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Abstract

Facing the expansion of wind energy use and production, it becomes

necessary to evaluate the current forecast systems ability to predict low

wind speed events (or wind droughts). Moreover, identifying the drivers of

these events might be used to improve their predictability. This thesis is

the first to investigate which is the forecast system’s ability to predict wind

droughts. Two indices (Below Threshold and Mean Below Mean Threshold

days) have been created to quantify the occurrences of the number of wind

drought days in a season. These indices are based on the 10th percentile

mobile threshold on the daily near-surface (10m) wind speed values. Two

datasets from the European Centre for Medium-Range Weather Forecasts

have been employed: the ERA5 reanalysis is taken as an observational

reference and the seasonal forecast system is SEAS5. The analysis fo-

cuses on the boreal winter (DJF) over the period from 1993 to 2016. The

forecast quality assessment has been done in terms of Pearson’s correlation

coefficients and the Ranked Probability Skill Score. This work shows the

limitations of SEAS5 to skilfully predict wind droughts. Furthermore, it has

been found that there is not a linear relationship between seasonal mean

wind speed and wind droughts. Finally, this work has revealed that the

North Atlantic Oscillation is not playing a major role on the wind droughts

over the North Atlantic domain.
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Acronyms and abbreviations

CDAS := Climate Dynamics and Air-Sea interaction laboratory
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DJF := December - January - February
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NAO := North Atlantic Oscillation

NOAA := National Oceanic and Atmospheric Administration

RPCA := Rotated Principal Component Analysis

RPS := Ranked Probability Score
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Definitions

Members: A forecast model runs several simulations in order to do a prediction. It gives a

probability of results of the forecast. These simulations are called members and form an ensemble.

Climatology: Long-term average map of chosen variable computed over a baseline period. For

example, the wind speed monthly climatology for January can be computed as the average wind

speed for all the January months in the 1981-2016 period. The climatology maps are computed

according to the following equation:

Climatology(lat, lon) =
1

Nperiod

1

Nmember

Σi∈periodΣj∈membersV ariable(lat, lon, i, j)

where Nperiod is the number of years in the baseline period and Nmembers is the number of members
of the considered model. Remark, when the climatologies are computed for the variables obtained

from the reanalyses, the average is only computed over the time dimension, as the observational

datasets do not contain probabilistic information (i.e. ensemble members). Lat and lon represent

respectively the latitude and the longitude of a grid point.

Composite: Average map of the chosen variable for all times that a given condition occurs [1]. For

example, a pressure composite can be computed as the pressure average map on Switzerland over

those months for which a storm is present over Lausanne.

CompositeR (lat, lon) =
1

NperiodR

1

Nmember

Σi∈periodR
Σj∈membersQuantity(lat, lon, i, j)

The difference between the climatology and the composite is the period used for the computation
of the mean. For the composite, only those time steps satisfying a particular condition (days or

months for which the NAO is positive) are averaged.

Starting date First day of a forecast system. The system is initialised with observed values and

is in general launched over 6 months

Forecasts and Hindcasts As a forecast is a simulation into the future and tries to give new

information to the user, a hindcast is a forecast done on previous years. In general hindcasts are

performed to be compared with other systems or reanalysis.
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1 Introduction

1.1 Motivation

Through the release of carbon in the atmosphere, Humanity acquired piece by piece some indepen-

dence from the stochasticity of nature. However, a few thousands years after the first intentional

fire, scientists, among whom Callendar [2] was the first to have mentioned the effect, discovered that

a too fast and consequent release of greenhouse gases in the atmosphere was not a good idea.

Consequently, modern society energy production turns back partly to the abundant solar and wind

energy in order to limit global warming and its risks. According to Hannah Ritchie et al. [3], the

solar and wind world energy shares went from respectively 0.01 and 0.17% to 1 and 2 % in fifteen

years, with major increases in western countries. However, an increase in solar and wind also

signifies an increase in climate dependence, hence, an increase in the intermittency of the energy

production. Two subjects need to be studied: the storage and the predictability of the source. Both

are complementary since the first offers an active solution to fill gaps where the energy production

is not available and the latter gives information on the sizing, improves the decision-making and

helps the optimisation on the electricity generation.[4]

One example of this situation is the summer and early autumn of 2021 when Europe was

affected by a prolonged period with below-normal wind speeds (Bloomfield, 2021) [5]. In this

context, the estimation of the frequency and duration of extreme winds and the anticipation of these

persistent low wind speed episodes have become essential for the wind industry to mitigate the

influence of wind variability in their activities." Climate predictions [...] have witnessed considerable

improvements in the last decade, demonstrating that probabilistic forecasting can inform better

decision-making for some forecast windows and regions." [4]. logistics. [6]

Indeed, seasonal climate forecasts can bring

information about energy generation and con-

sumption in specific locations, and therefore they

support the management of energy supply/de-

mand balance preventing the risks of blackouts.

Wind variability information allows choosing the

most adequate period to schedule maintenance

of wind power plants and offshore

Although the climate system is known to be

chaotic (Lorentz, [7]), climate predictability is

supported by slower processes that need less

precise initial conditions (illustrated by Figure

1). "Current climate prediction systems can pro-

vide accurate information [...] with lead times up

Figure 1: Illustration of the predictability change
according to its nature and the forecast time.
Figure from Verónica Torralba-Fernandez 2019
[1], adapted from Mariotti et al 2018, [8]

to nine months" [9]. However, the ability of climate models to predict low wind speed events

sufficiently in advance has not yet been examined. This work is intended to fill this gap of
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knowledge, and it has two main aims: first, it will focus on the investigation of the recorded

wind drought episodes in order to determine the physical phenomena driving these extreme events

at the global scale. Secondly, it will evaluate the ability of the currently available seasonal forecast

systems to predict wind droughts in advance.

Figure 2: Wind power plant distribution around the world. They are mainly situated on land. Taken
from RessourceWatch, source from the Global Energy Observatory of the KTH Royal Institute of
Technology of Stockholm [10]

The first introduction sections purpose is to present the basis concepts necessary for the under-

standing of this work.

As an observational data-set, this work will use the ERA-5 reanalysis and the seasonal forecast

system SEAS5 will be studied. In order to study low wind speed events, one has to give a defini-

tion on what is a wind drought. Two indices are then defined, the Below Threshold and the Mean

Below Mean Threshold days. The results will then be analysed thanks two statistical tools, the

Pearson’s correlation coefficient and the Ranked Probability Skill Score (RPSS), a widely used

tool to assess forecasts. All those metrics are explained in the section 2 (Data and Methods).

The results are then divided in three parts. The first will focus on the behaviour of the two created

wind drought indices. Secondly, the evaluation of the SEAS5 forecast skill is done. The last part

concerns the wind drought behaviour with the NAO index.

Finally, all the conclusion are summed up in the final section.

1.2 Surface wind in climate system

Because of Earth’s shape, the solar irradiance is more intense on the equator than on the poles.

The Earth also emits its black body radiation that cools down the atmosphere. As the atmosphere

is a quasi-steady state, there is more radiation emitted than absorbed in the poles and the opposite

occurs in the equator, where the limit between the two is approximately on the 40 and -40 latitudes.
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The heat is then released on the poles and a

gradient of temperature occurs on Earth. Conse-

quently, if there were no rotation on our planet,

there would be a constant wind from the equator

to the North. [11]

The rotation brings the Coriolis’ effect, which

adds a rotation pattern to the wind that can’t

reach the poles. Instead, convective cells are ob-

served.

The theory characterises the global atmo-

spheric circulation with a division of each hemi-

sphere in three cells: the Hadley, Ferrel and

Polar cells.

Figure 3: Illustration of the atmospheric convec-
tive cells [12].

The Hadley Cell: At the equator, or more precisely, in the Inter-Tropical Convergence Zone (ITCZ),

the solar radiation warms the surface, and as a consequence, the air is ascending. By taking altitude

the air cools which leads to the condensation of the water vapour and a release of its latent heat.

The liberated heat of the water warms up the now dried air that keeps raising while the water rains

down. This mechanism will take place until that the air is completely dry. The atmospheric level

reached is the tropopause. While elevating, the air mass is already moving to the poles, then, the

Coriolis effect implies a movement to the East. However, this movement is counterbalanced to the

West by the fact, that while elevating, the air mass moves away from the Earth centre and by the

conservation of the angular momentum, it slows the velocity. The result is that during the elevation

the motion of the air follows the latitudes without consequent deviation.

At the tropopause, the air is cooled down by radiative cooling [13], slowly reducing its altitude.

Coriolis’ effect and the gain in movement speed create a movement eastward that reaches the

latitude of ±30◦. The depression created by the elevation of the air and the over-pressure created

by its arrival engender a pressure gradient and thus, surface wind.

The Polar Cell: The atmosphere on the poles is so cold that all the air "falls" on the ground. The

pressure increases consequently and then, pushes the air out of the poles. At the limit between the

Ferrel and the Polar cells the air rises and a convective scheme takes place.

The Ferrel Cell: Ferrel Cells are intermediary cells doing the gear between the two above-

mentioned cells. "The winds blowing towards the higher latitudes pick moisture from the oceans,

and they meet cold air that has drifted from the poles at around 60◦ latitude. The convergence

of these two air masses creates an area of unstable weather conditions associated with the mid-

latitude depression" [14]. That is defined as baroclinic instability. Ferrel cells, unlike the two other

cells, are thermally indirect. It comes from the fact that the temperature circulation inside the cell

is reversed. Indeed, the cold air on the ± 60◦ is ascending while the air on the ± 30 ◦ latitude is
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descending. This is so because the circulation is driven by the motions of the cells on either side

i.e. the Hadley cells and the Polar cells. [15]
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Figure 4: Wind speed climatology in January, from ERA5 monthly values.
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Figure 5: Pressure climatology in January, from ERA5 monthly values.
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Figure 6: Wind speed climatology in July, from ERA5 monthly values.
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Figure 7: Pressure climatology in July, from ERA5 monthly values.

Figures 4, 5, 6 and 7 present the climatologies of the wind speed at 10m over- and the pressure

on sea level for January and July. They are characterising the average seasonal behaviour of both

atmospheric variables (i.e. wind speed and pressure) as January and August are good proxies for
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the season. Indeed, these two months are good proxies for the seasonal behaviour, indeed even

though the solstices are in late December and June, the atmospheric inertia brings the state at his

extremes in mid-July and January [16].

By looking at Figure 4 and 6 one can see that the regions where a high climatological wind is

observed, it corresponds in the climatological pressure to a high gradient zone (short distance of

pressure colour change). Of course, surface roughness also plays a major role on the wind speed,

which is shown by the speed values over the land being significantly lower than over the oceans.

Figures 5 and 7 illustrate the spatial distribution of the sea level pressure. These patterns are

associated with the convection cells, where a low pressure zone corresponds to the location where

the air is elevating, and a high pressure zone correspond to the region where the air is descending.

One can see that it is following a latitudinal distribution, which equatorial low pressure band host

the above-mentioned ITCZ.

The comparison of these figures highlights the different climate conditions for Winter or Summer

months. The ITCZ follows the "thermal equator" [17] , which is not completely centred on the equator

during all the year. In January, it is shifted to the South of the equator, and in August it moves

to the North. This is a consequence of the Earth obliquity, indeed, Damianos F. Mantsis shows

that the Earth’s obliquity, which is responsible for seasonal variability, imply a reduced meridional

temperature gradient in the summer hemisphere than in winter and that by the thermal-wind

relationship (Rind, 1998 [18] ) respectively weaker/stronger westerlies [19]. Finally, one observation

to made is the high climatological pressure on mountain locations.

1.3 Surface Wind in Northern Europe

The North Atlantic Oscillation (NAO)

Figure 8 shows the average pressure condi-

tion that occurs over North Atlantic in January.

Because of the global atmospheric circulation,

what we could identify as the beginning of the

two Hadley cells (and the ITCZ) is bringing air

from the equator down to the Azores, increasing

the pressure locally. Moreover, between Iceland

and Greenland air is ascending from the North

Atlantic, causing a depression. A part of this air

is also descending on the Azores. At the origin,

this is the variation of this gradient that gives

the first NAO index.

80W 50W 20W 10E

ERA5, North Atlantic sea level pressure climatology,

 Jan, from 1981 to 2016

Sea level pressure [hPa]

980 985 990 995 1000 1005 1010 1015 1020 1025 1030

Figure 8: Sea level pressure climatology over
the North Atlantic from ERA5 monthly values.

In Figures 5 and 7, one can observe that the January North Atlantic gradient is well stronger

than in July. This aspect associated with the higher variability of NAO in winter is the reason

why its influence is higher in this period and why the study will focus on it. It is responsible
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for more than 35% of the total pressure variance in the North Atlantic sector, during Winter (DJF) [20].
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Figure 9: NAO composites from monthly mean values, ERA5. On the left are the pressure maps
and in the on the right are the wind composites. The first row are the composites from a positive
NAO and the second row from a negative NAO. Finally, the last row is obtained the difference
between the positive NAO composite and the negative one.

More technically, Hurrell defines the NAO as : "The NAO is reflected in the spatial pattern of the

two leading empirically determined orthogonal function (EOF) of the Northern Hemisphere boreal

winter [...] but in order to see them clearly, it is necessary to rotate the EOFs in a manner that tends

to simplify their spatial structure" [20], as it is done by Barnston and Livezey [21] and is called the

Rotated Principal Component Analysis (RPCA). The RPCA is a Principal Component Analysis where

a linear rotation transformation is applied to the components of the singular value decomposition.[22]

The RPCA technique is applied to monthly standardized 500-mb height anomalies obtained from

the CDAS (Climate Dynamics and Air-Sea interaction laboratory) in the analysis region (20◦ N-90◦

N) between January 1950 and December 2000. The standardised anomalies are calculated based

on the 1950-2000 climatological daily mean and standard deviation. The result is then an index
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that can theoretically go from −∞ to +∞. However, in practice, the index is most of the time

fluctuating between -3 and +3.

The monthly values of the NAO Index from 1981 to 2016 used in this work are obtained from

the Climate Prediction Center (CPC) of the North Oceanic and Atmospheric Administration (NOAA).

In other words, the North Atlantic Oscillation is a pressure oscillation pattern (first order mode

in pressure variation) in the North Atlantic sector (20º-70ºN, 90ºW-40ºE). The composites of the

Figure 9 shows the pressure and wind patterns associated with the sign of the NAO index. One

can then observe the two patterns of the pressure oscillation. The pressure and wind conditions

corresponding to the occurrences of the NAO are illustrated by the composites of Figure 9 for

January. The increase of the NAO index intensifies the gap between the extremes: the highest

pressure is higher, and the lowest pressure is lower when the NAO is positive. The positive NAO

is also characterised by a shift of the high-pressure cell to the Iberian Peninsula. The low pressure

zone is developing over Scandinavia. The changes in those pressure systems modify the
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Figure 10: Correlations between the NAO index and the local wind speed monthly mean in January.
As wind is almost linear with the pressure gradient, Pearson’s correlations are considered as correct.
In blue are represented negative correlations, and in red positive ones. Low absolute correlation
values are set in white. The associated p-values to these correlations are given by the Figure 11

pressure gradients and the wind strength. For

example, it is clear that the pressure gradi-

ent over the UK is increasing as it is situated

between the reinforced high and low-pressure

systems. The wind composite difference confirms

this analysis [23]. The same conclusions can be
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done over the Greenland Sea, Europa or middle

Atlantic.

Figure 10 shows the correlations between the

NAO index and the wind speed in January. A

positive (negative) correlation means that when

the NAO index is increasing, the wind speed

increase (decrease) accordingly. Four highly

correlated or anti-correlated zones are visible.

The wind is a flow of air coming to compensate a

depression from a high pressure zone, so thanks

to the composite map (Figure 9) sorting the pres-

sure according to the NAO index sign, and the

climatology map pressure during January, it is

easy to associate the negative correlations with

a diminution of the local gradient pressure and

the positive correlation with an increase of this

gradient.

Finally, out of the North Atlantic sector some

correlations are visible, symptomatic of atmo-

spheric tele-connections.

Figure 11: Two-tails p-values for a given corre-
lation coefficient with 36 elements. In yellow is
show the threshold of 95% significance.

North Atlantic Oscillation’s predictability

NAO is responsible for more than 35% of the pressure variability (main driver of the wind) in

its sector. The NAO index is extracted from an area, while the wind behaviour is computed point

to point. There is then more hope that the general behaviour of the NAO index is better predicted

than individual wind speed points.

To study the predictability of the NAO, it is convenient to have a look at its spectrum, showing the

internal periods of oscillation.

Following the indication of Helen J. Wearing [24] the figures 12 and 13 have been produced.

Those figures represent first the spectrum of the NAO index for various periods, smoothed with

a modified Daniell kernel whose width is equal to 3. Indeed, this width has been chosen since

the result is obtained from monthly values which are arbitrarily defined. For a given month, its

monthly value could have been influenced by a phenomenon that took place a month before or

could influence the month after.
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Figure 12: NAO index spectrum computed with monthly data over the 1865-2019 period from the
national centre for atmospheric research (NCAR) [25], smoothed with modified Daniell kernel of
months. On the logarithmic values is performed a linear fit that gives as an output
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Figure 13: NAO index spectrum computed with monthly data on a fifty years old period, smoothed
with 3 months width Daniell kernel.

Figure 12 shows the resulting NAO temporal index spectrum for a period from 1865 to 2019

which looks like a constant noise. There are no evident significance of the different peaks, and

the geometry would be different if the selected period is different. Indeed, the figure 13 shows the
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spectrum for two different periods, from 1900-1950 and 1950-2000. As expected, the two figures

are rather different, confirming the precedent assumption. As a matter of fact, the NAO is influenced

by a lot of different drivers that have a small impact [20]. Thus, it is unlikely that a simple model of

the NAO could be developed, instead the most promising simulations are obtained by taking into

account statistical and fluid physics in Global Circulation models (GCM), but are still not perfect.

The predictability of the NAO by the GCMs which simulate the dynamics and state of the different

layers of the Atmosphere and the Oceans, is limited [26].

However, from the Figure 13 some common characteristics appear. The most visible is the peak

high spectral density on a period of one year, which highlights the seasonal sensibility of the NAO

and which has already been mentioned in this work in section 1.3. Moreover, two other properties

could be investigated, first the absence of any peak around a period of 1.3 years and the high

spectral density around 0.6 year.

1.4 Wind records

1.4.1 Observations

Figure 14: Global distribution of the World Meteorological Organisation (WMO) surface stations
recording wind data in January 2012. Figure from Liu et Al., 2014 [27].

Wind is one of the most known and observed meteorological variables, however, the amount of

observations is scarce. The main reason is the need of this variable to be recorded in-situ. There

is no actual way to obtain global observations. Moreover, wind is almost only observable from

surface, at the exceptions to some balloons observations. As an example, the global distribution

of the World Meteorological Organisation (WMO) surface stations recording wind data in January

2012 is shown by Figure 14. It appears that the amount of observations is higher for developed
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countries. These difficulties result in a very unequal and unsystematic distribution of the wind

observation in the world, and particularly reduced on the ocean.

1.4.2 Reanalysis

Due to the lack of observational data in most

parts of the world, the observational reference

currently employed for research and also indus-

trial activities are the reanalyses.

A reanalysis is the merging of observation

and modelling, it provides wind speed values

over the whole globe with variable spatial reso-

lution. The data obtained through observation is

used for their defined location and altitude, then

the grid points for which no data is available is

computed thanks to an internal model (illustra-

tion with Figure 15). These operations allow us

to have a complete dataset of wind records over

several decades (with ERA5, since 1955).

Figure 15: Illustration of how is working a re-
analysis. Observations are illustrated in pink
and are unequally distributed around the world,
with a higher frequency on land than on the
oceans. The blue points, which form a grid, are
then computed with the help of the observations
and a model.

1.4.3 Seasonal forecast systems

It has already been mentioned in the Introduction that seasonal climate can be predicted up

to six months into the future. Therefore, most of meteorological and climate research centre

are developing their own system and there are numerous of them (Meteofrance, der Deutscher

Wetterdienst, the United Kingdom meteorological office...).

The forecast systems are composed of several quasi-independent models that focus on a specific

part of the climate system. The models run independently, and the outputs are used as initialisation

for the other models. For example, the ECMWF system is subdivided into different components

such as high-atmosphere, land and oceanic surface. The grid cut covers the Earth’s surface by a

given number of smaller areas. In each subsurface, the dynamic is based on a set of equations

describing the processes relative to the environment. In the case of the atmosphere, the grid is

covering the Earth with almost identical isosceles triangles except at the equator, which is made

of squares. The vertical axis (perpendicular to the surface) has a coarse layer density at the crust

than at the top of the atmosphere.[28]

Forecast systems are going forward in time and therefore, they are very sensitive to the initial-

isation. Each simulation is independent, and even a small change in the initial state can lead to a

rather different forecast [29]. This is why forecast systems are generating an ensemble of simula-
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tions, called members, with slight differences in the initialisation in order to provide the forecasts

with an estimation of the uncertainty. The analysis of the forecasts is always taking all results

into account. In general, they are used to produce tercile probabilities. The three categories are

"above normal", "normal" and "below normal" and usually represent 33% of the usual outcomes. [30]

Therefore, the forecasts give an indication of how probable are specific climate conditions in the

upcoming season. [31]

2 Data and Methods

2.1 The choice of the ERA5 reanalysis as the observational reference

Numerous reanalyses exist, and it is not possible to de fine the best from a general point of view,

the different models having difference in their performance according to the variable. The choice

has been done according to the work done by Ramon et Al. [32] which shows that ERA5 reanalysis

provides the most accurate wind speed representation of the wind observations.

ERA5 (ECMWF ReAnalysis 5) is developed by the ECMWF (European Centre for Medium-

Range Weather Forecast) and replaces the previous ERA-Interim reanalysis, which stopped being

produced on 31 August 2019.

ERA5 provides hourly estimates numerous atmospheric, land and oceanic climate variables. The

data covers the Earth on a 30km grid and resolves the atmosphere using 137 levels from the surface

up to a height of 80km. ERA5 includes information about uncertainties for all variables at reduced

spatial and temporal resolutions. ERA5 provides "quality assured" data from 1979 to the present

(the data are delivered with a delay of three months) and a preliminary dataset from 1950 to the

present (with a delay of five days). [33]

2.2 The SEAS5 as the seasonal forecast system

One would like to select the best forecast system available, however because of the lack of

complete observations. It is needed to use reanalysis, which is of course not perfect and have

bias. A complete work should include several reanalyses and a multimodel comparison. However,

because of the limited time of this work only one of each is taken showing a first sketch of the

methodology that can later be applied more widely. In order to have the best chance that the

forecast system predicts the same as the reanalysis, it has been chosen to choose the system with

has the biggest potential of having the same, i.e. from the same institution. Which is SEAS5.

SEAS5 is the fifth (and most recent) operational seasonal forecast system developed by the

ECMWF. SEAS5 uses IFS Cycle 43r1 and the community ocean model NEMO (Nucleus for Eu-

ropean Modelling of the Ocean). The ocean resolution is 0.25 degrees and 75 depth layers in

SEAS5 (ocean model configuration: ORCA025z75). The vertical resolution is particularly high in
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the uppermost part of the ocean, with an increase in the number of levels in the first 50 metres

from 5 to 18. The sea-ice model is LIM2, part of the NEMO modelling framework. SEAS5 ocean

and sea-ice initial conditions are provided by the new ocean analysis and reanalysis ensemble

(ORAS5). ORAS5 is driven by ocean observations from floats, buoys, satellites and ships.

Regarding the atmosphere, the grid resolution is 36 km, the wave model resolution is 0.5◦ and

the vertical resolution is L91.

Finally, SEAS5 hindcasts period covers 1981–2016 and has an ensemble size of 25 members.

However, since the common period of all forecast systems is from 1933 to 2016 the latter period

will be used.

2.3 A threshold to select low wind speed events

The goal of this thesis is the evaluation of the low wind speed episodes (i.e. wind droughts) which

can affect wind energy production leading to economic losses. To take into account the day-to-day

fluctuations of the wind speeds, wind drought indices have been defined on daily basis.

As it is aimed to represent anomalous events,

the design of the threshold should be proper

for each longitude and latitude. For each day

of the year, the corresponding threshold is de-

fined as the 10th percentile of all the days of the

same date in the other years, which is defined

as the 10th climatological percentile. Moreover,

the threshold has been smoothed by taking three

days before and three days after (i.e. 7 days win-

dow) to remove specific day-to-day fluctuations

[34]. Hence, each day threshold is the result of

the 10th percentile on a 24 years (1993-2016) ·

7 (days) dataset.
Figure 16: Schematisation of the daily threshold
setting.

This thesis focuses on the evaluation of the wind drought days in the boreal winter defined by

December, January and February (DJF). This season has been selected due to the high variability

of wind speed compared with other seasons. This strong variability has a major impact on wind

energy applications, therefore it is when the seasonal forecasts can be more valuable. The seasonal

forecasts used will be those initialised the 1st of November. This choice is motivated by the fact

that in real operations, the forecasts are available for the 15th of the month, and the first month is

usually discarded for the forecast quality assessment, which is one of the main goals of this thesis.
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2.4 Creation of two definitions to evaluate the wind drought days

The creation of an index to characterise the wind drought is stressed by the need for a common

definition to evaluate the ability of the state-of-the-art seasonal forecast systems to predict the

probability of wind droughts in a season. The wind drought indices have been defined to minimise

the impact of the systematic errors inherent in the climate prediction systems. Models are

inevitably subject to biases. However, by creating an index from internal variables of the systems,

one obtains a comparable output. Hence, the next definitions characterise the local presence of

anomalously low wind speed episodes.

The definitions of the different wind drought indices are greatly inspired by the work of Ohlendorf

et al. (2020) [35]. They defined two indices for wind power generation and for data with a high

temporal resolution. However, these indices have been adapted in this thesis to provide information

on wind droughts at seasonal timescales. These indices are directly dependent on the threshold

computation method, which is defined in the section 2.3. Therefore, this study defines:

• The Below Threshold (BT) days, are the days that the wind value is below a certain threshold.

The threshold is the 10th climatological daily percentile. This index is supposed to represent

the occurrence of extremely low wind days.

• The Mean Below Mean Threshold (MBMT) definition is inspired by the Mean Below Thresh-

old definition from Ohlendorf, but adapted to a mobile daily threshold. It concerns the days in

which their conjoint mean wind speed is below the mean daily threshold of the corresponding

period. The algorithm is privileging days occurring before a BT day since one expects that

the physical conditions that may lead to wind droughts would take place before the event.

This index is intended to be more flexible, smoothing the daily variability. Moreover, as the

BT events could be seen as symptoms of a meteorological state, the presence of a favourable

state does not impose a systematic occurrence of BT event and vice-versa. MBMT events, as

wider, are supposed to be a better representation of this state. Nevertheless, the evaluation of

the two indices might help to develop two different products that users can select depending

on their specific needs.

In this work, the definitions have been used to output a number of days that are under the

required conditions. There is no necessity of a minimum of consecutive days for an event to be

considered as a wind drought. The metric is quantitative, and the evaluation of a more qualitative

criterion on the length of the wind drought is unfortunately reserved for further analysis.

Figure 17 illustrates the main steps involved in the computation of the wind drought indices

defined above. However, as the algorithm is maximising the period to the past, it could lead to

some errors by missing intuitive MBMT periods. An example is given by the figure 18.
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Figure 17: Illustration of the process leading to wind drought events selection. A. In the beginning,
all days below the threshold are selected (below threshold (BT) day in green). Then for each BT
period, the code tries to extend the period by checking the mean. The figure illustrates the MBMT
selection process for the second BT point. First, the code compares the mean wind speed of the
selected period to the corresponding threshold mean by including the previous (or left) point. B. If
the condition is full-filled, the period will extend further to previous points until it can’t. D-C. The
process now tries to extend the MBMT period to the following days (the right) until the mean wind
speed is not exceeding the mean threshold. The process will try again to extend to the previous
period and then to the next days and so on until there are two consecutive failures.

Figure 18: Illustration of the undesired behaviour, the algorithm is first expanding at maximum into
the past, thus the mean value of the period is exceeding the mean threshold. The algorithm will
not expand to the right. The second day below the threshold is too close to the threshold, then it
also can’t expand to the left. However, the desired behaviour would be to unify the different BT
days in the MBMT definition.

Consequently, the correction consists in verifying all MBMT events resulting from the precedent

algorithm. For a given event, the correction checks if it is not possible to extend the period to the

right (the future) with different starting states which consist of a regression of the days before the
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first BT event (see Figure 19).

Figure 19: Illustration of the MBMT after process correction. First, it initiates by selecting all
the days from the second day until the first BT day (included) of the MBMT period. Then days
on the right are added to the selection until the MBMT definition is no longer true. Then the
algorithm does the same but with a starting selection starting from the third day of the MBMT
initial selection (in red). And so on until reaching the BT day. Finally, the MBMT period selected
is the first period corrected that maximises the BT days number inside.

The results of the two indices are illustrated by Figure 20. One can see the BT wind drought

days in green and the MBMT in red. The latter always need a BT day as a stem and extends the

period, sometimes unifies independent BT periods as it can be seen on the end of the Time series.

It implies that the number of MBMT days will always be higher than the number of BT days.
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Figure 20: ERA5 Wind speed (m/s) from December 2014 – February 2015. Wind drought days as
defined by the below threshold index are represented in green, and wind drought days based on
the mean below the mean threshold are marked in red. The wind speed corresponds to a location
in the middle of the Pacific [130◦ W, 12◦ N]. The algorithm find 28 BT days and 43 MBMT days.
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2.5 Pearson’s correlation coefficient and statistical significance

Pearson’s correlation was used to compute one point correlation map of values of interest. For

instance, it has been used to compare the monthly NAO index with the monthly wind speed

and to compare the winterly output of the wind drought indices with the seasonal mean wind.

Moreover, correlations are used to assess the similarities of the Forecast system with the reanalysis.

Pearson’s correlation coefficient is an indicator of the linear correlation going from -1 (completely

anti-correlated) to 1 (completely correlated). If the time series X and Y have a correlation equal

to 1 (-1), it means that the variations of X are (inversely) proportional to the variations of Y. The

correlation is given by:

corX,Y =
cov (X, Y )

σX σY

where cov () is the result of the covariance and σX,Y is the standard deviation of the X and Y time

series. Assuming a normal distribution of the time series (even though this assumption might not

be correct [36] for the wind speed at all timescales and for all the locations), the distribution of the

correlation coefficient follows a t-distribution t(). Given by:

t(cor) =
cor ·

√
l − 2√

1 − cor2

where l is the length of the time series. The p-value giving the probability that the result is

completely uncorrelated is then the probability that a 0 correlation would appear as the given

value, multiplied by two because the sign of the correlation is not taken into account. Which means

[37] :

p − value(cor) = 2 · P(t >= T ) = 2 ·
∫ ∞

T

cor ·
√

l − 2√
1 − cor2

2.6 A tool to assess probabilistic forecasts: the Ranked Probability Skill Score

łThe ranked probability score (RPS) measures the squared forecast probability error, and therefore

indicates to what extent the forecasts lack success in discriminating among differing observed

outcomes, and/or have systematic biases of location and level of confidence.”

From the International Research Institute for Climate and Society of the British Columbian University. [38]

The Ranked Probability Skill Score (RPSS) is a widely used probabilistic metric for the forecast

quality assessment. It gives a result from −∞ (worst score) to 1 (perfect forecast) correcting the

Ranked Probability Score (RPS).

As explained in the introduction, the output of a seasonal forecast over a variable consists

in giving three probabilities of results. These probabilities can be given as the percentage of

ensemble members in the below, near, or above normal categories. These categories are based

on climatological terciles in which the number of occurrences in the reference period (1993-2016)
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represents 33% the distribution. The RPS correspond to the mean square diference of cumulative
probability between the forecast system output and the observational dataset. Of course, since the
observation is not a stochastic variable, its probability is deőned as 1 for the observed condition
(for example, near average) and 0 for the other categories.

In this work, the RPS corresponds to:

RPS = 1
NForecast

1
Ncat − 1ΣMMember

i ΣNCat

K (
ΣK

j MOcc,j

MMember

− ΣK
j Pobs,j )

Where NForevast is the number of forecasts evaluated in a time series (for example in this work
monthly forecasts cover 24 years which means that NForecast = 24), MMember is the number of
member in the forecast and Ncat is the number of category. In general, and as we do here, the
outputs are divided in 3 classes (below/near/above)-normal, but other categories could be deőned
if the user is interested. MOcc,j is the number of members giving a result in the jth category, Pobs,j

is the observational probability deőned as above.
One should notice that as the deőnition uses cumulative probabilities, the last category will
always have a contribution of 0 to the RPS.

The Ranked Probability Skill Score is the comparison of the RPSF of a forecast system and
the RPSref of a łreference forecastž [38] which in this case has been considered a climatological
forecast giving always a 0.333 probability for each category. The equation is given by:

RPSS = 1 − RPSF

RPSref

Positive RPSS is indicating that the forecasts provide more useful information than a climato-
logical forecast. The RPSS=0 suggests that the forecast is not providing any added value with
respect to a climatological forecast. RPSS below 0 suggests that the forecasts provide worse results
than the climatology.
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3 Results and Discussion

3.1 Behaviour of the wind drought indices

3.1.1 The computational weight of the MBMT

Dimension of data
[Time · Orthogonal Dimension]

90 · 131 040 90 · 65 520 90 ·32 760 45 · 32 760 180 · 32 760
BT computation time [s] 7.2 ± 0.9 5.0 ± 0.5 3.1 ± 0.3 3.0 ± 0.2 3.3 ± 0.4

MBMT computation time [s] 1800 ± 200 1100 ± 200 580 ±40 300 ± 20 1300 ± 200
Ratio tMBMT/tBT [ ] 250 ± 70 220 ± 60 190 ± 30 100 ± 12 410 ± 90

Table 1: Table of the computation time respecting two the two indices. The threshold is set along
the Time dimension. For a given input size, each result is obtained thanks to 3 diferent dataset
run on three diferent computers.

The Table 1 shows the computation times for the two wind drought indices. These values have
been obtained by running the function computing the indices for three equally sized dataset size
and parallelised with 8 processors on a standard computer. The dimension of the dataset in input
can be sorted into two categories. The dimension along which the threshold is computed, which
is łTimež, and the other on which the parallelisation is performed which can be named as the
orthogonal dimension.

For a time dimension length of 90, which corresponds to the length of a daily seasonal time
series, the ratio between the computation time of the MBMT and of the BT is about 220. The ratio
seems to decrease with the global dataset size reduction, but the uncertainty is too wide to assert.
The ratio seems also to be highly variable with the length of the time dimension. It’s not possible
to exclude a linear relationship, but it is more probable that this time increases in a non-linear
way.
While for the MBMT, the computation time appears to be linear in any dimension, the BT index
seems to be only linear in the orthogonal dimensions. When changing the threshold computed
dimension size, it appears that the computational time is not changed. It signiőes that the compu-
tation of the BT is negligible compared to the resources needed for the parallelisation, which is
still a surprising result.

3.1.2 A relationship between the BT and the MBMT in ERA5

Figure 21 presents the distribution of the MBMT days according to the BT days computed thanks
to ERA5 during the boreal winter from 1981 to 2016. One can see a saturation appearing for the
seasonal number of MBMT days equal to 90, which corresponds to the length of the season (i.e.
the maximum wind drought days).

A linear őt is performed on the whole dataset by excluding the saturated data. It gives a linear
relationship of NMBMT = 1.57 · NBT − 0.98. The linear regression result is mainly driven by the
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highest occurrences that are of low seasonal
numbers of wind drought days. There are at
least 3 orders of diference in the occurrence be-
tween the low and the high number of seasonal
wind drought days. The mean shows an edge
of around 25 BT days, but the reasons behind
this need to be further explored. The mean col-
lapse appearing after 40 BT days is certainly an
already existing consequence of the saturation.
Indeed, no MBMT days can be above 90, so it
means that the distribution is shifted down. The
robustness of this analysis can be improved by
using longer-time series for two main reasons,
őrst, it will avoid the saturation on 90 days, and
second, will show if the edge is symptomatic of
a non-linear behaviour or if it is just a conse-
quence of the asymptote NBT = NMBMT .

Figure 22 shows the seasonal climatologies
of each index. Since the length of the DJF sea-
sonal time series is 90 days, the climatological
value corresponds to 9 days (by construction).
The noisy results are due to the running window
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Figure 21: Occurrence of MBMT days for a
given BT number of days, Winter (DJF), 1981-
2016, ERA5. The distribution is displayed on a
logarithmic scale. In the graphic, all the values
that were 0 before the appliance of the logarithm
are set again to 0. The linear regression gives
NMBMT = 1.57 · NBT − 0.98 with an uncertainty
on the coeicient of respectively 10−4, 10−3 and
p-values of 10−16

.
applied to smooth the 10% percentile (see Section 2 for the details).
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Figure 22: Climatologies of the seasonal wind drought days of the two drought indices, computed
over Winter (DJF), from ERA5, from 1981 to 2016. Surprisingly the MBMT index shows patterns.
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The MBMT index climatology is giving a more speciőc pattern. Actually, they are similar to
what is obtained in Figure 23 showing the mean normalised one-day diference of the ERA5 wind
from 1981 to 2016. This similarity is intuitive since the MBMT is extending from stems, which
means that if from one day to another the diference in wind speed is high (i.e., if the running
diference is really high), it is less likely that the neighbour day will be a Mean Below Mean
Threshold day.
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Figure 23: Mean absolute running diference on the surface wind of ERA5 during Winter season
from 1981 to 2016

Finally, Figure 22 underlies a spatial variability in the BT to MBMT relationship. The MBMT
climatology ranges from 11 to 17, meaning a linear relationship coeicient varying from 1.2 to 1.9
with the BT climatology.

3.1.3 Decadal evolution of the wind drought days

Figure 24 shows the linear trends in the winterly number of wind drought days according to the
MBMT index from 1993 to 2016. This trend is the steering coeicient of a linear őt obtained
from the winter number of wind droughts days time series over the years. Only trends with
p-values lower than 0.1 are shown. The BT trends, visible in the appendix (Figure 38) exhibit
the same behaviour as őgure 24 but with smaller coeicients. Indeed, by deőnition the MBMT
occurrence can only be higher than those for the BT. This is because a BT day is needed as a
stem for MBMT periods which implies that the occurrence of BT days will result in more MBMT
days. But, the absence of BT occurrence also results in the absence of MBMT days. Hence,
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the MBMT linear trends slope can only be bigger. Nevertheless, the diferent indices have a
similar signiőcance. 12620 points have valid p-values in the BT deőnition and 12721 for the MBMT.
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Figure 24: Linear trend on the MBMT days in the boreal winter from 1981 to 2016 provided
by ERA5. Only the trends with their corresponding p-values under 0.1 are shown. The őgure
shows a clear negative trend along the equator and some on the South Pole. The map is globally
anti-correlated as one could have expected, when the wind is higher there are less drought days.

As the prominence of white underlies, the trends are mostly insigniőcant. However, one can
see negative trends on the South Pole and along the equator. The MBMT wind drought trend
reaches -0.86 with a p-value of order 10−5 (-0.49 BT days/year with a p-value of order 10−5).
This might suggest that the MBMT is more variable than the BT index. The values of the linear
trends represent a diference of 31 days (18 days) of wind drought days in winter between the
1981 and the 2016. Extreme tendencies occur around the equator and especially the ITCZ. Indeed,

along this line, the air is ascending, which means that there is in general no strong wind at these

latitudes (Figure 4). A change in this location is then relatively more important and reinforce the

tendencies. In fact, there is a global increase in wind speed over the oceans noted by different

authors (Young et al. 2011 [39], Zheng et al. 2016 [40]). The cause is attributed to climate change

(L’Heureux et al. 2013 [41], England et al. 2014 [42]), that is the strengthening of the Walker

circulation (which is in a few words, the model of closed air circulation in the tropics, strongly

linked with the ocean circulation) [43]. CITE

Figure 25 shows the linear trend of the winter seasonal mean wind speed. The wind speed

trends are opposite to the BT trends. The threshold the 10th over the years (see section 2.3). If the
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mean wind speed decreases along the years, one expects more values below this threshold. Even
though there is a relatively important increase in wind speed on the Antarctic Sea, there are not
signiőcant trends in the wind drought days.
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Figure 25: Linear trend of the winterly seasonal mean wind speed trend from 1981 to 2016 provided
by ERA5 . Only the trends with p-values under 0.1 are shown. The őgure shows similar trends as
the Figure 24.

.

Figure 26 shows the evolution of the winter number of wind drought and the mean seasonal
speed from 1981 to 2016, in two diferent locations. The top őgure (lat 0◦S, lon 9◦W) corresponds
to the location where the number of drought trends reaches the local maximum intensity in the
South Atlantic (close to the African coast). Secondly, the bottom őgure illustrates the wind speed
and the wind drought indices for a grid point in Denmark (lat 55◦N, lon 9◦E).

Once again, the two indices have a similar behaviour. There are no years where the BT index
is giving a minimum that is not followed by the MBMT. However, the "response" of the MBMT
index is not always proportional to the BT.

Figure 26 (top) shows the negative trend of the number of wind drought days in this area
responding to the increasing trend of the mean wind speed. Even a seasonal variation of the wind
drought indices of about 10% implies a reduction of 4 wind drought days.
Generally, the local minimum in the seasonal mean speed results in the occurrence of wind drought.
However, the time series of Denmark (lat 55◦N, lon 9◦ E) shows disagreements with the mean wind
speed. For example in 2012, a high number of wind droughts were identiőed even though that the
seasonal average speed for this year is not a local maximum.
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Figure 27 shows a map of the correlation be-
tween the winter number of wind droughts and
the seasonal mean speed. Even if the map shows
a prominent blue and has a mean value of -0.56
with the MBMT index (-0.55 MBMT), there is
an important spatial variability. One can see
from Figure 14 that the wind stations are most
of the time situated in un- or low correlated
areas. There is no clear pattern about where
these (anti-)correlations are higher or not. It
seems that it is in general high along the equa-
tor.The normalised standard deviation shown in
the Figure 28 seems to have a similar distribu-
tion than the Figure 27.

Indeed, the locations that have a low nor-
malised standard deviation also have high anti-
correlations. It is expected that a lower variabil-
ity will give the seasonal wind mean speed a bet-
ter indication of the shift of the wind speed dis-
tribution. Therefore, it means that the white area
in the Figure 27 corresponds to points where the
seasonal wind mean speed indicator does not
catch the intra-seasonal variability of the wind.
Finally, the mean correlation from the BT in-
dex in both hemispheres is -0.56 (-0.55 MBMT)
which shows that there is no evidence of a dif-
ference between summer and winter in the link
between the indices and the mean wind speed
values .
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Figure 26: Time series of the number of wind drought
days during winter and of the mean seasonal speed
along the years. They correspond to two diferent lat-
itudes and longitudes (Upper figure: South Atlantic,
Lower figure: Denmark) The two indices are repre-
sented. The black is the mean seasonal wind per year
and the blue lines are the number of low wind events.

From Figure 28 a route along the equator of local maximums of the coeicient of variation. It
corresponds to the position of the ITCZ. As it has already been said in the beginning of this section,

the ITCZ shifts spatially from one month to the next and thus leads to high differences in the wind

in a short times.
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Figure 27: Correlation maps of the seasonal mean wind speed with the winter number of wind
drought according to the MBMT indices. Data from ERA5. The corresponding őgure for the BT is
in the appendix (Figure 36).
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Figure 28: Coeicient of variation obtained from ERA5’s winter daily surface wind from 1981-2016.
The coeicient of variation is given by the standard deviation normalised by the average. The
Tropics are generally characterised by a low coeicient of variation.
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3.1.4 Summary

Technically, the computation time of the MBMT index takes about 220 times longer than for the
BT for a seasonal time series length (90 points). This means that the MBMT computation requires
the use of more computational resources. Moreover, the strong seasonal relationship encountered
between the two indices suggests that it could be judicious to save this time for other applications.
However, climatologies suggest that this relationship is spatially dependent and that it varies ac-
cording to the normalised running diference of the daily wind speed.
The signiőcant trends of the wind drought days over the years are following the trends of the sea-
sonal mean wind speed. Nevertheless, the seasonal mean wind speed has a low global correlation
(-0.55) with the wind droughts which implies that this indicator is unable to catch the inter-annual
variability of the wind droughts. This idea is supported by the similar pattern observed with high
correlations and the coeicient of variation of the daily wind. The seasonal mean wind speed is
therefore not reliable as a predictor of the seasonal number of wind drought days.
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3.2 Seasonal forecast quality assessment of the wind drought days predictions

3.2.1 Relationship between the BT and MBMT index in SEAS5
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Figure 29: Occurrence of seasonal MBMT days for given BT days from 1993-2016 with the SEAS5
ensemble mean. In the graphic, all the values that were 0 before the appliance of the logarithm
are set again to 0 and occurrences < 1 are not shown. NX is the number of wind drought days of
the variable X . Decimal numbers of wind drought days obtained by the mean are rounded to the
next integer.

The relation between the SEAS5 seasonal predictions of the BT and the MBMT indices is shown
in Figure 29. It has been evaluated for the boreal winter season in the 1993-2016 period. On the
left, is the distribution for all members predictions, and on the right, for the ensemble mean. By a
quick comparison with Figure 21, one can observe that the distribution of all the members together
is very close to the one obtained by ERA5 as evidenced by the closeness of the linear őts. From
this result one would expect the predictions of SEAS5 to be close to the ones of ERA5.
However, the ensemble mean is showing some diferences. Even by taking into account the re-
duction of the sample size (36 · 90 to 24 · 90 which means a log10(3) ≈ 0.5 diference order),
the SEAS5 seasonal predictions exhibit a narrower distribution than the one of ERA5.ERA5 have
≈102.3 seasonal occurrences of 25 BT days and SEAS5 ≈101.3. Therefore, the mean applied on the
members that centres the distribution on 9 BT days and 12 MBMT days (Figure 29) and the high
occurrences are less probable. Finally, the linear regression gives a coeicient of ≈ 1.7 between
the two indices, with a lower intercept than the one obtained for ERA5.
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3.2.2 Detailed SEAS5 predictions for January 1998

Figure 30: MBMT number of wind drought days predicted by the seasonal forecast system SEAS5
and the corresponding wind droughts obtained from ERA5 for the month of January 1998. First
are represented all the diferent members (simulations) given by SEAS5. In general, the same
behaviour is observed but the small changes in the initialisation change the results. The BT index
gives a similar őgure and is in the appendix (Figure 40).
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Figure 30 shows the number of wind drought days predicted by SEAS5 and given by ERA5
for January in 1998. First, the 25 ensemble members are displayed. In general, similar behaviour
is observed for all the ensemble members, but the small changes in the initialisation lead to non-
negligible variations. The ensemble mean underlies this variation, őrstly by the reduced contrast
and then by the smoothing of the patterns. As an example, one can look at the Paciőc and see
that it is characterised by an intense line of wind drought number along the ICTZ. In the ensemble

mean, the pattern of this high wind drought zone is well thinner. Another example is the land

surface where the wind drought days range between 0 and 1, which is a lower number of days

compared to those obtained for the reanalysis. This is the result of the smoothing corresponding to

the ensemble mean computation. Nevertheless, the members have similar behaviour to the ERA5

observational reference.

3.2.3 Mean bias of the wind drought days seasonal forecasts
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Figure 31: Bias between ERA5 and SEAS5 ensemble mean for Winter. The data is from 1993
to 2016 and the forecast system is launched on the 1st November. The bias is the climatology
difference between the reanalysis and the ensemble mean of the seasonal forecasts. Blue colours
indicate that SEAS5 is predicting more wind droughts than those from the ERA5 reanalysis and
orange indicate the opposite.

Global mean
Global

absolute mean
Equatorial mean

Equatorial
absolute mean

Extra-tropics
mean

Extra-tropics
absolute mean

BT [days]
(Uncertainty ≈10−3)

-0.07 0.14 -0.05 0.14 -0.07 0.14

MBMT [days]
(Uncertainty ≈10−3)

-0.19 0.42 -0.22 0.53 -0.19 0.39

Table 2: Global, equatorial and extra-tropics mean and absolute mean bias of the Figure 31. The
absolute mean is the mean of the absolute values.
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Figure 31 shows the bias, which is the diference between the seasonal climatologies of ERA5
and of SEAS5 ensemble mean for both wind drought indices. The BT days diference between
the climatologies of the seasonal forecasts and the reanalysis is really low and never exceeds a
day, which means that the climatological behaviours of the BT index is consistent for the seasonal
predictions and the reanalysis. This is due to the deőnition of the BT index as in terms of a
relative threshold (i.e. the 10th percentile) which is deőned separately in the seasonal predictions
and in the reanalysis. Even though there is a slight overestimation of the wind drought days
by the forecast system since the mean bias is negative, this deőnition leads to an unbiased BT index.

The results of the MBMT index are diferent to those obtained for the BT. First, the mean bias
reaches 4.4 days in speciőc locations (Figure 31) with a mean bias of -0.19 days with an absolute
mean of 0.42 days (Table 2). Both MBMT means have a ratio with BT means well away from the
1.57 coeicient of the linear relationship. It may indicate a diference in the seasonal behaviour of
the two indices that has not been emphasised.

The equatorial and tropical regions show stronger diferences between the two climatologies
which is consistent with the results obtained in previous sections. Except for Asia, the biases over
the extra-tropics is noisy in a similar way to the BT index. Indeed, the absolute mean between the
25◦ North and South is equal to 0.53 days while the extra-tropics have an absolute mean of 0.39
days. As a comparison, the BT index shows respectively absolute means of 1.40 and 1.34 days.
This result was expected since the BT index is directly the representation of the 10th percentile.
Hence, the climatology of this deőnition should give 10% of the period (with variations since the
threshold is set over a week and the algorithm is seeking the one that is approximating the best,
which depends on the distribution). By contrast, the MBMT index is well more dependent on the
smoothness of the wind speed daily values and their distribution.

3.2.4 Deterministic evaluation: Pearson’s correlation coefficient

Figure 32 shows the correlations maps between the wind drought days from ERA5 and the
SEAS5 ensemble mean from 1993 to 2016. These correlations allow assessing if the seasonal
predictions have the potential to detect year-to-year ŕuctuations in the occurrences of wind
droughts. The Pearson’s correlation coeicient ranges between -1 and 1. If cor = 1 ERA5 and
SEAS5 ŕuctuations are perfectly corresponding. When cor = 0, it indicates that there is no
association.The ensemble mean prediction does not provide added value relative to the retrospective
observational climatology (which would be a constant time series). Finally, if cor < 0 the en-
semble mean predictions are worse than the past climatology, Positive correlation is the minimum
for predictions to have potentially useful additional information. (Jollife and Stephenson, 2012, [44]).

Since negative correlations signify unskilful predictions, the mean is computed instead of the
absolute mean, which shows that the global correlations are low.

32



As the mean correlations are showing, the general quality of the forecast is decreasing with the
forecast time. This is due to the reduction of the inŕuence from the initial conditions (observations
at the time the forecasts are issued) with the forecast time. However, the decrease of the correlation
between the two last months is really marginal. Still looking at the means, the forecast over the
season is giving a better result since the information requested from the system is less precise.
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Figure 32: Pearson’s correlation coeicients between the MBMT wind drought days of ERA5 and
the SEAS5 ensemble mean from 1993 to 2016.The predictions are initialised the 1st of November.
Each respective map mean is shown. The seasonal forecast is the one showing the highest correla-
tion. The BT index shows a similar behaviour and is shown in Figure 39. The monthly maps show
the correlation over time of the monthly number of wind droughts whereas the seasonal map is the
correlation over time of the winter seasonal number of wind droughts (sum over three months).

By looking more into the spatial distribution of the maps shown by Figure 32, it is clear that
better skill on the yearly ŕuctuations is demonstrated in the equatorial Paciőc, North Brazil, and
North Eastern Africa (all along the equator). All three locations seem to be well inŕuenced by
the El Niño Southern Oscillation phenomena in winter, and this phenomenon is currently well
predicted by the diferent forecast systems [9]. Furthermore, these regions are characterised by a
small coeicient of variation (Figure 28) which might suggest a more predictable wind behaviour.

33



3.2.5 Probabilistic evaluation: the Ranked Probability Skill Score

Figure 33: Ranked Probability Skill Score between ERA5 and SEAS5 in winter from 1993 to 2016
with the MBMT index. The best skill is obtained along the equatorial paciőc. The predictions
are initialised the 1st of November. BT RPSS average = −(13.1 ± 0.5) · 10−3, MBMT RPSS
average = −(3.21 ± 0.4) · 10−3. A score of 1 is considered as a perfect forecast and a score below
0 corresponds to unskilful forecasts (represented in grey).
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Figure 33 presents the result of the RPSS score of the SEAS5 winter predictions (starting date 1st
of November) compared to the ERA5 reanalysis. The two indices show better performance along
the equatorial and tropical latitudes, and especially in the paciőc, compared to the extra-tropics.
The BT index seems to have in general a better skill than the MBMT. The diference is particularly
marked in the equatorial and tropical Paciőc. North America and Europe, which are relevant
regions for the wind industry show positive RPSS values. This implies the seasonal predictions of
the wind droughts could beneőt the wind industry in that areas. However since the RPSS values
are quite low, more careful analysis should be done on these areas.
However, BT better performance is not systematic. For example, the SEAS5 seasonal prediction
system is more skilful for the MBMT than the BT over Belarus and Ukraine.

While it might be expected that in general, a better skill would be obtained for the BT index
that is based on the 10th percentile, and consequently, less dependent on the wind distribution
Than the MBMT, the MBMT shows better skill on some regions as Belarus and Ukraine. The
presence of numerous points suggest a signiőcant result. It may indicate that the wind behaviour
is diferent on these points and that diference in skill needs to be further explored.

3.2.6 Summary

The two indices show a global unbiased behaviour between the forecast system and the obser-
vational dataset, which is a requirement of a good index. However, some small biases (less than
two days) are emerging with the MBMT wind drought days and would need a more speciőc analysis.

The mean performed on the forecasts ensemble is responsible for the diference in the MBMT
and BT days distribution and thus, the diference in the wind behaviour between the observation
and the ensemble mean. The example output of Figure 30 underlies indeed that the ensemble
mean of the forecast system is fading the contrast of the output at a monthly scale, only showing
a similar behaviour on the equatorial latitudes and particularly over the paciőc. Indeed, the
Ensemble mean correlation between the forecast system and the reanalysis and RPSS show that
the equatorial region is well predicted. This region is dominated by the ENSO phenomenon which
is well understood and skilfully predicted at seasonal time scales [9].
Nevertheless, the results of those metrics suggest that the seasonal prediction systems need to be
improved to provide more skilful predictions of wind droughts on a global scale. However, there
are some exceptions such as north Brazil, and some locations in North America and Europe that
can beneőt from the climate information provided by the seasonal prediction systems.
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3.3 The North Atlantic oscillation impact

3.3.1 Relationship between the wind drought days and the NAO

Figure 34: Pearson’s correlation coeicient between the monthly wind drought obtained with the
MBMT index and the NAO monthly value. The BT őgure is similar and available in the appendix
(Figure 37).
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Figure 35: Pearson’s correlation coeicient between the monthly value of the 10m surface wind
speed (ERA5) and the NAO monthly value.
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From January’s monthly correlations between the wind and the NAO index in winter (Figure 10
and later, Figure 35), one has seen that the NAO is a good descriptor of the monthly Euro-Atlantic
wind behaviour. One could then expect a similar behaviour between the NAO and the wind
drought indices.

Figure 34 shows the Pearson’s correlation coeicient between the monthly wind drought ob-
tained with the MBMT index and the monthly NAO index. When the correlations are negative, it
means that if the monthly value of the NAO index is positive the number of wind drought days during
this month would be lower than usual. When the correlation is positive, the opposite happens.

The patterns observed correspond to the ones from Figure 35 showing the correlations between
the surface wind speed and the NAO index (similar to Figure 10 but over the whole winter).
Indeed, the sign of the signiőcant correlations are opposed: where the NAO induce a higher
monthly wind speed, the number of wind drought days during the year decrease. But, these
correlations are weak, the absolute value is around 0.4. It can be understood as the consequence of
the low correlation of seasonal wind speed with the wind droughts shown in Figure 34. Moreover,
the correlations are mainly present over the sea and only the United Kingdom and North West
Africa are well covered. The monthly value of the NAO index cannot be used as the only predictor
of the monthly wind drought days occurrence.

The patterns formed by Figure 34 are not included in the patterns from Figure 35, there are
small zones, such as the Mediterranean that is signiőcant with the wind drought indices but not
the wind speed. It highlights, even more, the diference in the behaviour of the low-speed events
and the monthly wind speed. It justiőes the need for the BT and MBMT index as a metric for wind
droughts.

3.3.2 Summary

Driven by the fact that the monthly NAO index is a good indicator of the seasonal wind speed,
this work has been interested in the link between the NAO and the wind drought number of
day. Unfortunately, this relationship has proved to be weak, revealing the diference in behaviour
between the wind and the low-speed events. The NAO is not a predictor of the wind drought days
and one needs the BT and the MBMT index to characterise the wind droughts.

4 Conclusion

In this work, two indices were developed in order to characterise the occurrences of low wind
speed events in a season, the Below Threshold index and its extension the Mean Below Mean
Threshold deőnition. A solid linear relationship of 1.6 has been found between the two indices
at the seasonal scale. Consequently, it may be suicient for a seasonal forecast to only compute
the BT index and save the consequent computation time that would have been used for the MBMT.
However, the systematic errors afecting the seasonal predictions of the two indices show diferent
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patterns. While the BT index shows to be fairly unbiased, the MBMT shows stronger patterns
between the climatology of the predictions and the reanalysis that are clued by their climatologies.
It demonstrates that the MBMT completes the BT information given on the wind nature during a
month.

Generally, signiőcant trends of wind droughts days are following signiőcant trends of seasonal
wind speed. Over the tropical regions, there is an increase in the mean wind speed over the last
decades that results in the reduction of wind drought days. The inter-annual ŕuctuations of the
mean seasonal wind speed are associated with the opposite changes in the wind drought days,
but the correlation is not 1. Indeed, this thesis exhibits a correlation of -0.55 between the wind
drought days (according to the BT index) and seasonal wind speed in winter. It also has been
found that this weak correlation is locally dependent, underlying the diferent performance of the
wind drought between the tropical and extra-tropical regions. The seasonal mean wind speed is
then not an indicator for the occurrence of seasonal low wind speed events, and the speciőc indices
created, are more useful to better describe the inter-annual variability of the wind droughts.

NAO which is the main phenomenon driving the wind speed over Europe shows low correlations
with the wind drought indices. This suggests that the wind droughts in winter cannot only be
explained in terms of this pattern and that the link with other teleconnections should be investigated.
Finally, the forecast quality assessment shows better performance of the forecasts for seasonal
means than for monthly values. In addition, SEAS5 quality of forecast is decreasing from 15% after
the őrst usable month.

The very good representation of the El Niño Southern Oscillation (ENSO) phenomenon by the
seasonal prediction systems [9] might lead to the high RPSS score obtained for the wind drought
indices over the equatorial Paciőc. Moreover, locations that are strongly inŕuenced by ENSO
through teleconnections such as Northern Brazil and Eastern Africa show a fair skill. Also visible,
relevant regions for the wind industry as North America and Europe, show positive RPSS values.
The seasonal predictions of the wind droughts could then beneőt in that areas.

However, the SEAS5 seasonal forecasts of wind droughts are unskilful in most of the regions.
Of course, the robustness of this result needs to be conőrmed by the assessment of other sea-
sonal prediction systems and other observational references. It has been shown that a multimodel
combination of seasonal ensemble forecasts can lead to better forecast quality than the best single
forecast system. Besides error compensation, the multimodel combination also improves consistency
and reliability [45].

Further development

A sketch of the computation time behaviour of the indices has been done and has underlaid the
diference in results according to the speciőc dimension size (along threshold or orthogonal) of both
indices. However, this results lack of precision and need a more careful study, with more points and
less uncertainty. In addition, the study has shown a saturation of the MBMT wind drought days
equal to the seasonal time length. It therefore suggests that some wind droughts are wider than
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the seasonal scale to be studied. The saturation also hide the full distribution of the MBMT days
according to the BT ones and the de-saturation with a longer threshold dimension scale would be
a beneőt for exhibiting the behaviour.

With the limited time, some choices have been made to have a coherent analysis despite the
robustness of some results. It has been preferred to have a global overview on the prediction as-
sessment of the low wind speed events but with only one reanalysis and Forecast system. However,
this work shows limits at some points. For instance, the low positive skill shown on regions where
the wind industry is well implemented, draws attention and further analysis should examine the
predictability of the wind drought days over these areas.

The behaviour of the two indices is not completely understood. Next studies should look more
precisely at the dependence of the MBMT on the distribution shape (Gaussian, Weibull, etc. . . ) and
the 1-day diference of the time series concerned. Also, the behaviour of the indices is likely to be
depending on the daily threshold deőnition. As a őrst shot this work used a percentile threshold,
but more complex and thoughtful threshold can certainly be better scoped on the interest of wind
industries.

The SEAS5 seasonal predictions of wind droughts have been assessed. However, the perfor-
mance relative to the duration and intensity of these droughts, i.e. the number of consecutive days
with low wind speed values should be also explored. Indeed, it is reasonable to think that small
consecutive-days events are more frequent and stochastic. In addition, the link between the wind
drought length and the resilience of the energy storage and wind industries should be studied in
order to extract what types of drought is the most problematic for the users. The diference in wind
drought’s prediction handling according to the strength event has to be reviewed.

Even though ERA5 is considered the best reanalysis representing the surface wind [32]
and that SEAS5 has been chosen to be the most critical system, the very őrst step to go
forward of this work would be to generalise the forecasts assessment for various reanalysis and
forecasts systems, thus performing multimodel analysis. As a reanalysis MERRA-2 also performs
well in the representation of surface winds [32] while the seasonal forecast systems from the
Copernicus Climate Change initiative can be exploited for the construction of an efective multimodel.

The NAO has little inŕuence on the wind droughts, however, it would be relevant to study other
important large-scale patterns that act as predictability sources at seasonal timescales (e.g. ENSO,
Euro-Atlantic teleconnections, Paciőc-North American teleconnection, Indian Ocean Dipole, etc).
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Appendix A: Correlation
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Figure 36: Correlation map of the seasonal mean wind speed with the number of wind drought
days (BT index)
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Figure 37: Pearson’s correlation coeicient between the BT index and the NAO, Winter period,
ERA5, from 1981 to 2016

Appendix B: Trends
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Figure 38: Occurence trend on the wind drought days, BT deőnition ,ERA5, from 1981 to 2016
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Appendix C: Statistical Tools
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Figure 39: Pearson’s correlation coeicient between the wind drought days (MBMT) of ERA5 and
the SEAS 5 ensemble mean from 1993 to 2016.
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Appendix D: Comparison between SEAS5 predictions and ERA5

MBMT wind drought days of SEAS5 compared with ERA5,
January 1998, start date 01/11/97
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Figure 40: BT number of wind drought days predicted by the seasonal forecast system SEAS5
and the corresponding wind droughts obtained from ERA5 for the month of January 1998. First
are represented all the diferent members (simulations) given by SEAS5. In general, the same
behaviour is observed but the small changes in the initialisation change the results.
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Appendix E: R scripts and Packages

This work has been done on Rstudio 99.9.9 with R 3.6.1, and has used the following libraries:

• s2dveriőcation

• s2dv

• multiApply

• ClimProjDiags

• lubridate

• CSTools

• pointr

• ggplot2

• coe
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