the year used for target. Working with one or the mean of them

target_months: &target_months [6, 7, 8]

# Range of years used to select inputs and targets. Last year not included

years: [1850, 2014]

# Number of threads used for the data loading

num_workers: &num_workers 4

# Flag to consider or not the embeddings

embeddings: True

# Array that defines the region of interest for all the input variables.

input_domain: &input_domain [-80, 80, -180, 180] # Global without poles

# Array that defines the target region

target_domain: &target_domain [-80, 80, -180, 180] # Global without poles

# Flag to compute or not the mean of the input months

inputs_month_mean: &inputs_month_mean False

# Flag to compute or not the mean of the target months

target_month_mean: &target_month_mean True
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# Arguments for the scaler used to standardize the inputs.

inputs_scaler:

# How to compute the climatology to be substacted as the mean. Can be:

# clim - the mean is computed by the groupby type only

# ens_mean - the mean is computed by the groupby type and the ensemble dimension

# ens_mean_loess - loess is applied after obtaining the mean as in ens_mean

# The trend is more accurately obtained but takes more time on large datasets

clim_type: 'ens_mean'

# Reference period from which the mean and standard deviation will be used

# To standardize the inputs

std_ref_years: [1950, 1985]

# Primary dimension on which the mean will be computed independently

groupby_type: 'model_id'

# Idem as the inputs_scaler but for the targets

target_scaler:

clim_type: 'ens_mean'

std_ref_years: [1950, 1985]

groupby_type: 'model_id'

# Configuration for the data from the ERA5 climate models

# Same as the dataset_cmip6 configuration but for the ERA5 data

dataset_era5:

target_path: '/esarchive/scratch/lpalma/esmvaltool/V23_INPUTS/work/inputs/era5/inputs.nc'

input_path: '/esarchive/scratch/lpalma/esmvaltool/V23_INPUTS/work/inputs/era5/inputs.nc'

input_vars: *input_vars

target_var: *target_vars

input_months: *input_months

target_months: *target_months

years: [1950, 2021] # A range will created. Last year not included

num_workers: *num_workers

embeddings: False

input_domain: *input_domain

target_domain: *target_domain

inputs_month_mean: *inputs_month_mean

target_month_mean: *target_month_mean

inputs_scaler:

clim_type: 'ens_mean_loess'

std_ref_years: [1950, 1985]

target_scaler:

clim_type: 'ens_mean_loess'
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std_ref_years: [1950, 1985]

# Model specific configuration

model:

# Class of the model to be instantiated.

# The other arguments are dependent on the type of model

type: "CGF"

# Input size of the embedding layer. Should match the number of climate models

num_in_features: 6

# Output size of the embedding layer

embedding_size: 30

# Size of the mean and standard deviation obtained in the bottleneck from the

# outputs of the encoder

z_size: 1000

# Chanels of the first transposed convolution block of the decoder.

# It is allowed to be changed to adapt to the z_size parameter

first_in_channel: 8

# Shape of the inputs(X). The variables are stacked in the channel dimension

input_shape_X: [3, 72, 32]

# Chanels of the residual blocks of the input's encoder

residual_blocks_X: [16, 32, 64]

# Shape of the targets(Y). The channel dimension is mandatory even if empty

input_shape_Y: [1, 72, 32]

# Chanels of the residual blocks of the target's encoder

residual_blocks_Y: [16, 32, 64]

# Channels of the transposed residual blocks on the decoder

residual_blocks_decoder: [32, 32, 32]

# Configuration for the trainining process. Contains the arguments for the DataLoader,

# the optimizer, the loss function and the dropout.

# Note: The dropout is included in the configuration of the training and not

# the model since we were considering whether or not to anneal the dropout

# as with the KL divergence in the loss

trainer:

# Number of training epochs

epochs: 50

# Size of the mini-batches considered for the Stochastic Gradient Descent

batch_size: 128

# Learning rate or step size of the optimizer. For now, only using Adam

lr: 1.e-4

# Weight decay factor for the optimizer (Adam) used for regularization

weight_decay: 1.e-1
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# Name of the loss function used to train the model

loss: "elbo_loss_mse"

# Fixed weight of the KL term in the ELBO.

# This parameter is dependent on the loss selected

kl_weight: 0.1

# KL scheduler that will create another weight (beta) to tune the importance

# of the term in the ELBO loss during the training epochs.

# At each cycle, the weight starts at the starting point and increases

# considering the ratio and the mononotonically increasing function until reaching

# the end point. When a new cycle begins, the weight is reset to the start.

# Ratio considered as to how much the scheduled value increases at each step

kl_ratio: 1

# Number of cycles of the scheduler

kl_n_cycles: 2

# Monotonically increasing function to schedule the KL beta (another weight)

kl_monotonic_fn: "linear"

# Starting point of the scheduler

kl_start: 1

# End point of the scheduler

kl_stop: 1

# Dropout used in the encoder and/or decoder.

# no - no dropout anywhere

# fixed - fixed dropout where indicated in dropout_pressence

# schedule - scheduled dropout in dropout_pressence

dropout: "fixed"

# Where the dropout will be included.

# For both encoder and decoder, the position is fixed

dropout_pressence: ["Encoder", "Decoder"]

# Dropout value used when the dropout type is set to fixed

fixed_dropout: 0.5

# Dropout scheduler considered when the type is set to schedule

# The arguments are the same as the KL ones

dropout_ratio: 1

dropout_n_cycles: 2

dropout_monotonic_fn: "linear"

# Configuaration of the verification after the training

verification:

# List of metrics to be computed

metrics : ["ensmean_corr", "auprc_neg1sig", "auprc_neg2sig", "auprc_1sig", "auprc_2sig", "clim_bias", "crps"]

# Flag to compute the metrics as skill scores compared to the
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# climatology of the reference years

comp_clim_fcst: True

# Years considered to verify the method.

reference_years: [1986, 2020]
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