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Resumen: La predicción climática estacional trata de predecir las anomaĺıas de variables climáticas con
una antelación de uno a seis meses aproximadamente. Su calidad y valor, sin embargo, dista aún hoy en
d́ıa de la de los pronósticos meteorológicos. Y es que las predicciones estacionales se producen con modelos
globales que tienen una baja resolución espacial, impidiendo aśı predecir las particularidades climatológicas
que suceden a escala local. Por ejemplo, en grandes ciudades, los sistemas de predicción estacional no “ven”
el llamado efecto isla de calor, que puede suponer un incremento importante en la temperatura media estival.
Con el fin de que estas predicciones climáticas puedan ser útiles para el control de enfermedades infecciosas
sensibles al clima, es necesario incrementar su resolución espacial y corregir los errores sistemáticos. En este
marco de investigación, este trabajo tiene como objetivo la aplicación de distintos métodos estad́ısticos para
el incremento de la resolución espacial de las predicciones, aśı como la interpretación de los resultados y la
selección del método más adecuado en función de la ciudad en estudio y las necesidades espećıficas de los
usuarios.

Abstract: Seasonal climate forecasting attempts to predict anomalies of climatic variables approximately
one to six months in advance. Its quality and value, however, is still far from that of meteorological forecasts.
Seasonal forecasts are produced with global models that have a low spatial resolution, thus preventing the
prediction of climatological particularities that occur on a local scale. For example, in large cities, seasonal
forecasting systems do not “see” the so-called heat island effect, which can lead to a significant increase in the
average summer temperature. In order for these climate predictions to be useful for the control of climate-
sensitive infectious diseases, it is necessary to increase their spatial resolution and correct for systematic
errors. Within this research framework, this work aims to apply different statistical methods to increase the
spatial resolution of the predictions, as well as the interpretation of the results and the selection of the most
appropriate method depending on the region or city under study and the specific needs of the users.
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1 Introduction

In order to simulate future climate conditions,
Global Climate Models (GCMs) aim to predict the
evolution of the components of the Earth system
over an extensive range of timescales, operating with
global grids of hundreds or thousands of square kilo-
metres. Both internal and external forcings are well
integrated in these dynamic forecasts, such as nat-
ural climate variability patterns and human-induced
climate change through the use of greenhouse gases
(GHGs) and aerosols (Solomon et al., 2007).

Regarding the variety of timescales to be studied,
as well as the sources of predictability1 stemming
from climatic fluctuations, climate predictions can
be grouped into three main categories.

Figure 1: A schematic illustrating the role of the main different
parts of the Earth’s climate system as sources of subseasonal-to-
seasonal predictability. Depending on the forecasting lead time
at hand, these system components and their processes can affect
climate predictability to different extents. Source: Mariotti et
al., 2018.

Sub-seasonal predictions operate by targeting pro-
cesses occurring over the span of two to eight weeks.
As opposed to weather forecasting, which extends
up to ten days ahead, the effect of the atmospheric
initial conditions on the overall predictability is less
substantial, as shown in Figure 1. Under these
timescales, knowledge of the initial state and evolu-
tion of slow-evolving components of the Earth Sys-
tem becomes a must for an accurate prediction
(Mariotti et al., 2018). The soil moisture is a good
example, having been reported to be a significant

source of skill2 during Northern Hemisphere winters
(Charlton-Perez et al., 2021) and in the anticipa-
tion of cold spells in Eurasia (Statnaia et al., 2022).
Besides, specific climatic oscillations such as the
Madden Julian Oscillation (C. Zhang, 2013) or the
stratosphere-troposphere interactions (Domeisen et
al., 2020) have also been reported to provide pre-
dictability at the sub-seasonal timescale.

As opposed to the shorter timescales of sub-seasonal
predictions, decadal forecasting encompasses pro-
cesses occurring over annual, multiannual and
decadal timescales. On this end of the spectrum,
predictability is established by decadal climatic os-
cillations such as the Atlantic Multidecadal Variab-
ility (AMV), the Pacific Decadal Oscillation (PDO)
or the Interdecadal Pacific Oscillation (IPO) (Sa-
linger et al., 2016). Aside from these, external for-
cings like GHGs and aerosols can also account for
decadal predictability (Oldenborgh et al., 2012).

This Master’s thesis will focus on seasonal predic-
tions, whose timescale falls between the two afore-
mentioned categories. Spanning from one month
to a year, this timescale’s source of predictability
comes from both initial conditions and external for-
cings. The El Niño-Southern Oscillation (ENSO)
is this timescale’s main mode of variability, charac-
terized by the fluctuating oceanic and atmospheric
conditions through its changes in atmospheric pres-
sure between the eastern and western tropical Pa-
cific (Lim et al., 2013).

As of today, the quality of seasonal predictions is
low when compared to that of other forecasts, such
as weather forecasts. This is due to the high uncer-
tainties stemming from the imperfect understand-
ing of the Earth system’s governing processes rep-
resented in the climate models and the uncertainty
coming from the imperfect knowledge of the initial
state, as small changes in the initial conditions can
lead to vastly diverging forecasts by virtue of the
Earth climate’s chaotic nature (Lorenz, 1963). Ad-
ditionally, GCMs generally present another source
of uncertainty in general prediction, it being that
the equations used for numerical prediction are con-
strained to a coarse grid with a limited resolution.

1Climate predictability refers to the ability to forecast future climate conditions beyond the range of normal climate vari-
ability. It is based on the understanding of the underlying physical processes and the interactions between atmosphere, ocean,
land surface, and other components of the Earth system (F. J. Doblas-Reyes et al., 2013).

2A statistical evaluation of the accuracy of forecasts or the effectiveness of detection techniques, as defined by AMS



Seasonal climate prediction in big cities: from Brazil to Barcelona 2

Subgrid scale phenomena (e.g. convection) cannot
be explicitly resolved and therefore must be para-
meterized, which further adds another layer of com-
plexity. Overall, this poses a series of challenges
in providing stakeholders with accurate climate in-
formation at the required regional and spatial scales
(F. J. Doblas-Reyes et al., 2013).

To account for initial-state uncertainties, seasonal
predictions are normally issued probabilistically.
Probabilistic forecasts provide the predicted values
together with their predicted probability of occur-
rence, rather than a single value alone (deterministic
forecasts). These predictions are generated by per-
forming a series of minimal perturbations to both
the initial conditions and parameters to be used by
the prediction model. Known as ensemble members,
these sets of values generate probabilistic distribu-
tions that allow for inferring the uncertainty estim-
ates of a given event, as shown in Figure 2.

Figure 2: A schematic of 36-h ensemble forecasts used to estim-
ate the probability of precipitation over the UK (right). Different
initial conditions when initializing the prediction model result in
differing forecast scenarios, leading to a probability distribution
function for the predicted variable (left). Source: Bauer et al.,
2015

Subgrid scale phenomena and parameterizations can
be dealt with by using several methods for grid-
refining and transferring the model’s resolution from
coarse to local or regional scales. These meth-
ods have been introduced under the framework of
downscaling over the last decades, and their use has
proven effective in providing more nuanced inform-
ation for a range of applications (see, e.g. Maraun,
2013; Winkler et al., 2011)

Two different downscaling types are commonly used
in seasonal prediction. On the one hand, dynam-
ical or numerical downscaling uses a nested regional
climate model in the GCM in order to provide in-
formation over a specific region (Le Roux et al.,
2018; Rockel, 2015). On the other hand, statist-
ical downscaling (SD) attempts to predict the local-
scale variables (predictors) from large-scale variables
(predictands) by means of the statistical relation-

ships built between them (R. L. Wilby et al., 1998).
SD has grown in notoriety in the last couple of dec-
ades, and because of its lower computational costs
over dynamical downscaling, its application in cli-
mate research is turning to be more extensive with
time (Christensen et al., 2008).

SD is one of the potential tools that can be used
to enhance climate predictions from the climate ser-
vices perspective, defined as the timely production
and delivery of useful climatological data, inform-
ation, and knowledge to decision-makers (WMO,
2015). Decision-makers and stakeholders in regions
from developing countries often lack access to the
necessary tools to generate climate-related products
on national and sub-national scales, which could
turn into a potentially limiting factor for policy and
decision-making in many areas like agriculture, the
energy industry, or, as is the focus of this report,
the public health sector. Amidst Earth’s changing
climate due to unequivocally human-driven causes,
it is of utmost importance that Earth scientists
provide non-climate-experienced users with tailored,
well-disseminated products that can be of use for
both society and industry.

In the context of climate services for the health sec-
tor, mosquito-borne disease transmission is a par-
ticular field of study for which a meticulous need
for climate services is heavily incentivized. Global
threats like malaria and dengue are expanding their
outreach to areas where they previously had sub-
sided, with their transmission suitability and epi-
demic belt increasing towards higher altitudes and
more temperate areas in the extra-tropics (Mordecai
et al., 2019). This predicted expansion, prompted
by the surge of a longer transmission season, sug-
gests the appearance of possible malaria and dengue
hotspots in the Western Pacific, Eastern Mediter-
ranean, South-East Asia and the Americas (Colón-
González et al., 2021). In the absence of well-
equipped public health systems to manage the re-
currence of these endemic outbreaks, populations
without prior exposure to the relevant pathogens
may face a significant health risk.

Malaria is mainly transmitted between humans via
female Anopheles mosquitoes, which reside in rural
areas in tropical and subtropical latitudes. Caused
by protozoans of the Plasmodium genus, there are
serious concerns that this life-threatening disease
could thrive in urban and peri-urban regions (Cam-
inade et al., 2014). Similarly, dengue is transmitted
via female yellow fever and tiger mosquitoes (Aedes
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Figure 3: Length of the transmission season (LTS, in months) as a function of mean annual temperature and total annual pre-
cipitation for different malaria (A−C) and dengue disease models (D−F ). For both vector borne diseases, climate suitability is
defined as a coincidence of precipitation accumulation higher than 80 mm, a relative humidity higher than 60%, and a temperature
range of 18-32 °C. Source: Colón-González et al., 2021

aegypti and Aedes albopictus respectively). This dis-
ease is endemic in more than 120 countries, quickly
expanding its spatial range over the past century
(Bhatt et al., 2013).

The literature links the spatial range and magnitude
of malaria and dengue transmission to several cli-
mate factors that could condition their increase in
the wake of climate change. As shown in Figure 3,
both rising temperature and precipitation increase
these vectors’ physiological traits and pathogens ex-
ponentially until a maximum thermal/precipitation
optimum is surpassed (Kraemer et al., 2015). Addi-
tionally, while heavy precipitation also often leads to
higher transmission (Paaijmans et al., 2007), severe
drought in urban areas can foster mosquito breed-
ing sites as well, thus making both humidity ex-
tremes a key factor in disease transmission (Lowe
et al., 2018). While some geographical barriers with
colder seasonal temperatures can protect countries
from turning hyperendemic to malaria and dengue,
such as the Amazon rainforest (Barcellos and Lowe,
2014), there seems to be a link between the erosion
of these barriers and both rising temperature suit-
ability and urbanization (Lee et al., 2021).

This work attempts to assess these climatological
mosquito-borne transmission factors by applying
and comparing a set of SD methods to a series of sea-
sonal predictions over the continent of South Amer-

ica and over the city of Barcelona. In doing so, it
is expected to find insight on the concrete methodo-
logy to study climate phenomena conditioning rising
mosquito-borne diseases, taking into account for-
cings that would otherwise remain undetected over
a coarse-grid analysis (e.g, local surface topography
or the thermal heat island effect over urban areas,
as explored by Anders et al., 2006).

Section 2 covers both the datasets utilized and the
statistical downscaling methods implemented for the
purposes of this work in order to refine seasonal
model output, as well as the verification metrics
employed to compute the skill of fine-grid outputs.
Section 3 outlines the best out of the presented SD
methods, showing and analysing the obtained res-
ults in South America and the city of Barcelona.
Lastly, Section 4 presents some brief discussions, as
well as the possible implications of this study in the
modern public health sector.
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Figure 4: A summary of details of the datasets employed for SD analysis.

2 Methods

2.1 Datasets

The seasonal forecasts used in this thesis pertain
to the ECMWF’s System 5 (SEAS5), its current
prediction system since November 2017. SEAS5
outputs contain an extensive set of available data,
and its large number of ensemble members plays
a crucial factor in obtaining robust analyses in
the context of seasonal predictions (Manzanas and
Gutiérrez, 2019).

System 5 is based on a global coupled model
that comprises the Integrated Forecast System
atmospheric model (IFS) and the Nucleus for
European Modelling of the Ocean model (NEMO)
(see Bechtold et al., 2014 and Breivik et al., 2015
for a description of these models and their applic-
ability). Forecast simulations are issued the first
day of each month spanning lead times3 from up
to thirteen months into the future. SEAS5 predic-
tions are freely available through the Climate Data
Store of the Copernicus Climate Change Service
(cds.climate.copernicus.eu) on a regular grid of 1°x
1° of horizontal resolution. Additionally, in order to
verify the quality of its prediction system, System
5 provides a set of retrospective seasonal forecasts
known as hindcasts with 25 ensemble members, al-
lowing users to calibrate their own real-time forecast
products and develop tailored products for their spe-
cific needs (Johnson et al., 2019).

For the purposes of this work, monthly-mean data
from the 1993-2018 hindcasts has been retrieved

for the prevalent meteorological variables in vector-
borne disease transmission: minimum and max-
imum temperature, near-surface (2 m) air temper-
ature, and total precipitation over a 24-hour period.
The monthly mean of the near-surface air temper-
ature is computed from the 6-hourly instantaneous
data, while the monthly means for maximum and
minimum temperatures correspond to the averages
of their respective daily values. In addition, the
monthly mean precipitation is the average of the
daily precipitation rates, expressed in meters per
second.

As discussed in Section 1, seasonal GCMs suffer
from a number of uncertainty sources that make
their forecast quality subpar in comparison to those
of shorter timescales (e.g. weather forecasting).
Therefore, an observational reference usually be-
comes necessary for both statistical applicability
of downscaling methods and their later evaluation.
To this aim, it is prompted to use station data or
reanalysis data for the verification of seasonal cli-
mate predictions at the regional scale.

Regarding Barcelona, observational data has been
extracted from the meteorological Observatori
Fabra, located northwest of the city. Since its
inception in 1904, this weather station has been
measuring daily values of temperature, humidity,
atmospheric pressure and both wind speed and dir-
ection, among other essential climate variables.

3The length of time between the issuance of a forecast and the occurrence of the phenomena that were predicted, as
established by AMS

cds.climate.copernicus.eu


Seasonal climate prediction in big cities: from Brazil to Barcelona 5

Figure 5: Possible malaria and dengue transmission hotspots (left, Brazil, downscaling to a region; right, Observatori Fabra in
Barcelona, downscaling to a point). Due to the erosion of natural barriers that deter vector-borne disease transmission via rapid
climate change, a downscaling analysis becomes compulsory in these areas for precise analysis of future climate conditions and
possible impacts. In the case of Brazil, a continent-wide analysis will be made so as to infer the best downscaling method in other
hotspot regions.

On the other hand, ERA5-Land reanalysis data
from the same 1993-2018 period will be utilized for
both SD methods and skill comparison in the South
American regions. Reanalysis projects blend ob-
servations with past short-range weather forecasts
rerun with forecasting models, creating evenly dis-
tributed data (ECMWF, 2020). Because of these
assimilations, reanalysis tend to have better spatial
and temporal resolution in relation to climate mod-
els.

ERA5-Land provides hourly information of sur-
face variables in a fine 0.1° x 0.1° output (about
10 km grid spacing). Preliminary scientific assess-
ments predating its release in 2019 concluded that
ERA5-Land’s higher resolution is heavily effective
when used for surface applications. This is espe-
cially so over complex terrain and orography, where
boundary-layer phenomena become more prevalent
(Muñoz, 2019).

Though reanalysis data is used extensively as refer-
ence, it has to be acknowledged that its estimates
have a number of inherent limitations, often stray-
ing far from the actual point values. For instance,
changes in the observational type or coverage can
produce decreasing inter-model variability, which
could be detrimental when assessing climate condi-
tions near tropical regions (Gleckler et al., 2008).
Reanalyses also exhibit significant systematic er-
rors in almost all climate quantities, an underlying
symptom of the assimilation models that can have
an impact on reanalysis quality (Reichler and Kim,
2008).

A summary of the main characteristics and vari-
ables of the data sources described in this section
can be found in the schematic of Figure 4.

2.2 Statistical downscaling methods:
a brief overview

SD methods are based on the assumption that re-
gional climate is conditioned by both small-scale
physiographic features (e.g. topography and land-
sea distribution) and the large-scale atmospheric
state (Storch, 1999). Because of this, large-scale
variables from GCM simulations (predictors) can
be used to downscale local climate variables (pre-
dictands), transforming coarse-grid data into a fine-
grid output. However, it is to be noted that this
fundamental assumption behind SD methods is not
verifiable, which is to say that the statistical re-
lationships between predictors and predictands re-
main unchangeable, even if climate scenarios and
forcing conditions do change overtime (R. Wilby et
al., 2004). In spite of this, statistical downscaling
can be useful in studying heterogeneous environ-
ments such as coastal areas like the city of Barcelona
or regions with complex topography like the country
of Brazil, as seen in Figure 5 (Gachon et al., 2011).

When applying statistical downscaling to the global
outputs of a GCM in seasonal prediction, two phases
are typically required. First, forecast parameters are
tuned and cross-validated using a historical period
with predictor and predictand observational data.
Following this calibration, the predictors of GCM
outputs are later plugged into the algorithms neces-
sary for calculating downscaled values of the pre-
dictand variables through many available methods.

SD methods have been widely used in the literat-
ure (e.g. Pavan and Doblas-Reyes, 2013; Ramon et
al., 2021), and due to the extensive number of stat-
istical downscaling techniques in climate research,
several attempts have been made in order to give
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Figure 6: A schematic of the statistical downscaling methods to be used on the datasets described in Section 2.1.

a well-defined classification for the SD methods in
use (Marzban et al., 2006). Regarding the approach
followed in the first training phase, SD methods are
commonly divided into two main categories:

Model Output Statistics (MOS) comprise SD meth-
ods in which predictors are taken only from the
GCM itself for both phases of the downscaling pro-
cess. For instance, it is possible to obtain down-
scaled temperature values directly from model tem-
perature forecasts, simplifying the downscaling pro-
cess and accounting for systematic biases in the pre-
dictor field. MOS methods were first used for short
and medium-range weather prediction in global or
regional models, and though its application over sea-
sonal prediction posed some initial limitations (Van-
nitsem, 2008), GCMs have proven successful in ad-
apting MOS methods to these timescales, so long as
their outputs are nudged to have similar values to
those of reanalyses (Eden et al., 2012).

This work’s SD methods rather fall under the ap-
proach of Perfect Prognosis (PP), building the stat-
istical relationship using SEAS5 data as predictor
and observational reference as predictands. This
approach allows for automatically correcting biases
in the predictions in the training (fitting) phase of
the statistical model, provided the training sample
is large enough to produce robust results. Since
the same observational references will later be used
for skill verification as well, it is necessary to apply
leave-one-out cross-validation so as to avoid using

the same data for the derivation of post-processing
parameters (Leung et al., 1999).

The SD methods used in this study can be divided
into six main groups, as provided in the schematic
of Figure 6:

� Interpolation: Estimates unknown fine-scale
grid points (or point locations) from the coarse-
grid data. Interpolation alone cannot be strictly
considered an SD method, as it does not take
into account the statistical relationships between
model and observational data. However, an ini-
tial phase of this work focuses on discerning
which interpolation method is more skilful, so
that other transformations using observational
reference are later performed.

Because interpolation techniques can be applied
based on different mathematical approaches,
eight different interpolation methods over a two-
dimensional grid will be tested:

1. Nearest neighbour interpolation: Es-
timates the unknown value by utilizing the
value of the closest point (Euclidean dis-
tance) of the coarse-scale grid.

2. Bilinear interpolation: Estimates the un-
known value based on the values of four
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neighbouring points, in a way that the closest
points have more weight in the final interpol-
ated value.

3. 9-point interpolation: Fits a point’s value
based on those of the nine neighbouring
points. Unlike the bilinear interpolation, it
gives equal weight to each of the nine points.

4. Bicubic interpolation: Fits a smooth
curve over sixteen neighbouring points, then
uses the smooth curve to estimate the point’s
value at the interpolated resolution.

5. First order conservative interpolation:
Ensures that the total mass of a system is
preserved during the interpolation process
by calculating a mass density of a point’s
surrounding values. Since the numerical ex-
pression to apply this method depends on a
Taylor expansion (Aguerre et al., 2019), a
first term will be taken in order to apply this
interpolation method.

6. Second order conservative interpola-
tion: Analogue to the first order interpola-
tion but truncating in the second Taylor ex-
pansion term.

7. Large-area fraction interpolation: As-
sumes the unknown value to be the value of
the variable with the largest area fraction for
each target grid cell.

8. Inverse distance interpolation: Uses a
weighted average of the values of the vari-
able at the four nearest neighbours, with the
weights being inversely proportional to the
distance between the target point and the
coarse grid points.

� Interpolation plus bias adjustment: After
transforming model data to a fine grid, interpol-
ated values are corrected using three different
bias adjustment techniques:

1. Simple bias correction: As illustrated in
Figure 7, this bias correction method sets
predictions to have the standard deviation
and mean of the observations, assuming vari-
ables to follow a Gaussian distribution.

2. Calibration: A series of methods that ad-
just the moments of the prediction distribu-
tion such that the seasonal predictions have
a cumulative density function (CDF) equal
to their observations (Palmer, 2005). A cal-
ibration method which minimizes the mean
squared error of the CDF has been chosen

for this work.

3. Quantile mapping: A set of methods that
adjust prediction probabilities to those of the
observed frequencies (Jakob Themeßl et al.,
2011).

Figure 7: An example of simple bias correction ap-
plied to 1987-2017 SEAS5 surface wind speed predic-
tions for December-January-February. (a-b) depict the
raw seasonal predictions and its probability distribution
function, while (c-d) represent the corrected values after
applying a simple bias correction. Red values represent
the ensemble members of the prediction and their mean
in a solid line, whereas black solid lines represent the
observed seasonal wind speeds, sourced from the ERA5
reanalysis. Source: Ramon Gamon, 2022

� Interpolation plus linear regression: While
most linear regression address Gaussian vari-
ables like temperature (Benestad, 2010), certain
suitable transformations can deal with the use
of non-Gaussian variables like precipitation as
well (Hessami et al., 2008). Linear regressions
are performed by using high-resolution reference
data as predictands and interpolated model data
as predictors.

� Interpolation plus logistic regression:
Relates anomalies of the large-scale forecasts
to tercile observed probabilities (above nor-
mal/normal/below normal) of observing local
scale conditions. As interpolated data is con-
verted and discretized into probabilities, logistic
regression then estimates the probability of the
model event occurring, based on the given data-
set of independent observed variables.
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Different predictors can be used for logistic re-
gression:

1. Ensemble mean anomalies.

2. Ensemble mean anomalies and their
spread (computed as the standard deviation
of all the members).

Logistic regression stands out from the rest of
the SD methods in the sense that it is the only
one whose results appear in the form of discret-
ized probabilistic outputs, instead of absolute
values.

� Linear regression using a five-point sten-
cil: Stencils are defined as numerical approxim-
ations to arrange a point of interest, and are the
basis for solving partial differential equations. In
a square grid such as those of the System 5 pre-
diction system and the ERA5-Land reanalysis,
the five-point stencil can be used to estimate a
point’s value by fitting a linear regression whose
predictors are the values of its four nearest neigh-
bours in the observational reference.

� Analogues: An SD method based on the local
occurrences corresponding to a set of historical
observational analogues. The search of the ana-
logous fields is performed by looking for monthly
means with similar conditions in the reference
data based on the minimum Euclidean dis-
tance, estimating the similarity between large-
scale forecast fields and their counterparts from
historical reanalysis data.

2.3 Forecast verification metrics

Forecast quality assessment is an essential multifa-
ceted process that provides an estimate of a model’s
skill (Mason and Baddour, 2008) so as to guide
users about its expected performance. In order to
quantify a prediction system’s added value relative
to other prediction approaches, hindcasts are com-
pared against observational references (in this case,
reanalysis or station data).

A wide range of skill measures available in the liter-
ature can be used to assess the prediction system’s
quality (e.g, Broecker, 2011), though this work thor-
oughly focuses on five common skill metrics for the
fine-grid outputs over the studied regions. These
scores will give concrete understanding of which in-
terpolation method described in Section 2.2 proves
to be more effective, as well as ponder the overall
performance of the different SD methods so as to
intercompare them.

� Ranked Probability Skill Score (RPSS):
Calculates the difference between the areas un-
der the CDFs of the forecast and the obser-
vations, then discretizes the probability distri-
bution by transforming it into ordered categor-
ies. The differences between the corresponding
probabilities in each category are then squared,
summed, and divided by the sum of the squared
differences between the observed probabilities
and the climatological probabilities.

RPSS values range between−∞ and 1, with 1 in-
dicating a perfect forecast, 0 indicating no skill,
and negative values indicating that the forecast
performs worse than the reference data.

� Continuous Ranked Probability Skill
Score (CRPSS): an extension of RPSS that
evaluates the skill of a continuous probabilistic
forecast by measuring the distance between the
predicted and observed CDFs. CRPSS penal-
izes different attributes of quality of forecasts,
the mean bias being among the most import-
ant ones. CRPSS ranges between −∞ and 1,
with 1 indicating a perfect forecast, 0 indicating
no skill, and negative values indicating that the
forecast performs worse than reference data.

� Brier Skill Score (BSS, 10th and 90th per-
centiles): A measure of the mean square error
of the forecast probabilities for a binary event,
ranging from −∞ to 1, where a score of 0 indic-
ates no skill, a positive score indicates skill, and
a negative score indicates the forecast is worse
than reference data.

BSS can be modified to evaluate the forecast
skill at different probability thresholds. In this
context, out of all the metrics described, both
BSSp10 and BSSp90 become a more appropri-
ate skill score to use when observing extreme
weather events like heatwaves, cold waves or
flooding events.

� Mean Absolute Bias: calculated as the differ-
ence between the mean of the forecast values and
the mean of the observed values. This metric as-
sesses whether the forecasts tend to overestimate
or underestimate the observations on average. A
Mean Bias of zero indicates that the forecasts are
unbiased, while positive values imply that model
output presents on-average values that deviate
from those of the observational reference.

While the presented analysis has been performed
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using all verification metrics, barring the exception
of logistic regression (which is constrained to RPSS
as its probabilistic outputs are discretized into ter-
ciles), almost all maps presented throughout this
work will be shown using CRPSS so as to illustrate
an analysis over the entire probability distribution
function. The final comparison will be performed
using RPSS, as it is the only metric all methods
share in common.

3 Results and discussion

3.1 Skill comparison between SD
methods over a region: South
America and Brazil

3.1.1 Interpolation

Because three of the five main SD methods described
in Section 2.2 depend on interpolation, this analysis
is prefaced by outlining which of the interpolation
methods proves to produce more robust skill overall,
so that further post-processing techniques are later
performed.

Figure 8 presents the skill assessment of the down-
scaled SEAS5 predictions using several interpolation
methods. The spatial distribution of the CRPSS
(Figure 8, top) reveals that positive skill in tem-
perature exists mainly within the Amazon basin, a
relatively flat region, for lead times zero and one.
Positive CRPSS values can also be seen scattered
around the westernmost areas of Brazil, a more
mountainous region for both lead times, though skill
in the central and southern areas of Brazil is only
observed for leadtime zero. This seems to suggest
that, in these regions, SEAS5 output data responds
well to seasonal predictability sources such as the
fluctuations in sea surface temperature and atmo-
spheric circulation caused by the different ENSO
phases, the variability of the Intertropical Conver-
gence Zone (ITCZ)4 or the variability of the South
Atlantic Convergence Zone (SACZ)5, among others
(as verified by MacLachlan et al., 2015 and Fialho
et al., 2023).

In general terms, it is noted a decrease in skill in
lead time one compared to lead time zero. This de-
crease in forecast quality is tied to increasing model
bias sensitivity, with uncertainty sources growing

higher (as previously studied in Hawkins and Sut-
ton, 2009).

Figure 8 (top) leads to the suggestion that the
Amazon River and its surrounding rainforest could
play a factor in added seasonal predictability, influ-
encing the higher skill presented for SEAS5 interpol-
ated outputs around these latitudes (as previously
suggested in, e.g., Marengo, Soares et al., 2004;
Marengo, Tomasella et al., 2011; Li, Dickinson et
al., 2014). Indeed, being a vast source of evapo-
transpiration, the Amazon rainforest affects the
surface energy balance and atmospheric circulation
patterns, with the ITCZ transporting moisture to
other parts of Brazil and beyond. Along with its in-
teraction to ENSO (Li, Dickinson et al., 2014), this
makes the Amazon rainforest an important source
of seasonal predictability for both precipitation and
temperature.

Results like the presented in Figure 8 (bottom)
depict that the bicubic, conservative and inverse
distance interpolation methods are generally better
when interpolating model data to fine grid, regard-
less of the skill verification metric, month or lead
time. Since these three methods hold nearly the
same weight throughout this initial analysis, fol-
lowing post-processing techniques for temperature
variables will take these three separate interpolation
methods into account.

The intercomparison also reveals that the nearest
neighbour and large area fraction methods, while
inefficient in other grid points, prove to be more ef-
fective there where the high-resolution grid coincides
with the original SEAS5 grid of 1º x 1º degrees of
spatial resolution (see zoom in Figure 8, top-left).
This could be explained by the fact that there’s
a higher likelihood of encountering sparse points
along the grid borders. With fewer data points to
interpolate from, both the nearest neighbour and
large area fraction methods may exhibit higher skill
simply because these methods inherently rely on the
available model outputs more directly.

4The area where the northeast and the southeast trade winds of their corresponding hemisphere converge, collocated with
the ascending branch of the Hadley cell and encircling Earth near the thermal equator, as defined by AMS

5An elongated convective band typically originating in the Amazon basin, extending toward southeast Brazil and protruding
into the southeastern subtropical Atlantic Ocean, as defined by Carvalho et al., 2002
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Figure 8: Top: Interpolation method comparison for near-surface temperature in the month of January for lead times zero (left,
forecast issued in January) and one (right, forecast issued in December). In each grid point, the CRPSS value associated to the highest
skill out of the tested methods is plotted. If no method is able to display positive skill, values are plotted in white instead, showing they
perform worse than ERA5-Land reference data. All positive skill grid points for each SD method are then counted and displayed in a
pie chart for easier comparison. Bottom: A summary of pie charts for all interpolation maps of near-surface temperature in January,
categorized by skill metric and lead time.
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This choice doesn’t apply for total precipitation,
however. Though total precipitation shows similar
results, as shown in Figure 9, it has to be stated
that, unlike temperature, precipitation is driven by
the principle of conservation of mass, and it is thus
constrained to an analysis using the first order con-
servative interpolation method - total precipitation
must be preserved within a grid cell in order to main-
tain physical consistency.

Figure 9: Interpolation method comparison for total precipita-
tion for leadtime zero in the month of January.

Figure 10: Top: Interpolation method comparison for near-
surface temperature for leadtime zero in the month of June. Bot-
tom: Land cover type classification in South America. Source:
Pacheco, 2012.

It is of note that, while the skill for total precipita-
tion remains without much variation throughout the
year (not shown), temperature skill scores are par-
ticularly lower (or negative) in the boreal summer
months (June, July, August) around central South
America and surrounding Brazil’s western border
(e.g., Figure 10, top). This seasonal cycle may mir-
ror the contrast between land and sea surface tem-
peratures, which could be more pronounced during
these specific months. Analysing land surface types
in Figure 9 (bottom) and their relation to skill val-
ues (top) it is observed that, in seasonal timescales,
drier forest and cropland regions become more sus-
ceptible to higher temperature contrast, and may
thus explain the lower skill in the boreal summer.

3.1.2 Interpolation plus bias adjustment

After selecting the best interpolation methods, three
bias adjusting techniques in seasonal prediction are
later applied to the interpolated model data, using
the ERA5-Land reanalysis as observational refer-
ence. The CRPSS of the downscaled seasonal pre-
dictions is presented in Figure 11 (top), and as can
be observed, higher skill is noted when compared
to the interpolation results in Figure 8, highlighting
the importance of including an observational refer-
ence in order to correct model bias through post-
processing techniques. Higher CRPSS values arise
throughout the continent and in northern regions
of South America, though southern areas of Bolivia
and both the country of Paraguay and Argentina
still show poor skill values overall.

The increase in skill is exceptionally higher than in-
terpolation alone in the Andes mountain range re-
gions, showing that bias adjustment techniques are
effective in reproducing the orographic effects or the
complex terrain interactions with atmospheric flows.
Additionally, the Andes mountains act as a bar-
rier to prevailing winds, forcing them to ascend and
leading to orographic lifting. This lifting process
can enhance the availability of moisture and trig-
ger enhanced precipitation on the windward side of
the mountains. By accounting for these and other
coupled processes in adjusting SEAS5 data, bias cor-
rection techniques may lead to improved skill in the
Andes regions.

On the one hand, results in Figure 11 (bottom) show
simple bias correction to be the best bias adjustment
technique for all variables, often representing over
50% of the total positive skill points on each map.



Seasonal climate prediction in big cities: from Brazil to Barcelona 12

Figure 11: Top: Interpolation plus bias correction method comparison for maximum temperature (left) and total precipitation (right)
in the month of February with leadtime zero. Analysis includes the best of the interpolation methods for each variable (bicubic, conser-
vative and inverse distance for temperature variables, conservative for total precipitation) and their three corresponding bias adjustment
techniques (simple bias correction, calibration and quantile mapping). Bottom: A summary of pie charts for all interpolation plus bias
correction maps for maximum temperature and total precipitation in the month of February, categorized by skill metric and lead time.
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On the other hand, the worst results are offered
by quantile mapping, especially for temperature
variables. In the case of total precipitation, how-
ever, quantile mapping holds a similar contribution
to that of calibration when analysing results with
BSS90 and CRPSS. It is believed that this poor
contribution is related to sample size and hindcast
length, as the quantile mapping technique can be af-
fected by the loss of detailed temporal information
when using monthly mean data. This could limit the
ability of the technique to adequately capture and
correct biases, resulting in poorer skill assessment
results.

With regard to calibration, it is worth comment-
ing that its performance appears better as lead-
time increases (Figure 11, bottom). This observed
trend hinges on the fact that calibration techniques
can help preserve long-term signals in the model
predictions, leading to better agreement with the
observed climate patterns. Moreover, calibration
techniques involve adjusting the distribution of the
model predictions to improve their reliability. As
lead time increases, model biases and deficiencies be-
come more apparent, and thus the calibration pro-
cess can be more effective in correcting these dis-
crepancies (Teutschbein and Seibert, 2010).

3.1.3 Interpolation plus linear regression

The skill assessment of the downscaling with an in-
terpolation plus a linear regression is shown in Fig-
ure 12. This method consists in performing a linear
regression with interpolated model data as the pre-
dictor variable and ERA5-Land observational refer-
ence as the predictand one.

The method exhibits positive skill over the same re-
gions and areas across all months and lead times as
those of interpolation plus bias adjustment (Figure
11), particularly in the surrounding areas near the
Amazon River

Pie charts for interpolation plus linear regression
(Figure 11, bottom) suggest that performing a lin-
ear regression with interpolated data from either the
bicubic, conservative or inverse distance methods
result in having a nearly identical amount of pos-
itive skill points when using BSS10, BSS90 or RPSS
as verification metrics. For CRPSS and Mean Ab-
solute Bias, however, inverse distance interpolation
proves to be more effective.

3.1.4 Interpolation plus logistic regression

The interpolation plus logistic regression skill assess-
ment is shown in Figure 13, providing downscaled

values already computed as tercile probabilities in
such a way that RPSS becomes the only usable skill
verification metric for this downscaling method com-
parison.

Similarly to the results described in Section 3.1.3,
the interpolation plus logistic regression also exhib-
its positive skill over the same regions as interpola-
tion plus bias correction (Figure 11), though as op-
posed to interpolation plus bias correction, neither
interpolation plus linear regression nor interpolation
plus logistic regression outputs have a notorious re-
gion in which skill is consistently higher

Pie charts in Figure 13 (bottom) indicate that using
the ensemble mean anomalies as a predictor out-
performs the inclusion of spread as a predictor in
South America. While it was initially expected oth-
erwise, there might be a few potential explanations
as to why ensemble mean anomalies alone, without
including its spread, contribute to more than 70%
of positive skill points in each interpolation group.
These explanations hinge on the length structure
and number of SEAS5 ensemble outputs, as well as
the hindcast period that has been utilised to com-
pare model data against observational reference.

It is known that ensemble mean anomalies capture
interannual variability, which is to say the system-
atic deviations from the long-term average. It ap-
pears that the logistic regression that uses only this
information works better than adding another prop-
erty of the ensemble, the spread, which in light of
the obtained results is introducing too much noise.
This happens when the standard deviation of the
ensemble members is not well calibrated, or when
it rather presents inconsistent variability across all
members in the ensemble. In this context, the qual-
ity of probabilistic seasonal forecasts can vary sub-
stantially due to the ensemble size and the length
of the available hindcast. A 25-year hindcast was
initially chosen for this work, since its generation
is computationally very expensive and consistent
oceanic observations for initialization are usually not
available before 1993. However, higher RPSS skill
could be expected for interpolation plus logistic re-
gression when choosing a larger hindcast period as
well as model data with a larger ensemble size, as the
forecast sampling uncertainty is therefore reduced
and reliability increased as a result (see Hagedorn
et al., 2005, Manzanas and Gutiérrez, 2019 or Man-
zanas, Torralba et al., 2022).
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Figure 12: Left: Interpolation plus linear regression method comparison for near-surface temperature in the month of February
with leadtime zero. Analysis includes the best of the interpolation methods for each variable (bicubic, conservative and inverse
distance) and their corresponding linear regression with reference data (labelled as basic). Right: A summary of pie charts for
all interpolation plus linear regression maps for near-surface temperature in the month of February, categorized by skill metric
and lead time.

Figure 13: Top: Interpolation plus logistic regression method comparison for maximum temperature (left) and total precipitation
(right) in the month of November with leadtime zero. Analysis includes the best of the interpolation methods for each variable
(bicubic, conservative and inverse distance for temperature variables, conservative for total precipitation) and their two corresponding
logistic regression techniques (ensemble mean or ensemble mean plus spread as predictor). Bottom: A summary of pie charts for all
interpolation plus logistic regression maps for maximum temperature (left) and total precipitation (right) in the month of November,
categorized by lead time.
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Figure 14: Statistical downscaling comparison with the best method under each downscaling group in Section 2.2 for all variables in the
month of December with leadtime zero. Simple bias adjustment (green) has been chosen as the best interpolation plus bias correction
technique in South America, while using ensemble mean anomalies as predictor (blue) proves to perform better for interpolation plus
logistic regression. These methods are compared against interpolation plus linear regression (purple, labelled as basic), the analogues
method (orange) and linear regression using a five-point stencil (yellow).



Seasonal climate prediction in big cities: from Brazil to Barcelona 16

3.1.5 Comparison between the best SD
methods

This section compares the best interpolation plus
post-processing methods under Sections 3.1.2, 3.1.3
and 3.1.4. Additionally, the analogues method and
linear regression using a five-point stencil have also
been included in this final comparison, which uses
the RPSS as a verification metric.

In light of the results observed in Figure 14, the best
SD method appears to be interpolation - either us-
ing inverse distance, conservative or bicubic - plus
simple bias adjustment, accounting for over 50% of
the best positive skill grid points in almost all pie
charts across variables. Linear regression with a five-
point stencil follows as the second-best method, of-
ten being the best method in northern regions close
to the Equator. Outputs suggest that both these SD
methods can increase their skill contribution over
longer lead times, especially in the Amazon region
(not shown).

Figure 15: Top: Statistical downscaling comparison with the
best method under each downscaling group for minimum tem-
perature in the month of June with leadtime zero. Bottom:
Statistical downscaling comparison with the best method under
each downscaling group for minimum temperature from April to
September with leadtime zero.

The analogues method contribution is fairly vari-

able, from performing worse in the boreal winter
months (December, January, February) to reach-
ing its maximum positive skill when approaching
the boreal summer months, as can be seen when
comparing the pie charts of Figures 14 and 15 for
temperature variables (near-surface, minimum and
maximum). Positive skill is seen over large regions
in northern Argentina, where interpolation-based
methods barely show skill. This observation regard-
ing the analogues method raises interesting ques-
tions about the underlying extra-tropical nature of
the climate in Argentina, such as the passing of
synoptic fronts. Because these systems can result
in recurrent rainfall patterns, this might ultimately
lead to the analogues method identifying more sim-
ilar historical situations, improving downscaled per-
formance.

Other post-processing techniques such as interpol-
ation plus logistic regression with ensemble mean
as predictor and interpolation plus linear regres-
sion present a more subpar performance across the
analysis, though it is worth mentioning that inter-
polation plus linear regression can often challenge
interpolation with a five-point stencil over the boreal
winter months in Brazil’s central regions for tem-
perature variables (see, e.g. top-left and bottom-left
maps in Figure 14).

An example of the application of one of the best
downscaling methods can be found in Figure 16.

Figure 16: Ensemble mean climatology values of January with
lead time zero (left, original SEAS5 values in a 1º x 1º grid;
right, downscaled variables with conservative interpolation plus
simple bias adjustment in a 0.1ºx0.1º grid) for near surface tem-
perature. By using one of the best available SD methods, higher
precision can be found among all fields, correcting model bias
and uncertainty.
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3.2 Skill comparison between SD methods over a point: Barcelona

Figure 17: Scorecards for all variables in March for downscaling to a point (Observatori Fabra, Barcelona). Each cell represents
the RPSS for the given downscaling method (horizontal axis) and leadtime (vertical axis). SD methods, from left to right, include:
interpolation methods (four for temperature variables, one for total precipitation), interpolation plus bias correction methods (twelve
for temperature variables, three for total precipitation), interpolation plus linear regression (four for temperature variables, one for
total precipitation), linear regression using a five-point stencil (one for all variables) and interpolation plus logistic regression methods
(eight for temperature variables, two for total precipitation).
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Figure 18: Ensemble mean climatology values of March with leadtime zero in Europe for total precipitation (left) and near-
surface temperature (right). Outputs are presented in the original SEAS5 values in a 1° x 1° grid, masking negative RPSS values.
In order to match SEAS5 resolution to calculate RPSS, the observational reference (ERA5-Land) was upscaled to 1 degree spatial
resolution using a conservative interpolation.

Figure 17 illustrates an RPSS comparison between
all SD methods in the studied variables and lead
times over a point location (Observatori Fabra, Bar-
celona). In the case of total precipitation, nearest
neighbour has been selected as the only possible in-
terpolation method due to the fact that there is only
one neighbouring point to gather values from, and
so total precipitation is preserved during the down-
scaling process. In the case of temperature vari-
ables, however, no particular interpolation method
presents comparably high skill across all cases in
the target point, and thus all available point inter-
polation methods have been accounted for follow-
ing post-processing techniques. Results show that
the interpolated SEAS5 data presents skill only for
precipitation and for specific lead times (Figure 17,
bottom panel). No skill is noted for temperature for
any of the lead times by just performing an inter-
polation of the coarse gridded data.

The initial skill results for interpolation in both pre-
cipitation and temperature variables in Figure 17
can be backed up by the RPSS analysis over Europe
in Figure 18. Contrary to total precipitation, SEAS5
model data alone is of poor performance for temper-
ature (Figure 18, left), as negative skill can be found
in the near-entirety of Spain, whereas precipitation
skill values are already positive (Figure 18, right).

Interpolation plus bias adjustment techniques
(simple bias correction, calibration and quantile
mapping) and interpolation plus logistic regression

using the ensemble mean anomalies as predictor
are among the four best SD methods for all vari-
ables across the analysis for lead time zero (Fig-
ure 17). However, their respective performances are
dependent on the analysed month, and neither of
the SD methods present any discernible tendencies
along the time series to outline them as the compar-
ably better method (not shown). Some other post-
processing techniques such as linear regression show
lower skill when downscaling to this target point,
especially over higher lead times.

When comparing downscaled SEAS5 hindcast data
to station data at the specific grid point of Obser-
vatori Fabra, as can be seen in Figure 17, sometimes
higher skill values at higher lead times can be ob-
served. This is in opposition to the general trend
observed when performing this same skill analysis
over a region in South America, assessed in Section
3.1, where skill score values generally decrease with
lead time.

A possible explanation for this ties station data to be
subject to biases related to instrumentation, siting,
or data quality control procedures. However, while
these factors may affect RPSS outputs in some ca-
pacity, it is also likely that the station data used as
reference captures local-scale variations in temper-
ature and precipitation better than SEAS5 gridded
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model data. This is relevant for regions with com-
plex terrain or coastal influence, as is the case with
the city of Barcelona. As lead time increases, the
downscaled model may still have difficulty at times
in capturing these local-scale variations accurately,
and so skill can be affected as a result.

These explanations lay on the fact that we are com-
paring model data with station data, each of them
with rather different statistical properties. This in-
troduces a new type of errors, the so-called rep-
resentativeness errors. While SEAS5 data - either
at 1 degree or 0.1 degrees of spatial resolution -
represents the average value of a grid cell of hun-
dreds or thousands of square kilometres, station
data provides the observed climate variables at a
point location. In this instance, the chosen sample
size from SEAS5 model data may not adequately
capture the full range of spatial and temporal cli-
mate variability, even using the best SD method,
challenging the achievement of skilful seasonal pre-
dictions beyond leadtime one. In order to contrast
these results, it is therefore encouraged to either
change the observational reference (e.g. to that of
the ERA5-Land reanalysis), expand the hindcast
and ensemble length, or choose data with a higher
temporal frequency (e.g. daily mean data).

4 Summary and conclusions

This research studies a range of seasonal predictions
in different spatial scales in order to overcome one of
the main restraints in Global Climate Models that
jeopardises most decisions in climate services: the
lack of adaptation to the local scale due to the coarse
scales in which forecasts are usually delivered. In
this context, this study aims to outline a framework
to propose which SD methods can be applied over
the continent of South America and over a point
located in the city of Barcelona.

Results show that PP statistical downscaling tech-
niques help in reducing model bias, subsequently in-
creasing SEAS5 skill values for the tested hindcast
range over a number of essential climate variables.
The statistical downscaling methods proposed in
this work enable coarse-scale model outputs to be
transferred to a fine-grid scale, increasing its initial
resolution tenfold with the use of an observational
reference.

The skill assessment of downscaled data has allowed
for a series of notable findings. More specifically:

� In South America, initial SEAS5 outputs present
positive skill over the Amazon basin, a re-

sponse that could be dependent on land cover
type, ENSO interaction, and other predictabil-
ity sources at the seasonal timescale.

� Performing statistical downscaling with different
interpolation plus post-processing techniques in
South America exhibit the same positive skill re-
gions overall, though only interpolation plus bias
correction techniques are particularly useful in
accounting for orographic effects in the Andes
regions and other fine-grid processes.

� Interpolation plus post-processing techniques
are ineffective in Argentina and other southern
areas in South America. In these regions, the
analogues method is rather proven to be more
advisable.

� Interpolation plus simple bias adjustment is the
best SD method in South America, a result com-
puted for all variables, months and lead times
that were analysed throughout this work. Lin-
ear regression using a five-point stencil follows
as the second best SD method, while using an
analogues method can present a variable result
depending on the target month to be observed.

� Interpolation plus bias adjustment techniques
and interpolation plus logistic regression using
the ensemble mean as predictor are shown to be
the best SD methods over a target point in Bar-
celona, though their skill outputs are variable
across the analysis, without any evident patterns
to prioritise one over the other.

� Representativeness errors are responsible for the
generally low skill values noted for the down-
scaled predictions to Fabra Observatory. Assess-
ing SEAS5 data against a model-driven observa-
tional reference, e.g. reanalysis, would probably
lead to better skill results, but no one can guar-
antee that this skill assessment is the fairest.

The health sector is one of the potential users that
can benefit from this downscaling analysis. By out-
lining the areas over which a specific SD method
is preferred, a methodology is thus provided to dis-
cern which climatological factors are favourable for
a lengthier transmission season of vector-borne dis-
eases like malaria or dengue. Plugging these forcings
into epidemiological disease models may help health
experts to anticipate understanding of the impacts
of the coming transmission season, therefore issuing
early warnings to the public if need be.
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This downscaling analysis does present a number of
limitations. For instance, perfect prognosis outputs
assume the observational reference, be it reanalysis
or station data, to be free of biases or uncertain-
ties. Additionally, some SD methods tested on this
thesis (logistic regression, analogues method) are re-
liant on the chosen hindcast range and ensemble size
of the tested prediction model. Since downscaled
outputs over a point present relatively poor skill
results, future work may be advisable in changing
the observational reference to that of ERA5-Land’s
reanalysis data to investigate whether these changes
lead to a marginal or substantial increase in skill
for the tested methods, and prove the usability of
SEAS5 seasonal predictions over Barcelona. Addi-
tionally, extending the hindcast and ensemble size
further may also be of use so as to ensure whether
the point downscaled results obtained here are of
use to any potential user.

Data availability statement

Most of the figures and results shown in Section 3
are summarized and can be visualized to further de-
tail in a publicly available Shiny App.
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