
Improving the throughput of an
atmospheric model using an

asynchronous parallel I/O server

Master’s Thesis

for the award of the degree of

Master in Innovation and Research in Informatics (MIRI)

specialization in

High Performance Computing (HPC)

Xavier Yepes-Arbós
(xavier.yepes@bsc.es)

Supervisor
Mario C. Acosta

(mario.acosta@bsc.es)

Co-supervisor
Francisco J. Doblas-Reyes
(francisco.doblas-reyes@bsc.es)

Tutor
Daniel Jiménez-González

(djimenez@ac.upc.edu)

April 2018

mailto:xavier.yepes@bsc.es
mailto:mario.acosta@bsc.es
mailto:francisco.doblas-reyes@bsc.es
mailto:djimenez@ac.upc.edu

Abstract

The increment of the spatial resolution for computational Earth system models
is nowadays one of the main concerns of the scientific community in order to
solve more complex problems, and thus, achieve more accurate solutions to the
reality. However, the new complexity requires more computing power than only
cutting-edge supercomputers can provide. This requires to use sophisticated HPC
techniques to efficiently use the computational resources. In addition, such high
resolutions lead to generate an enormous amount of data to meticulously represent
accurate solutions.

Current Earth system models usually have inefficient sequential I/O schemes that
used to run low grid resolutions, where the generated amount of data for the
simulation results was not particularly big. However, sequential I/O schemes do
not scale with current models where a lot of parallel resources are used. In order
to address this issue, the most adopted approach is to use scalable parallel I/O
solutions that offer both computational performance and efficiency.

This master’s thesis analyzes the I/O process of IFS, one of the most important
atmospheric models used around Europe for several institutions, which uses an
inefficient sequential output scheme. Here it is presented an easy-to-use develop-
ment that integrates an asynchronous parallel I/O server called XIOS into IFS.
Moreover, different optimization techniques, such as computation and communica-
tion overlapping, are applied in the integration development to minimize the I/O
overhead in the resulting IFS execution.

The results show that the use of XIOS in IFS to output data is certainly good. This
new parallel scheme has significantly reduced the execution time of the original

sequential scheme. Using the proper configuration, XIOS proves to be a scal-
able I/O server that keeps a low overhead regardless the amount of IFS processes
and the output size. Furthermore, XIOS offers a series of benefits that shorten
the critical path of IFS experiments by concurrently running the post-processing
task along the IFS execution: data format conversion, online post-processing and
CMIP-compliant output. In this scenario, the total execution time is greatly re-
duced.

Acknowledgments

I would like to express my appreciation to Mario for his immeasurable patience
and valuable suggestions during the supervision of this master’s thesis. To Glenn
Carver and Gijs van den Oord for their willingness to answer an endless number
of questions about IFS.

I wish to thank Paco and Dani for their great advice to make this master’s thesis
document much more legible. My thanks to Kim and Pierre-Antoine for their
technical support, as well as Miguel and Oriol for their useful tips.

I would also like to thank BSC and Master colleagues for doing lunchtime more
enjoyable, gossiping and arguing, most of the time, about surreal things.

No voldria acabar aquestes ĺınies sense donar les gràcies a famı́lia i amics. El seu
suport ańımic ha estat incondicional en els moments més dif́ıcils. En especial,
voldria agrair-ho als meus pares, la Maria i en Josep Maria, a la meva germana
la Isabel i als meus dos nebots, la Laia i en Biel, aix́ı com també al meu avi, en
Josep. Finalment, gràcies a la Mixeta per les innombrables hores d’estudi que
m’ha acompanyat, malgrat no haver pogut fer-ho en la recta final. Gràcies a tots.

Contents

List of Figures iv

List of Tables vii

List of Code snippets viii

1 Introduction 1
1.1 Motivation . 5
1.2 Objectives . 7
1.3 European collaboration . 8
1.4 Document organization . 9

2 State-of-the-art 10
2.1 I/O overview . 10
2.2 Parallel I/O . 12
2.3 I/O servers . 17

2.3.1 ADIOS . 18
2.3.2 CDI-pio . 20
2.3.3 CFIO . 21
2.3.4 XIOS . 22

2.4 Discussion: comparison and choice 23

3 Context 25
3.1 IFS description . 25

3.1.1 Brief overview . 25

i

3.1.2 Octahedral reduced Gaussian grid 27
3.1.3 Parallelization and domain decomposition 29
3.1.4 Data structures . 37
3.1.5 IFS output schemes . 38
3.1.6 Environment tools . 39

3.2 XIOS description . 41
3.2.1 Overview . 41
3.2.2 Concept . 43
3.2.3 Initialization . 45
3.2.4 Finalization . 46
3.2.5 Grid definition . 47
3.2.6 Fields . 49
3.2.7 Files . 50
3.2.8 Filters . 50
3.2.9 Performance tuning . 53
3.2.10 CMIP . 54

3.3 Computing environment . 54

4 Development of the IFS-XIOS integration 58
4.1 Overview . 58
4.2 XIOS setup . 62

4.2.1 Data and variables module 63
4.2.2 Initialization . 64
4.2.3 Finalization . 65
4.2.4 Context . 65
4.2.5 Calendar . 67
4.2.6 Geometry . 68
4.2.7 Iodef.xml file . 71

4.3 Grid-point fields transfer . 75
4.4 Environment setup . 77

4.4.1 XIOS compilation . 77
4.4.2 Including and linking XIOS 78
4.4.3 Parallel netCDF and HDF5 versions 78

ii

4.4.4 Model script . 79
4.4.5 Supporting MPMD mode 81

5 Performance analysis and optimization 83
5.1 Tools . 87

5.1.1 Profiling . 87
5.1.2 Tracing . 87

5.2 Threading with OpenMP . 90
5.3 Optimized compilation of XIOS . 93
5.4 Overlapping computation and communication 95
5.5 Explored options . 101

5.5.1 Vectorization with SIMD instructions 102
5.5.2 Memory affinity . 104
5.5.3 Derived MPI Datatypes . 104

6 Evaluation 106
6.1 IFS configuration . 106
6.2 Metrics . 109
6.3 Results . 110

6.3.1 Optimal number of XIOS servers 111
6.3.2 Comparison test between different output schemes 113
6.3.3 Comparison test adding the GRIB to netCDF post-processing115
6.3.4 Comparison test with additional computational resources . . 117

7 Conclusions and future work 123
7.1 Conclusions . 123
7.2 Future work . 126

Acronyms 127

Appendices 136

A Grid-point decomposition variables 136

iii

List of Figures

1.1 Components used in the EC-Earth model 4
1.2 Critical path of a basic experiment 5
1.3 Optimized critical path of a basic experiment 7

2.1 Sequential I/O stack . 11
2.2 Common writing strategies . 13
2.3 Intermediate I/O strategy . 13
2.4 Parallel I/O stack . 14
2.5 Example of different computational and I/O decomposition in PIO 16
2.6 Overview of an I/O server . 18
2.7 ADIOS API architecture . 19
2.8 ADIOS transform framework . 20
2.9 Comparison between CDI vs CDI-pio 21
2.10 CFIO architecture . 22

3.1 Overview of the unresolved physical processes in the atmosphere . . 26
3.2 Concept of latitude and longitude 27
3.3 Comparison between a regular Gaussian grid and a reduced Gaus-

sian grid . 28
3.4 Process to generate an octahedral reduced Gaussian grid 29
3.5 Dual resolution comparison . 29
3.6 NPROMA blocking strategy used for IFS data arrays 31
3.7 Major algorithmic steps in an IFS time step 33
3.8 Example of a grid-point decomposition 35
3.9 2D scheme partitioning . 36

iv

3.10 EQ REGIONS scheme partitioning 37
3.11 Snapshot of prepIFS . 39
3.12 Snapshot of XCdp . 40
3.13 Overview of the XIOS architecture 42
3.14 Example of XIOS data distribution 43
3.15 Basic variables to describe an axis 47
3.16 Example of a reduced Gaussian domain 48
3.17 Basic variables to describe the global domain and a subdomain . . . 49
3.18 Example of a workflow applying filters to fields 51
3.19 Overview of the main components of the Cray HPCF 55

4.1 Scheme of the IFS-XIOS integration 60
4.2 IFS-XIOS output scheme . 62

5.1 Performance analysis and optimization flowchart 84
5.2 Example of a trace with MPI call events 89
5.3 MPI call color legend . 89
5.4 Trace with three IFS time steps . 97
5.5 Optimized IFS-XIOS output scheme 98
5.6 Trace with three IFS time steps once optimized 100
5.7 Trace comparison with the same elapsed time 101

6.1 Optimal number of XIOS servers 112
6.2 Execution time of different output schemes 114
6.3 Speedup of different output schemes 115
6.4 Execution time with GRIB to netCDF conversion cost 116
6.5 Speedup with GRIB to netCDF conversion cost 117
6.6 Execution time comparison with additional resources 119
6.7 Speedup of XIOS v4 against sequential output with additional re-

sources . 120
6.8 Execution time with additional resources and format conversion cost 121
6.9 Speedup of XIOS v4 against sequential output with additional re-

sources and format conversion cost 122

v

A.1 Variables describing the grid-point decomposition 139
A.2 NSTA and NONL arrays in the grid-point decomposition 140

vi

List of Tables

3.1 Variables to control the grid-point decomposition (Adapted from [44]) 34
3.2 Summary of the Cray HPCF (Adapted from [50]) 55
3.3 Summary of the Cray XC40 (Adapted from [50]) 56
3.4 Summary of a Cray XC40 compute node (Adapted from [50]) 56
3.5 Summary of a Cray XC40 core (Adapted from [50]) 56

6.1 Summary of the IFS configuration 107

A.1 Variables describing the grid-point decomposition (Adapted from [44])138

vii

List of Code snippets

3.1 Typical data structure for 3D fields 30
3.2 Data structure used in IFS . 30
3.3 OpenMP parallelization used in IFS 31
3.4 Basic decomposition variables . 35
3.5 XIOS subroutine to update the calendar 43
3.6 XIOS subroutine to read a field . 43
3.7 XIOS subroutine to write a field . 44
3.8 XIOS subroutine to query if a field is active 44
3.9 XIOS subroutine to query if a field is active in the current time step 44
3.10 XML definition to output a field if active in the current time step . 45
3.11 Subroutine to initialize XIOS . 46
3.12 Subroutine to initialize the XIOS context 46
3.13 Subroutine to finalize the XIOS context 46
3.14 Subroutine to finalize XIOS . 47
3.15 Example of an XML field definition 49
3.16 Example of an XML file definition 50
3.17 Example of an arithmetic filter . 52
3.18 Example of a time integration filter 52
3.19 Example of a spatial filter . 53

4.1 Overview of the data and variables module 63
4.2 Mechanism to change IFS communicators 64
4.3 MPI and XIOS finalization . 65
4.4 Needed calls to set up the XIOS context 66
4.5 XIOS setup to use IFS calendar . 67

viii

4.6 Vertical axis definition . 68
4.7 Local domain data setup . 69
4.8 Longitudes . 70
4.9 Horizontal domain definition . 71
4.10 Field definition used in iodef.xml 72
4.11 File definition used in iodef.xml . 73
4.12 Axis, domain and grid definition used in iodef.xml 74
4.13 XIOS variables definition used in iodef.xml 74
4.14 NPROMA blocks gather and send of temperature field 76
4.15 Mechanism to have thread-safe calls 76
4.16 XIOS including . 78
4.17 XIOS linking . 78
4.18 Old netCDF and HDF5 modules 78
4.19 New netCDF and HDF5 modules 79
4.20 XIOS and Lustre setup in model script 80
4.21 MPMD mode preliminary setup in model script 80
4.22 XIOS variables setup . 81
4.23 Environment variable to run in MPMD mode 82
4.24 Example of an aprun command running IFS and XIOS 82

5.1 IFS log file with non-output time steps 85
5.2 Profiling analysis with GSTATS of the non-optimized IFS-XIOS

integration . 86
5.3 Profiling analysis with GSTATS of a field gather 90
5.4 Parallelization strategy of the NPROMA blocks gather 92
5.5 Profiling analysis with GSTATS of an optimized gather 93
5.6 XIOS report on client side . 94
5.7 XIOS report on server side . 94
5.8 XIOS report on client side once optimized 95
5.9 XIOS report on server side once optimized 95
5.10 IFS log file with one output time step 96
5.11 IFS log file with one output time step once optimized 99
5.12 Vectorization of the NPROMA blocks gather 103

ix

Chapter 1

Introduction

Over the years, computing power of supercomputers has grown exponentially [1].
Scientific applications from all disciplines have benefited of it by increasing the
complexity of the computational models used. This new complexity turns into
extra computational cost added using different methods, from the increase in the
horizontal or vertical resolution of spatial grids to the interaction in parallel of new
components simulating additional features (biochemistry, ice, etc.). When this
kind of applications have available more computational resources, they can afford
to solve more complex problems leading to more accurate solutions. For example,
the increase of the horizontal spatial resolution, in ocean models for areas near
to the coast, allow to correctly simulate some small-scale processes such as eddies
[2]. However, a higher resolution implies to generate much more data because
the representation of these small-scale processes requires more points. One of the
main problems is to efficiently write this such amount of data along the execution
of applications. The second main problem is to post-process this data afterwards.
Post-processing is the phase where data is transformed using defined operations,
such as data format conversion, computation of new derived variables known as
diagnostics, etc.

A good example where this extra computational power has been used is in the field
of Earth System Modelling (ESM). Numerical weather and climate prediction has
considerably improved the accuracy of forecasts, predictions and projections due

1

to the increase of the grid resolution [3]. Obviously, taking advantage of this
extra computational power requires to properly use efficient High Performance
Computing (HPC) techniques. Traditionally, the focus of improvement from a
computational point of view in ESM has been the calculation and communication
of algorithms [4]: the increase of the Instruction Level Parallelism (ILP); the
massively parallelization of code using heterogeneous platforms such as Graphic
Processing Units (GPUs) or Intel Xeon Phis; the memory access; the compiler
tuning; the optimization of Message Passing Interface (MPI) patterns; and many
more.

One of the most important issues studied to improve the computational efficiency
are workload imbalances between processes [5][6]. Workload imbalances happen
when the amount of work to be solved for each one of the processes is not evenly
distributed, so this causes that some processes have more work to solve than
others. Then, processes that finish earlier have to wait for the slowest ones. This
problem gets worse when more processors are used, since the workload distribution
is more complex. Another issue to be taken into account are the possible workload
imbalances due to the type of grid used in Earth system models. Grids are used
as spatial representation to discretise the Earth’s surface to solve equations on
evenly distributed grid-points. However, depending on the type of grid, the domain
decomposition could be more or less complex. As an example of the type of
grid used for this work, using regular reduced Gaussian grids has some intrinsic
problems on the Earth poles [7][8], where the computation and communication
among neighbors (to fulfill spatial dependencies) is much more expensive compared
to other regions of the Earth, such as the Equator. This is because it is necessary
to use a more complex domain decomposition.

Although ESM community has done considerable efforts to improve models from an
algorithmic point of view, there is a very important aspect that has almost been
forgotten during many years because it was not significant enough in the past:
the Input/Output (I/O). Due to the new complexity of models, it will become
really difficult to exploit computational resources to achieve more accurate results
without performing an efficient I/O, because Earth system models are significantly
increasing the number of variables to be output, as well as the output frequency

2

of variables. The output process is usually performed at the end of specific time
steps, during the execution of the model. This process has increased the execution
time during the last years, since more and more data has to be stored from higher
grid resolutions. In the end, an inefficient I/O process could lead to a serialization
where all resources are waiting to complete this critical task. Moreover, since
we are rapidly approaching the exascale era, the I/O part will become a truly
bottleneck [9], mainly because of the produced huge amount of data. Exascale
computers are future machines that will have at least one exaFLOP, or a billion
billion calculations per second. On these machines, models will be potentially able
to simulate ultra-high resolutions, but if the I/O process is not optimized at the
same time, everything will slow down and will not be possible to achieve the future
ambitious goal of having more complex models.

One of the models that could be in this situation is the Integrated Forecast System
(IFS). IFS [10] is a global data assimilation and forecasting system developed by
the European Centre for Medium-Range Weather Forecasts (ECMWF) and used
by several institutions around Europe. IFS has two different output schemes:
a sequential output scheme which gathers all data in the master process, and
the Météo-France (MF) I/O server which is an efficient I/O scheme that uses
dedicated resources to perform the I/O. While ECMWF uses the MF I/O server
for its operational forecasts, external institutions have to use the sequential output
scheme due to a license restriction. This is the case of one of the global climate
models most used around Europe, the EC-Earth model, which uses a limited
version of IFS as its atmospheric component.

EC-Earth [11] is a global coupled climate model, which integrates a number of
component models in order to simulate the Earth system. It is used for problems
encompassing from seasonal-to-decadal climate prediction to climate change pro-
jections and paleoclimate simulations. In Figure 1.1 there is a scheme showing the
components of EC-Earth.

3

Figure 1.1: Components used in the EC-Earth model

The two main components are IFS as the atmospheric model and the Nucleus
for European Modelling of the Ocean (NEMO) as the ocean model, both coupled
using OASIS3-MCT.

Climate models such as EC-Earth are a very good example to prove that an efficient
I/O will be needed for the future. They are run to simulate really extensive periods
of time which turns into an enormous amount of data which has to be saved for
prediction and projection analyses. For example, in a recent EC-Earth experiment
consisting in a 100 years projection, it was generated a total amount of 244 TB
of useful data. Only for IFS were used 4416 processors, consuming about 2475786
Central Processing Unit (CPU) hours.

Additionally, there are other tasks that are included typically in the workflow of
an Earth system model, apart from the task used to solve the governing equations
along the time. These tasks are known as pre-processing and post-processing and
they are used to process the input and output data. For example, in the pre-
processing task there could be the preparation of the initial conditions which are
needed to run any model, whereas in the post-processing task there could be the
computation of derived variables, known as diagnostics. Diagnostics are a type of

4

variables computed from other variables, typically prognostic variables which are
directly predicted by the model.

Figure 1.2 illustrates a really simple experiment which contains three tasks: pre-
processing, simulation and post-processing. The time needed to complete the three
tasks is known as critical path, because there are dependencies between them and
must be sequentially executed.

Figure 1.2: Critical path of a basic experiment with three tasks sequentially exe-
cuted

In particular, the post-processing task in EC-Earth is characterized by being quite
expensive, because it needs to transform General Regularly-distributed Informa-
tion in Binary form (GRIB) files output by IFS to Network Common Data Format
(netCDF) files. This is necessary because IFS was originally developed for Numer-
ical Weather Prediction (NWP), where the data format standard is GRIB. GRIB
was designed to offer high performance for I/O operations, since in operational
weather forecast, the time-to-solution is a critical process. However, the data for-
mat used in climate modelling as an accepted standard is netCDF. In addition,
EC-Earth needs to compute expensive diagnostics using variables from both IFS
and NEMO.

1.1 Motivation

As it has been explained, the sequential output of IFS is the scheme used in the
IFS version of EC-Earth. This was not a problem using the resolution required

5

for operational experiments, because the I/O did not represent a significant part
in the total execution time.

However, we have recently started to perform very complex experiments in collab-
oration with different institutions around Europe, under the Horizon 2020 (H2020)
PRocess-based climate sIMulation: AdVances in high-resolution modelling and Eu-
ropean climate Risk Assessment (PRIMAVERA) project [12]. This project aims to
simulate using higher resolution and it requires to produce a large number of vari-
ables. As a consequence, the community has experienced a considerably slowdown
in the execution time, not only due to the higher resolution of the computational
part, but also especially due to the I/O part, because it represents about 30% of
the total execution time.

This is one of the critical issues to be solved for the community, because it will
be present in new future experiments which will require similar PRIMAVERA
configurations or even more complex.

For this reason, it is necessary to solve this problem by identifying which are the
present and future community needs to use an efficient and functional I/O ap-
proach. The first need is to write in netCDF data format instead of GRIB, like
IFS currently does, because climate modelling works with netCDF format. The
second need is to produce netCDF files as requested by the CMIP6 data request.
The Coupled Model Intercomparison Project (CMIP) [13] is a standard exper-
imental protocol for studying the output of coupled Atmosphere-Ocean Global
Circulation Models (AOGCMs). The third need is the ability to perform online
post-processing, which means that the data to be output is processed along the
simulation. Those three needs are very important to avoid the costly current post-
process that we have to perform. The fourth need, from a computational point
of view, is to find an efficient and scalable I/O approach able to exploit parallel
resources.

Additionally, the new complexity of Earth system models where different com-
ponents interact among them implies new needs where data produced by each
component will not be independently processed anymore. Since we currently com-
pute some diagnostics using variables from both IFS and NEMO, we will need a

6

mechanism to concurrently compute them online for both components along the
simulation, avoiding to do it in the post-processing task.

In order to fulfill the aforementioned community needs, different I/O tools were
studied, selecting for this work the most suitable one. The XML Input/Output
Server (XIOS) [14] is an asynchronous MPI parallel I/O server that we chose to
be integrated with IFS, and as a consequence will be used in the future OpenIFS
version that will substitute IFS in EC-Earth. OpenIFS is a free licensed and
simplified version of IFS.

In addition, since NEMO is already using XIOS for outputting data, the future
version of EC-Earth, which will use OpenIFS and NEMO, will be able to compute
online diagnostics through XIOS with variables from both components at the same
time.

Therefore, the XIOS integration will fulfill all the community needs and will in-
crease the computational efficiency of IFS and will reduce the critical path by
avoiding the post-processing task. Figure 1.3 shows how the critical path will be
improved by using XIOS for IFS, OpenIFS and EC-Earth.

Figure 1.3: Optimized critical path of a basic experiment with two tasks sequen-
tially executed

1.2 Objectives

In this master’s thesis our main objective is to improve the I/O performance of IFS
to reduce the total execution time and achieve a better computational efficiency.

7

This is to get more throughput, which means to write more data in less time.

We also set the objective of reducing the critical path by removing the post-
processing devoted to perform costly operations such as GRIB to netCDF data
format conversion or diagnostics computation.

In addition, we also have the objective to increase the usability of IFS by using an
easier output configuration file compared to the current approach.

In order to achieve the objectives, we identify the following tasks:

• Perform the state-of-the-art of I/O techniques used in HPC and ESM to
identify the most appropriate approach to be used by IFS.

• Develop an integration between IFS and XIOS.

• Do a performance analysis of the development to detect potential bottle-
necks and use proper optimization techniques to finally obtain an efficient
integration.

1.3 European collaboration

We have actively worked and collaborated with two other European institutions to
perform this project: the ECMWF and the Netherlands eScience Center (NLeSC)/
Koninklijk Nederlands Meteorologisch Instituut (KNMI).

ECMWF is interested in this work because of two reasons. Although IFS is used
for the operational weather forecast using GRIB format, other departments are
interested in the new features provided by this work. This means that the IFS-
XIOS integration will be used for seasonal predictions, because they also have in
the critical path the conversion from GRIB to netCDF files. The second reason is
to make available XIOS with OpenIFS as an optional I/O scheme.

NLeSC joined us to develop future tasks that will follow up this master’s thesis
work, but they started collaborating earlier to help in some design decisions, se-
tups, etc. They are interested in the success of the whole project because will
benefit the EC-Earth consortium. Some of the involved institutions in EC-Earth

8

are: Barcelona Supercomputing Center (BSC), KNMI, Swedish Meteorological and
Hydrological Institute (SMHI), etc.

Since IFS is developed at the ECMWF, we were coordinated to use their infrastruc-
ture for development and testing: HPC machine, Git repository, issues tracking
system, support, etc.

This work will contribute on a future H2020 project.

1.4 Document organization

This document is organized as follows. In Chapter 2 we research about the current
available I/O schemes and discuss why we chose XIOS. We give an overview of
IFS, XIOS and the computing environment in Chapter 3. We continue the docu-
ment explaining the development done for the integration in Chapter 4. The next
Chapter 5 is devoted to explain the performance analysis and optimization of the
development. The computational performance of the integration is evaluated in
Chapter 6. Finally, we conclude the work in Chapter 7.

9

Chapter 2

State-of-the-art

We have presented the motivation and objectives of this project, explaining why
IFS needs a new I/O scheme that fulfills the community requeriments. In this
chapter, we will review the state-of-the-art of the I/O solutions used on HPC,
especially in the area of ESM, focusing on parallel I/O libraries and I/O servers.

In Section 2.1 we give a general overview about what is I/O and how it works
the sequential I/O. Then, in Section 2.2 we explain what is parallel I/O and the
different approaches that we can use. We also explain some well-established I/O
libraries in HPC, including MPI-IO, Hierarchical Data Format (HDF), netCDF
and Parallel I/O library (PIO). After that, in Section 2.3 we explain that there is
a particular type of parallel I/O that uses dedicated resources, which are called I/O
servers. We explain what is an I/O server and we present four different examples:
ADaptable I/O System (ADIOS), CDI with parallel I/O (CDI-pio), Climate Fast
Input/Output (CFIO) and XIOS. Finally, in Section 2.4 we compare the different
presented schemes and justify why we chose to use XIOS.

2.1 I/O overview

The action of reading and writing data, commonly known as Input/Output (I/O),
is a basic and essential process of almost all HPC applications to communicate

10

with the outside world. Earth system models have traditionally performed the
I/O using sequential writing [9]. It is typically done using the Portable Operating
System Interface (POSIX) I/O Application Programming Interface (API). Figure
2.1 shows the basic layers of the I/O stack involved for reading and writing using
POSIX I/O. Functions such as open, write or close, directly work with files.

In parallel applications, the sequential I/O implies to send all data to the master
process, which performs the sequential write. In the meantime, the rest of the
processes wait until this process is completed.

Figure 2.1: Sequential I/O stack traditionally used by HPC applications (Repro-
duced from [15])

Sequential I/O was fine several years ago because the amount of data was not too
high and storage systems were able to deal with it. However, as we explained in
the introduction Chapter 1, the increase of computing power enables the capacity
to execute more accurate simulations, which leads to generate more output data.
In addition, the path to exascale will accentuate this problem. This means that
current sequential I/O schemes are not useful anymore, even if they use optimized
techniques, because it will not scale. Therefore, applications need to use parallel
I/O.

A good example of an efficient I/O optimization changing the sequential scheme
to a parallel one is in the Community Atmosphere Model (CAM) [16]. They
published this work in 2008, 10 years ago, which indicates that they were already
aware of the inherent problems of the sequential I/O for parallel applications. This
work proved that the transition from sequential to parallel I/O gives really good
improvements in terms of computational performance.

However, the need of more computational power led to use much more processors

11

in CAM, and for this reason, the parallel I/O scheme introduced in 2008, was
replaced some years ago by the PIO library, which is explained more in detail in
Section 2.2.

2.2 Parallel I/O

In order to increase the scalability of Earth system models, the current feasible
approach is to make the I/O scalable as well, that is, use parallel I/O.

Parallel I/O is the ability to perform multiple input/output operations at the
same time, such as simultaneously writing several files or concurrently writing
into different regions of the same file from different processes.

Applying this concept to Earth system models [17], the main idea is to involve
all the processes of a model so that they balance or re-distribute the data to be
output from subdomains in a way that writing is efficiently performed and as fast
as possible.

To this aim, there are two strategies commonly adopted [18]:

• Writing multiple files: data is output among several files (as many as MPI
tasks). This means that each MPI task is responsible of its subdomain.
The main advantage is that is very scalable, although in some file systems
the creation of a lot of files can be a problem. In addition, post-processing
is needed to joint files. On the left side of Figure 2.2 there is a scheme
showing how each process writes its own file. As said, this can be done using
the POSIX I/O API, or using MPI-IO point-to-point operations (explained
later on in this section).

• Writing one file: data is output into one single file. In this case, no post-
processing for joining files is needed, but the scalability is more difficult to
achieve, which depends on the implementation and the number of MPI pro-
cesses used, mainly due to overheads caused by conflicted I/O operations
from all processes. On the right side of Figure 2.2 there is a scheme showing

12

how all processes write into a shared file using MPI-IO collective operations.

Figure 2.2: Common writing strategies: on the left side the strategy for writing
multiple files and on the right side the strategy for writing one file (Reproduced
from [18])

Nevertheless, the two previous strategies could not be suitable to scale models
using a huge number of processes. Therefore, a feasible solution could be to use
an intermediate solution. That is, writing a file for a subset of processes. Figure
2.3 shows a scheme of this intermediate strategy.

Figure 2.3: Intermediate I/O strategy: processes are grouped in subsets to share
a file (Reproduced from [18])

Since POSIX I/O can not offer the possibility to implement parallel I/O, it is
necessary to use a library able to offer this feature. In this case, the most popular
one is MPI-IO. It is not easy to use and as a consequence has not been adopted
by many applications. However, it is indirectly the most used parallel I/O library,

13

because many other user-friendly high-level libraries are built on top of MPI-IO,
such as netCDF or HDF. Since these high-level libraries are easy to use, they are
commonly used for Earth system models.

This new approach to perform I/O changes the I/O stack by adding two new layers
[19] as can be seen in Figure 2.4. In this new stack, applications use high-level
libraries that usually offer a powerful API for efficiently organizing complex data
objects with the corresponding metadata. At the same time, high-level libraries
use I/O middlewares to efficiently store data into storage systems through parallel
file systems.

Figure 2.4: Parallel I/O stack adopted by HPC applications (Reproduced from
[15])

In the following points we review some well-established I/O libraries in HPC ap-
plications [20][21], i.e., MPI-IO for the I/O middleware layer, and HDF5, netCDF
and PIO for the high-level I/O library layer:

• MPI-IO: the MPI 2.0 standard [22] was extended by adding specific parallel
I/O functionality. Since POSIX was designed for serial I/O, MPI-IO [15]
aims to offer a high-level interface to split the reading and writing of data
across several processes taking advantage of MPI messages. It is possible
to use both individual or collective I/O operations. The interface syntax is
based on MPI subroutines.

Therefore, MPI-IO [23] allows to read and write a normal file from many
different processes, but ensuring that the file will have the structure as if it
is written using the standard I/O calls. Each MPI process has a description

14

about how its data arrays are mapped to the proper place of the file. MPI-IO
has several advantages: processes can use individual or shared file pointers,
non-contiguous access of files and memory (using MPI Datatypes), explicit
offsets, etc. Regarding the file data representation, there are three types:
native, internal and external32.

Currently, many different I/O libraries are built upon MPI-IO, because it
offers a good performance and deals with low-level implementation details.
The performance can be tuned by setting a lot of different parameters be-
cause each HPC machine has its own hardware and software configuration.

• HDF5: the Hierarchical Data Format (HDF) [24] is a set of tools, libraries
and file formats that are used to manage and store large amounts of data. It
can also represent very complex data objects and a wide variety of metadata.
In addition, it is able to store multi-dimensional arrays. HDF5 is the latest
version.

• NetCDF: the Network Common Data Format (netCDF) [25][26] is a set of
software libraries and self-describing, machine-independent data formats that
support the creation, access, and sharing of array-oriented scientific data.

The latest version is netCDF4 which can use HDF5 file format for stor-
ing data, but it is also compatible with the previous (and first) version of
netCDF, which is netCDF3. Regarding the parallel use of netCDF, which
by default uses serial writing, there are two mechanisms:

– For writing in netCDF3 file format, it is necessary to use Parallel-
netCDF (PnetCDF), built upon MPI-IO.

– For writing in netCDF4 file format, it is necessary to use the parallel
functionality of HDF5, built upon MPI-IO.

• PIO: the Parallel I/O library (PIO) [27][28][29] has been developed to im-
prove the ability of component models of the Community Earth System
Model (CESM) to perform I/O. For example, the atmospheric component
is CAM, previously used as an example in Section 2.1. However, the PIO
interface is generic enough to be used by other applications, not necessarily

15

Earth system models. Note that the PIO library is an independent software
with regard the CDI-pio library, explained in Section 2.3.2.

PIO is mainly focused on writing data in netCDF file format, although is
able to write in binary. It doesn’t implement its own I/O schemes, but it
uses other libraries: MPI-IO, netCDF3, netCDF4 and PnetCDF. Its optimal
I/O scheme can vary significantly depending on the HPC platform.

Through a simple interface, PIO is able to use a different I/O decomposition
with regard the computational decomposition. This implies that internally,
data has to be re-distributed between processes to perform the output. Fig-
ure 2.5 shows an example of two different decomposition. This has the ad-
vantage of tuning the I/O decomposition for a specific platform, but without
changing the computational decomposition of the model.

Figure 2.5: Example of a 2D array that uses 3 processes for the computational
decomposition and 2 processes for the I/O decomposition (Reproduced from [27])

16

2.3 I/O servers

In order to keep improving the performance and the scalability of Earth System
models, it is possible to go one step further and use some nodes exclusively ded-
icated to I/O. The model processes do not need to deal with the I/O, they only
have to send the data to I/O nodes. This has the advantage that they can continue
with the simulation without spending time outputting data.

This approach is known as I/O servers [28], which are the responsible of writing
data into the storage system in order to theoretically hide the disks latency from
the model processes and use as efficiently as possible the network bandwidth by
using techniques such as aggregation.

There are different strategies to send data from model processes to I/O servers.
Communication is typically done through MPI, by using synchronous or asyn-
chronous operations. Furthermore, I/O servers can have different communication
patterns. One I/O server could collect a subset of subdomains, i.e., each I/O server
aggregates local data from a subset of subdomains for all variables. Or one I/O
server could collect a subset of global variables, i.e., each I/O server aggregates
local data from all subdomains (global domain) for a subset of variables.

I/O servers need to be configured by specifying many different parameters: how to
write data, the data format, which I/O method internally use, the number of fields
to be written and their dimensions, the data decomposition used in the model, etc.
This can be hardcoded, done using an external configuration file which is parsed
at runtime, and/or using an API, because some variables are dynamically set up
on the model during runtime.

In addition, some servers can have extra functionality such as online post-processing,
data conversion or data compression. If users want to use it, they simply have to
set up the proper parameters in the configuration file (or through the API).

Figure 2.6 shows a scheme about I/O servers, where there are the model processes
communicated with I/O servers. I/O servers, before writing data into the storage
system, can perform online post-processing while model processes continue with
the simulation.

17

Figure 2.6: Overview of an I/O server. On the left there are the model processes
which send data to the I/O servers (orange). Then, while models processes keep
running the simulation, I/O servers write data into the storage system

In the following sections we will review some of the I/O servers available in the
literature. All of them are designed for ESM, except ADIOS that is thought to be
generic to any kind of HPC application.

2.3.1 ADIOS

The ADaptable I/O System (ADIOS) [30][31][32] is an I/O system that has proved
to offer high performance in I/O operations. Its main feature is componentization,
which basically abstracts the scientific code from the selection and implementation
of I/O routines.

The configuration is done using an Extensible Markup Language (XML) file which
describes the type of I/O that must be performed, offering several possibilities:
synchronous or collective MPI-IO; parallel HDF5; parallel netCDF; asynchronous
communication using Decoupled and Asynchronous Remote Transfers (DART) or
DataTap methods; or no output.

18

ADIOS has an API to be called from the scientific code, which does not have to
be modified in case of changing the I/O method. In order to change the method,
it is done through the XML file, which is parsed at the beginning of the execu-
tion. Thus, re-compilation is not needed, only re-execution. Figure 2.7 shows an
overview of the ADIOS API where different I/O methods can be chosen.

Figure 2.7: Overview of the ADIOS API architecture (Reproduced from [32])

Furthermore, it offers a feature called Data Transformations which are devoted
to change the format and/or encoding of data to improve the performance of
read/write operations and reduce the storage space. Figure 2.8 shows how the
transform plugins are integrated in the ADIOS framework.

19

Figure 2.8: Overview of the ADIOS transform framework (Reproduced from [31])

2.3.2 CDI-pio

The Climate Data Interface (CDI) [28][33][34] is an I/O library which provides a
machine and format independent interface for reading and writing data stored in
scientific formats typically adopted in NWP and climate modelling. It is being
jointly developed by the Max-Planck-Institute for Meteorology (MPG)) and the
German Climate Computing Centre (DKRZ).

CDI used to support multi-thread, single-process scheme, but this is not scalable to
current systems, where it is needed massive parallelism using distributed memory.
CDI with parallel I/O (CDI-pio) addresses this issue implementing parallel writing
over the serial CDI. It uses dedicated I/O processes asynchronously communicated
to write data into the storage system. Furthermore, CDI-pio has support for both
GRIB and netCDF formats. It offers an efficient data compression to considerably
reduce the output data volume.

Internally, CDI-pio uses MPI-IO, PnetCDF/HDF5, POSIX I/O or C stdio depend-
ing on the configuration. In Figure 2.9 there is a comparison of the architectures
between serial CDI and CDI-pio.

20

Figure 2.9: Comparison between serial CDI (on the left) and CDI-pio (on the
right). Note the highlighted words in orange to represent the parallel extensions
(Reproduced from [34])

One interesting point in CDI-pio is that I/O servers gather full fields, which means
that an I/O server is in charge of gathering a subset of full-domain fields.

2.3.3 CFIO

The Climate Fast Input/Output (CFIO) library [35] provides a simple method
to overlap the I/O phase with the computational phase automatically to reduce
the execution time of high-resolution climate models. CFIO provides a similar
interface to PnetCDF to minimize the source code modifications.

CFIO overlaps I/O with computing by implementing a client-server mechanism to
deal with I/O forwarding and handling of I/O requests. It is possible to choose
the number of servers in order to balance the time needed by computing processes
and the time needed by the I/O processes to write data. Internally, CFIO uses
PnetCDF to write data to disk through the parallel file system. In addition, it is
possible to choose the type of communication between client and server processes:
synchronous or asynchronous. They report that in runs using a lot of processors,
the execution time is smaller using synchronous communications. In Figure 2.10

21

there is an overview of the architecture.

Figure 2.10: Overview of the CFIO architecture (Reproduced from [35])

2.3.4 XIOS

The XML Input/Output Server (XIOS) [14][28][34][36] is an asynchronous MPI
parallel I/O server that is used by Earth system models to avoid contention in the
I/O. It is developed at the Institute Pierre Simon Laplace (IPSL). Since XIOS is
the I/O server used in this project, it is explained in detail in Section 3.2.

Nevertheless, it is interesting to give an overview of XIOS Interface for Arpege-
climat and Surfex (XIAS) [37], which is a software specifically developed for Action
de Recherche Petite Echelle Grande Echelle (Arpege) (atmospheric model) and
Surface Externalisée (SURFEX) (surface model) so that both models can write
data using XIOS. Therefore, XIAS is an interface to handle all the needed calls to
use XIOS by implementing a thin software layer above SURFEX-provided routines.
Then, since XIAS is implemented in SURFEX routines, Arpege uses XIAS through
SURFEX using an inheritance mechanism.

The reason to research about XIAS is that Arpege and IFS are in essence the
same atmospheric model, with the difference that Arpege is modified by MF to

22

fulfill their specific needs. We contacted with the XIAS developers asking more
information, but they told us that XIAS is not suitable for IFS, because its design
was strongly influenced by SURFEX, so the interface should be re-designed to be
used by IFS. For this reason we discarded to re-use XIAS.

2.4 Discussion: comparison and choice

We have reviewed several options in the literature that could potentially be inte-
grated with IFS to solve the I/O bottleneck. Although we have not explained too
much about XIOS in Section 2.3.4 (we said that is explained in detail in Section
3.2), we can make a comparison between the different schemes because we already
know their main features.

In the motivation Section 1.1 of this project, we have clearly explained the specific
needs that we have, so all of them should be fulfilled by one of the I/O schemes
that we have presented.

If we focus on the execution time of the simulation, as well as only outputting data,
we think that it is not clear which could be the fastest I/O server, because the
respective authors report good performance, and I/O is something very machine-
dependent and even context-dependent. For example, you could be running your
scalability tests in a moment where there are other users that are executing I/O-
intense applications. This would speed down your tests.

Nevertheless, there are other aspects that influence our choice. In both IFS stan-
dalone and IFS within EC-Earth the post-processing phase is needed, so if we can
move this work to the I/O servers we can save a lot of resources and time. In
the current critical path of an experiment, after the simulation we have to write
temporary files that will be read in the post-processing phase to be then written
again once they are processed. With online post-processing, after the simulation
we would be able to directly write the definitive files. I/O servers such as CDI-pio
and CFIO do not offer online post-processing. In ADIOS, there is the possibil-
ity to add a plugin to transform data, but in case of being possible, it would be

23

needed a lot of extra work to add those post-processing functionality that in XIOS
is already available.

Furthermore, EC-Earth contributes with climate simulations to the CMIP project,
where data organization must follow an strict standard that XIOS is aware. De-
spite the fact that the other I/O servers can write in netCDF, they do not take
into account the CMIP standard.

Last but not least, as we exposed in the introduction, in EC-Earth we have to
calculate diagnostics that are derived using fields from both IFS and NEMO. Since
NEMO is already using XIOS, if IFS was using XIOS as well, we would be able to
calculate these diagnostics online instead of doing it at the post-processing phase.
ADIOS may not support online diagnostics using variables from more than one
component. However, if it was possible, we would have much more work, because
it would be needed to integrate ADIOS with IFS and NEMO.

Therefore, according to what we need and what I/O servers offer, it is quite ir-
refutable that we have to choose XIOS.

24

Chapter 3

Context

In this chapter we will explain the two main components used in this project. In
Section 3.1 we give an overview of the scientific part of IFS and a more detailed
explanation about the computational part, including the new octahedral reduced
Gaussian grid, the parallelization and domain decomposition, the data structures,
the two available output schemes and two environment tools to use IFS. In Section
3.2 we explain the main features of XIOS and how it is used. We give an overview
of all the XIOS elements: axis, domain, grid, field, file, filters and performance
variables. Finally, in Section 3.3 we explain the main characteristics of the Cray
XC40 supercomputer that we use to develop this project.

3.1 IFS description

We will mainly focus on the technical and computational part of IFS, and only
briefly describing the scientific part.

3.1.1 Brief overview

One of the most advanced NWP models is the Integrated Forecast System (IFS).
IFS is an operational global meteorological forecasting model and data assimilation

25

system developed and maintained by ECMWF.

IFS [38][39][40] is a spectral model that discretises the Euler equations of motion,
resolving flow features to approximately 4-6 grid-cells at the nominal resolution.
The subgrid-scale features and unresolved processes are described by atmospheric
physics parametrizations. There are many different unresolved physical processes
in the atmosphere, such as radiation, clouds and subgrid turbulent motions. In
Figure 3.1 there is an overview of the different physical processes.

Figure 3.1: Overview of the unresolved physical processes in the atmosphere (Re-
produced from [39])

The dynamical core of IFS is hydrostatic, two-time-level, semi-implicit, semi-
Lagrangian and applies spectral transforms between grid-point space (where the
physical parametrizations and advection are calculated) and spectral space. In the
vertical the model is discretised using a finite-element scheme. A reduced Gaussian
grid is used in the horizontal.

In order to simulate more accurate forecasts, it is possible to use other components
of the Earth system. For example, IFS can be run coupled with the community
ocean model NEMO or with the WAve Model (WAM).

26

3.1.2 Octahedral reduced Gaussian grid

Although IFS is a spectral model, we have mentioned that part of the processes are
resolved in grid-point space. Grids are a fundamental part of Earth system models,
not only due to scientific reasons, but also due to computational performance.

Each one of the grid-points have an associated latitude and longitude to place them
on Earth. Latitude is the geographic coordinate that specifies the north–south po-
sition of a point on the Earth’s surface, while longitude is the geographic coordinate
that specifies the east-west position of a point on the Earth’s surface. Figure 3.2
shows the concept of latitude and longitude, which will be needed to set up XIOS.

Figure 3.2: Concept of latitude and longitude

One field of study is the shape of the grid. There are different proposals in the
literature to find a good distribution of grid-point over the Earth. The three basic
grids used in NWP are [41]:

• Rectangular or regular Gaussian

• Triangular

• Hexagonal

27

IFS used to use a regular Gaussian grid, but this type of grids suffer from ”the
polar problem” where density of grid-points in the poles is huge, since all latitudes
have the same number of longitude points. To solve this, they later introduced
the reduced Gaussian grid, where the number of longitude points for each latitude
decreases when closer to the poles. Figure 3.3 shows the difference between a reg-
ular Gaussian grid (left) and a reduced Gaussian grid (right).

Figure 3.3: Comparison between a regular Gaussian grid (left) and a reduced
Gaussian grid (right) (Adapted from [42])

In order to keep improving the grid, IFS is currently using a new grid called
octahedral reduced Gaussian grid [42][43]. It brings significant benefits in terms
of computational efficiency and effective resolution.

The new method to generate the octahedral reduced Gaussian grid, optimizes the
total number of points around the globe and introduces a regular reduction of the
number of points per latitude circle towards the poles. The process to generate
this grid is illustrated in Figure 3.4. The idea is to divide each hemisphere of the
globe into 4 quarters, where each quarter corresponds to one face of an octahedron.
Then, start with 20 points, five per quarter at the Gaussian latitude closest to the
pole. After that, add one point per quarter for each new Gaussian latitude towards
the equator (this implies four additional points per each Gaussian latitude). Due
to Earth’s curvature, the distance between grid-points of a latitude (dx), varies
with regard to other latitudes’ dx distance.

28

Figure 3.4: Process to generate an octahedral reduced Gaussian grid (Reproduced
from [43])

Figure 3.5 shows a resolution comparison between the reduced Gaussian grid (left)
and the octahedral reduced Gaussian grid (right). The octahedral grid has a lo-
cally more uniform dual-mesh resolution than the reduced grid.

Figure 3.5: Dual resolution comparison. The octahedral grid (right) has a locally
more uniform dual-mesh resolution than the reduced grid (left) (Adapted from
[43])

3.1.3 Parallelization and domain decomposition

A meteorological model such as IFS [44] that has 3D fields, may have a grid-point
structure such as the one in the Code snippet 3.1. There are 3 dimensions for all

29

fields.

1 REAL Model Data(1:Horiz i, 1:Horiz j, 1:Levels k, 1:Fields)

Code snippet 3.1: Typical data structure for 3D fields

Since IFS is an MPI+Open Multi-Processing (OpenMP) hybrid model and used to
run in vector processors, ECMWF designed a more sophisticated data structure to
be efficiently parallelized. Code snippet 3.2 shows the current data structure used
in IFS. The idea of the current parallelization is that fields are processed using a
blocking technique, where the first NPROMA dimension can be adjusted by the
user at run-time to fit the memory cache. Depending on the size of NPROMA,
there will be more or less NGPBLKS blocks. The 2D i-j horizontal dimension is
transformed using these two new dimensions.

1 REAL Model Data(1:NPROMA, 1:NFLEVG, 1:NFIELDS, 1:NGPBLKS)

Code snippet 3.2: Data structure used in IFS

The other two dimensions remain the same, which are NFLEVG (or vertical di-
mension) and NFIELDS (the number of fields). However, note that these two
dimensions now are not in the outter dimensions of the array. This implies that
for a given NGPBLKS block, all fields are processed. Code snippet 3.3 shows the
OpenMP parallelization applied in IFS for its data arrays. In addition, Figure 3.6
shows the NPROMA blocking used in IFS.

30

1 !$OMP DO SCHEDULE(STATIC)
2 DO iblock = 1, NGPBLKS
3 DO ifld = 1, NFIELDS
4 DO ilvl = 1, NFLEVG
5 DO i = 1, NPROMA
6 Model Data(i, ilvl, ifld, iblock)
7 END DO
8 END DO
9 END DO

10 END DO
11 !$OMP END DO

Code snippet 3.3: OpenMP parallelization used in IFS

Figure 3.6: NPROMA blocking strategy used for IFS data arrays. For each
NPROMA block, IFS iterates over all elements (NPROMA) of each vertical level
(NFLEVG) and for each field (NFIELDS)

The details of the IFS intra-node shared-memory parallelization are very important
to understand how the integration with XIOS will be done.

31

On the other hand, IFS also uses inter-node distributed-memory parallelization
through MPI. First of all, it is important to briefly overview the four major al-
gorithmic steps of IFS to better understand the strategy followed in the paral-
lelization: grid-point computations, spectral computations, Fourier transform and
Legendre transform. Figure 3.7 shows an overview of these four algorithmic steps
in a single time step of IFS. The blocks in the centre of the figure represent the
data decomposition used at any step within the time step. The idea of using
this approach is that only in the transpositions there is data movement between
MPI processes, thus in the computation steps all dependencies are satisfied, so no
further communications are needed (there is an exception in the grid-point calcu-
lations where a few communications are performed for the semi-Lagrangian phase).

32

Figure 3.7: Major algorithmic steps in an IFS time step. The blocks in the centre
are the different data decomposition used at each step (Reproduced from [44])

33

We will only focus on the grid-point computations step because XIOS requires to
output data in grid-point state.

The grid-point dynamics and physics computation only has vertical dependencies,
so all grid columns can be considered independent of each other, allowing an
arbitrary distribution of columns between MPI processes.

The domain decomposition has been considerably improved since the beginning
in order to have the maximum workload balance between MPI processes. There
are several aspects that determine a good data decomposition. For example, as
we mentioned, in reduced Gaussian grids we have less grid-point longitudes in lat-
itudes close to poles, so it can become a source of imbalance. Or for example, the
subdomains’ shape should be as squarer as possible to minimize the communica-
tions’ size of the semi-Lagrangian phase.

In order to achieve a good workload balance, IFS can use two decomposition
strategies, the 2D scheme, the original strategy, and the EQ REGIONS scheme,
the current default strategy. In Table 3.1 there are the most basic variables to
describe the type of decomposition.

Variable Description
NPROC Total number of processors to be used

LEQ REGIONS Logical controlling use of EQ REGIONS partitioning
NPRGPNS # Proc. in the North-South direction (LEQ REGIONS=F)
NPRGPEW # Proc. in the East-West direction (LEQ REGIONS=F)

LSPLIT Allows the splitting of latitude rows

Table 3.1: Variables to control the grid-point decomposition (Adapted from [44])

Through an example we will explain how is performed the 2D scheme. Later on, we
will show the benefit of using the EQ REGIONS scheme with a graphical example.

Our example has 6 processors and we are using a reduced Gaussian grid with 19
latitudes. We could set up the decomposition variables as it is shown in Code
snippet 3.4 to have a good distribution. Figure 3.8 illustrates how the calculation
of the decomposition is carried out in two steps.

34

1 NPROC = 6
2 LEQ REGIONS = .FALSE.
3 NPRGPNS = 3
4 NPRGPEW = 2
5 LSPLIT = .TRUE.

Code snippet 3.4: Basic decomposition variables

Figure 3.8: Example of a grid-point decomposition using 6 processors. On the left,
the first step with the North-South partitioning and on the right, the second step
with the East-West partitioning (Reproduced from [44])

In the first step, the total number of grid-points is split as equally as possible in the
North-South direction (the ”A” set), i.e., between the number of NPRGPNS sets.
Note that there are latitudes shared between ”A” sets due to LSPLIT=.TRUE..
This introduces a difficulty in the addressing of some arrays. This is taken into
account with some additional variables used to address the subdomains. There is
a more complete list in Table A.1 of Appendix A.

35

In the second step, the number of grid-points of each one of the ”A” sets are split
as equal as possible in the East-West direction (the ”B” set), i.e., between the
number of NPRGPEW sets.

According to Figure 3.8, in our example there will be two processors with 26 grid-
points and 4 processors with 25 grid-points. As we said, in Appendix A there is
a more complete list of the variables used to address the global domain and local
subdomains. In addition, Figures A.1 and A.2 of Appendix A graphically show
the usage of the decomposition variables based on our example.

Although the example is really small, it is even visible in Figure 3.8 that the shape
of the subdomains it not square. Figure 3.9 shows an example of the 2D scheme
partitioning using 512 MPI processes. It is quite obvious that using the same
amount of ”B” sets for all ”A” sets is not a good startegy.

Figure 3.9: 2D scheme partitioning using 512 MPI processes (Reproduced from
[44])

For this reason, ECMWF introduced the EQ REGIONS scheme, where ”A” sets
close to poles have less ”B” sets (Figure 3.10). This results in squarer partitions
of equal area and small diameter.

36

Figure 3.10: EQ REGIONS scheme partitioning using 512 MPI processes (Repro-
duced from [44])

Finally, note that concepts related to grids and domain decomposition is often
called the geometry of the model. From now on, we will indistinctly use all terms.

3.1.4 Data structures

In IFS there are some major data structures [44] to store all data for spectral and
grid-point fields. For spectral data, IFS uses the YOMSP module, in which the
arrays SPA3 and SPA2 hold the 3D and 2D state variable spectral fields respec-
tively.

Nevertheless, as we said we will focus on grid-point fields. There are two core
data-structures: GMV and GFL.

The GMV structure contains prognostic variables involved in the semi-implicit:
wind components, temperature, surface pressure, vorticity, etc. All GMV fields
have a spectral representation.

The is a quite fixed structure which is supposed to have almost no modification.
Data arrays are accessed using pointers, as many as GMV fields. In addition, there
can be 3D and 2D fields: the 3D ones are stored in the GMV array and the 2D
ones in the GMVS array. GMV fields do not have attributes.

37

On the other hand, the GFL structure contains the rest of variables: specific
humidity, snow, rain, ozone, etc. Unlike GMV, GFL structure is much more
flexible and can be easily extended with additional fields. It only contains 3D
grid-points fields that may have a spectral representation. Data is stored in array
GFL.

One of the main characteristics are attributes. They are used to govern the be-
haviour of the individual fields of the GFL structure. The idea is to loop over
all fields in GFL and perform the action defined by the setting of the appropriate
attribute. However, it is still possible to treat fields separately through individual
pointers.

For both GMV and GFL structures there are more arrays than the mentioned ones,
however, we will not explain them since they are not necessary for this project.

3.1.5 IFS output schemes

IFS has two different output schemes, one better than the other, since one was
replaced by the other to improve the throughput:

• Sequential output: this is the slowest one, since the output is sequentially
performed by the master process. It performs a gather of all subdomains
from the rest of processes, to build the global domain and write it into the
storage system. This type of output is not scalable, so it has an important
negative impact in the performance of the model. This output scheme is the
only available in the IFS version used in EC-Earth, so in huge simulations
we are suffering a considerable slow down.

• MF I/O server: the Météo-France I/O server was introduced in IFS to avoid
the low performance of the sequential output scheme. It uses the concept of
dedicated processes as servers to perform the I/O, such as XIOS. Although
it offers really good throughput, there are some issues: it does not perform
post-processing (done by FullPos), it writes data using GRIB format and it
is not available in OpenIFS (future version for EC-Earth).

38

3.1.6 Environment tools

In order to run IFS simulations it is necessary to create and manage an experiment.
There are two basic tools that we have to use: prepIFS and XCdp.

PrepIFS [45] is a meteorological workflow manager to prepare research experiments
using IFS at ECMWF. It is possible to set up a lot of different parameters, both
scientific and computational. For our purposes, we used as base an experiment
with default values, only changing basic parameters such as length of the forecast,
number of processes, type of grid, etc. In Figure 3.11 there is a snapshot of prepIFS.

Figure 3.11: Snapshot of prepIFS showing some computational parameters of the
experiment b0s8

Furthermore, in prepIFS we have to specify the Git repository of our development.
It expects two different repositories, one for the source code and the other one for
the scripts.

Once the experiment’s setup is done, prepIFS is able to submit the experiment,

39

which is managed with another tool called XCdp.

XCdp is a graphic interface to make use of the Supervisor Monitor Scheduler
(SMS), which is in charge of submitting batch jobs to different hosts. In Figure
3.12 there is a snapshot of the XCdp tool. The forecast task (model) of the exper-
iment b0s8 is in green, which means that is currently running.

Figure 3.12: Snapshot of XCdp showing some tasks of the experiment b0s8

It is also possible to individually set up variables for each task of XCdp. These
variables need to be between percentage symbols: %variable name%. We have
used this strategy for some XIOS variables, such as the number of servers, server
or attached mode, etc., because it is not possible to set it up in prepIFS.

40

3.2 XIOS description

3.2.1 Overview

The XML Input/Output Server (XIOS) [14][28][34][36][46][47] is an asynchronous
MPI parallel I/O server that is used by Earth system models to avoid contention
in the I/O. It focuses on offering high performance to achieve very high scalability
with support for high-resolution output. XIOS is developed by the IPSL with
an Open Source CEA CNRS INRIA Logiciel Libre (CeCILL) License. It has the
following features:

• Usability in the definition and management of the I/O with a user-friendly
XML configuration file.

• Avoid the I/O performance issue with dedicated parallel and asynchronous
servers.

• Post-processing of fields can be performed online using an internal parallel
workflow and dataflow.

XIOS is especially targeted to Earth system models with these characteristics:

• Coupled models

• Long simulations

• A lot of data is generated

• Contribute to the CMIP project

Interestingly, all the previous points (except the last one that depends on the
purpose of the model) are inherent in climate models, such as EC-Earth. They are
made of several coupled components that perform really long simulations. This
implies to generate a lot of data that in some cases is used to contribute to the
CMIP project.

In Figure 3.13 there is an overview of the schematic architecture used in XIOS.
Each one of the model processes run its own XIOS client using the XIOS API. This
is part of the client side, i.e., it is run on the model processes. Then, XIOS clients

41

communicate data to XIOS servers using asynchronous MPI messages. They are
run on independent nodes with regard to the model nodes. This is the server side,
which uses its own MPI communicator to perform online post-processing over the
received data. After that, XIOS servers can write post-processed data into the
storage system using two different strategies: one single file or multiple files (one
per XIOS server). The whole configuration is described in the iodef.xml file. In
Figure 3.13 is used the one single file strategy.

Figure 3.13: Overview of the XIOS architecture. Model processes are communi-
cated with the XIOS servers using asynchronous MPI messages. All the framework
is configured using an XML file (Reproduced from [14])

Furthermore, although Figure 3.13 shows an XIOS configuration using the server
mode (dedicated I/O processes), it is also possible to use the client mode. In
client mode, XIOS servers are not used and as a consequence, XIOS clients are the
responsible of doing online post-processing and writing data into the storage sys-
tem, either using one single file or multiple files. This implies that model processes
cannot continue with the simulation until they have finished post-processing and
data writing.

Regarding the aggregation strategy used to send data from clients to servers, XIOS
re-distributes clients’ data between servers as evenly as possible to use an optimal

42

balance. Figure 3.14 illustrates an small example of 6 clients and 3 servers, where
data is re-distributed so that servers have a proportional amount of data.

Figure 3.14: Example of XIOS data distribution between clients and servers (Re-
produced from [14])

3.2.2 Concept

The philosophy of XIOS is really simple: at each time step the model can expose
its data to XIOS using just one subroutine. But first, it is needed to update the
calendar of XIOS to inform which is the current time step of the model. This is
done using the subroutine of the Code snippet 3.5.

1 CALL xios update timestep(ts)

Code snippet 3.5: XIOS subroutine to update the calendar

Then it is possible to use the respective subroutines to read (Code snippet 3.6)
or write (Code snippet 3.7) data. They must be called for each one of the model
variables or fields that we want to read or write.

1 CALL xios recv field(”field id”,field)

Code snippet 3.6: XIOS subroutine to read a field

43

1 CALL xios send field(”field id”, field out)

Code snippet 3.7: XIOS subroutine to write a field

Both subroutines have two arguments, the first one is the identifier of the variable
or field and the second one is the data array, which can have different dimensions
depending on how was defined.

Since the approach of XIOS is to call these two subroutines at each time step,
there could be some situations where this is not necessary. For example, if a field
is disabled in the XML configuration file so that it will not be output, we could
avoid to send data that will not be used. The Code snippet 3.8 shows how to use
the function that queries if a field is used in the simulation.

1 IF (xios field is active(”field id”)) THEN
2 CALL xios send field(”field id”, field out)
3 ENDIF

Code snippet 3.8: XIOS subroutine to query if a field is active

There is another similar situation: if a field is not written, but it is used to cal-
culate a diagnostic. In this case if the sampling frequency to post-process the
diagnostic is lower than the time step frequency, in some time steps the data of
the field is not needed. Therefore, we could avoid to send data that will not be
used. We can use the optional second argument of the previous function setting it
up to true. The function of the Code snippet 3.9 queries if a field is active or not
in the current time step.

1 xios field is active(”field id”, .true.)

Code snippet 3.9: XIOS subroutine to query if a field is active in the current
time step

Alternatively, we can set the field attribute check if active to true so that XIOS

44

internally will check if a field is active before sending any data. Code snippet 3.10
shows how to do it. It is equivalent to use the function of the Code snippet 3.9.

1 <field definition>
2 <field id=”field id” grid ref=”grid id” operation=”instant” check if active=”true”

↪→ />
3 </field definition>

Code snippet 3.10: XML definition to output a field if active in the current
time step

Finally, one important aspect of the XIOS philosophy is to make the initial con-
figuration as easy as possible and posterior re-configurations to be as quick as
possible by avoiding re-compilations. This is simply achieved by changing param-
eters in the XML configuration file. Therefore, there are two types of setup that
are complemented:

• Static setup through the XML file. It is parsed at runtime at the beginning
of the execution to modify the XIOS internal workflow and the user output
definition. It follows a hierarchical approach using the inheritance concept.

• Dynamic setup through the Fortran API. It is used to modify the XML defi-
nition, or extend it. For example, the grid setup should be done dynamically
since subdomain decomposition is different according to the number of MPI
tasks and is done at model runtime.

The key point is that if the integration of XIOS is properly done, users only need
to make use of the static setup. The dynamic setup is only needed is particular
cases, probably for model developers. For example, the model internally computes
a new diagnostic that should be output through XIOS. It would be needed to make
some easy changes to send the new diagnostic data array to XIOS.

3.2.3 Initialization

There are two steps to initialize XIOS:

45

• XIOS initialization: in this step XIOS is initialized, the XML is parsed and
MPI may be initialized (if it has not already been done). The MPI COMM WORLD
communicator is shared between the model and XIOS, so it is returned a lo-
cal communicator to be potentially used by the model. This is done with
the subroutine of the Code snippet 3.11.

• Context initialization: it performs the configuration of the context associ-
ated with ”context id” defined in the XML file. In addition, it opens the
scope where to put setup subroutines: geometry, calendar, fields, etc. This
is done with the subroutine of the Code snippet 3.12.

1 CALL xios initialize(”code id”, return comm=communicator)

Code snippet 3.11: Subroutine to initialize XIOS

1 CALL xios context initialize(”context id”,communicator)

Code snippet 3.12: Subroutine to initialize the XIOS context

3.2.4 Finalization

The two steps of the initialization are inversely undone:

• Context finalization: close contexts once they are processed. This is done
with the subroutine of the Code snippet 3.13.

• XIOS finalization: close servers, opened files and generate the performance
report to know if we are using enough or too servers. It also finalizes MPI
if it was initialized by XIOS. This is done with the subroutine of the Code
snippet 3.14.

1 CALL xios context finalize

Code snippet 3.13: Subroutine to finalize the XIOS context

46

1 CALL xios finalize

Code snippet 3.14: Subroutine to finalize XIOS

3.2.5 Grid definition

It is necessary to set up on XIOS the grid that is exactly used by the model and
the data decomposition for each MPI process as well.

XIOS is able to use grids of any dimension: 0D, 1D, 2D, 3D, etc. The most
commonly used is a 3D grid which is made of a 1D-vertical axis and a 2D-horizontal
domain. Axis and domain are the two elements used in XIOS to define any kind
of grid.

Axes are generally used to describe the vertical direction of a grid. There are
several variables to describe how data is stored in memory and mapped into the
grid. Figure 3.15 shows the basic variables of the axis element.

Figure 3.15: Basic variables to describe an axis (Reproduced from [14])

Domains describe the type of horizontal layer that maps the Earth’s surface. In
XIOS there are four different domains available:

• Regular Cartesian

• Curvilinear

• Reduced Gaussian

• Unstructured

47

There is an example of a reduced Gaussian domain in Figure 3.16. As mentioned,
this type of domain is the new one used in IFS.

Figure 3.16: Example of a reduced Gaussian domain (Reproduced from [14])

As in the axes, domains also have some basic variables used to describe the ge-
ometry of the global domain and local subdomains. Figure 3.17 shows the basic
variables, which for describing a regular Cartesian domain would be enough, but
for a reduced Gaussian one, we would need to set up some different and a bit more
difficult variables. This will be explained in the development Section 4.

48

Figure 3.17: Basic variables to describe the global domain and a subdomain (Re-
produced from [14])

3.2.6 Fields

Fields are typically declared through the XML file as it shows Code snippet 3.15.

1 <field definition>
2 <field id=”temp” grid ref=”grid 3d” />
3 <field id=”precip” grid ref=”grid 3d” />
4 <field id=”pressure” domain ref=”domain 2d” />
5 </field definition>

Code snippet 3.15: Example of an XML field definition

Data of fields is distributed according to the underlying grid description. They have
several attributes that will be associated in the output file: name, standard name,
unit, etc. In addition, there are other configurable parameters such as the sampling
frequency, the compression level, etc.

49

3.2.7 Files

The declaration of files is similar to the fields one, also using the XML file. In
Code snippet 3.16 there is one file defined with the name ”daily output”, contain-
ing several fields with different online post-processing options.

1 <file definition>
2 <file name=”daily output” freq output=”1d”>
3 <field field group ref=”fields 3d” operation=”average” />
4 <field group operation=”instant”>
5 <field field ref=”temp” name=”temp inst” />
6 <field field ref=”pressure” name=”pressure inst” />
7 </field group>
8 <field field ref=”pressure” operation=”average” />
9 </file>

10 </file definition>

Code snippet 3.16: Example of an XML file definition

There are some configurable parameters: write one or multiple files, compression,
netCDF version, etc.

3.2.8 Filters

An essential part of XIOS for performing online post-processing are filters. De-
pending on the type of post-processing operations, there are several different filters
that are applied to fields during runtime. Internally, filters are applied to data
fluxes with a timestamp, which represent fields. Figure 3.18 shows a workflow
with its respective fluxes and filters to generate diagnostics to be written into files.
These workflows are internally used by XIOS, users do not have to deal with them.

50

Figure 3.18: Example of a workflow applying filters to fields

There are three types of filters:

• Arithmetic filters: they combine fluxes of the same timestamp together ap-
plying arithmetic operations. Fluxes must be represented with the same
grid. Code snippet 3.17 shows how to represent the two following arithmetic
operations using the XML:

C = A + B

A ∗B

D = e−C∗D

3

• Time integration filters: they integrate a flux over a period of time. There
are different types of operations: once, instant, maximum, minimum, av-
erage and accumulate. It is possible to chain time filters with ”@”. Code
snippet 3.18 shows an example.

• Spatial filters: they are used to change the geometry of the fields. There are
different parallel operations:

– Data extraction: zooming, slicing, etc

– Global or spatial reduction: mean, max, min, etc

– Horizontal interpolation

– Polynomial vertical interpolation

– Pressure levels interpolation

– Connectivity discovery

51

– ...

Code snippet 3.19 shows a code to interpolate a regular domain to an un-
structured domain.

1 <field id=”A” />
2 <field id=”B” />
3 <field id=”C” > (A + B)/(A∗B) </field>
4 <field id=”D” > exp(−C∗this)/3 </field>

Code snippet 3.17: Example of an arithmetic filter

1 <field id=”temp” operation=”average” />
2 <field id=”temp min” field ref=”temp” operation=”minimum” />
3 <field id=”temp max” field ref=”temp” operation=”maximum” />
4
5 <file name=”monthly output” freq output=”1mo” >
6 <field name=”ave daily min” operation=”average” freq op=”1d”> @temp min </

↪→ field>
7 <field name=”ave daily max” operation=”average” freq op=”1d”> @temp max </

↪→ field>
8 <field name=”min daily ave” operation=”minimum” freq op=”1d”> @temp </

↪→ field>
9 <field name=”max daily ave” operation=”maximum” freq op=”1d”> @temp </

↪→ field>
10 </file>

Code snippet 3.18: Example of a time integration filter

52

1 <field id=”temp” grid ref=”grid regular” />
2 <field id=”new temp” field ref=”temp” grid ref=”grid unstructured” />
3
4 <axis id=”vert axis” n glo=”100” />
5 <domain id=”regular” ni glo=”360” nj glo=”180” type=”rectilinear” />
6 <domain id=”unstructured” ni glo=”10000” type=”unstructured” />
7
8 <grid id=”grid regular”>
9 <domain domain ref=”regular” />

10 <axis axis ref=”vert axis” />
11 </grid>
12
13 <grid id=”grid unstructured”>
14 <domain domain ref=”unstructured”>
15 <interpolate domain />
16 </domain>
17 <axis axis ref=”vert axis” />
18 </grid>

Code snippet 3.19: Example of a spatial filter

3.2.9 Performance tuning

At the end of the execution, XIOS generates individual performance reports for
all clients and servers to know details about memory consumption and different
execution times (total, waiting, ratio, etc).

There are different options to tune the performance of XIOS:

• Test the two possible run modes: attached mode or server mode. Theoret-
ically, server mode should give more performance, but additional computa-
tional resources are needed.

• Test the two possible writing modes: single file or multiple files. Theoreti-
cally, multiple files should give more performance due to higher scalability,
but post-processing to merge all files is needed.

• Test different values for some memory buffer parameters.

53

3.2.10 CMIP

Some climate models are tuned to perform simulations that will contribute to the
CMIP project. The Coupled Model Intercomparison Project (CMIP) [13][48][49]
is a standard experimental protocol for studying the output of coupled AOGCMs.
The ongoing version is the sixth, known as CMIP6. One of the requisites is that
data must follow a very strict standard, so almost all models need to post-process
data to fulfill the standard. This process is known as Climate Model Output
Rewriter (CMOR) post-processing or CMORization.

As we mentioned, XIOS is able to ideally produce netCDF files according to the
CMIP6 data request, being ready to be distributed and published. However, this
is not automatically done, so a minimum user effort is needed to write the proper
XML configuration file.

This XIOS feature avoids (or at least minimize) to perform the costly and slow
CMORization.

3.3 Computing environment

The ECMWF’s High Performance Computing Facility (HPCF) [50] is a Cray sys-
tem that has two identical Cray XC40 clusters. They have their own storage, but
with equal access to the high performance working storage of the other cluster.
This cross-connection of storage allows most of the benefits of having one very large
system, but dual clusters add significant resilience to the whole system, allowing
flexibility in performing maintenance and upgrades. In addition, this is combined
with separate resilient power and cooling systems that provide protection against
a wide range of possible failures. There is an overview of the Cray HPCF in Figure
3.19. It shows the two Cray XC40 clusters and how they are interconnected. There
are components such as storage, compute nodes, I/O nodes, etc.

54

Figure 3.19: Overview of the main components of the Cray HPCF (Reproduced
from [50])

Each Cray XC40 cluster has 20 cabinets of compute nodes and 13 of storage. The
bulk of the system consists of compute nodes with two Intel Xeon EP E5-2695 V4
”Broadwell” processors each with 18 cores. Four compute nodes sit on one blade,
sixteen blades sit in a chassis and there are three chassis in a frame. This gives a
maximum of 192 nodes or 6912 processor cores per cabinet. The number of actual
compute nodes in a cabinet will sometimes be less than the maximum since each
cluster has a number of ”Service Nodes”. In Tables 3.2, 3.3, 3.4 and 3.5 there is a
summary of the main characteristics of the whole system.

ECMWF Cray HPCF
Compute clusters 2 XC40
Peak performance (ter-
aflops) 8499

Sustained performance on
ECMWF codes (teraflops) 333

Table 3.2: Summary of the Cray HPCF (Adapted from [50])

55

Cray XC40 compute cluster
Compute nodes 3610
Compute cores 129960
Operating system Cray CLE 5.2 UP04
High performance intercon-
nect Cray Aries

High performance parallel
storage (PB) 10.0

General-purpose storage
(TB) 38

Table 3.3: Summary of the Cray XC40 (Adapted from [50])

Cray XC40 compute node
Memory (GiB) 128 (4 with 256)
Processor type Intel E5-2695v4 ”Broadwell”
Processors per node 2
Cores per processor 18

Table 3.4: Summary of a Cray XC40 compute node (Adapted from [50])

Cray XC40 core
Threads per core 1, 2
Clock frequency (GHz) 2.1
Operations per clock cycle 16
L1/L2/L3 cache 64KiB/256KiB(private)/45MiB(shared)

Table 3.5: Summary of a Cray XC40 core (Adapted from [50])

This cluster uses the Aries™ Interconnect network technology developed by Cray.
This interconnect uses a ”dragonfly” topology, which has a large number of local
electrical connections and a relatively small number of longer distance optical
connections.

The nodes of the Cray system are optimized to run in ”Extreme Scalability Mode”.
In this mode, each node runs a stripped down version of the Linux operating
system. Reducing the number of operating system tasks running on a node to

56

the minimum is a key element to provide a highly scalable environment for HPC
applications. However, there are other types of nodes that run full version of the
Linux operating system. They are used to run jobs that require less than one node
to run, basically pre- and post-processing jobs for the main parallel jobs.

Finally, there are two types of storage: the high performance storage used to offer
performance for compute clusters and provided by Lustre; and the general-purpose
storage used to provide space for home file systems and for storing applications.

57

Chapter 4

Development of the IFS-XIOS
integration

4.1 Overview

In previous Chapter 3 we have given an in-depth explanation of both IFS and
XIOS to understand the details of their integration.

Apart from the work done during the development phase, there are two aspects
that take a lot of time and should be briefly mentioned. First of all, IFS is a really
complex code, so a lot of effort is needed to understand how it works. In addition,
the documentation is quite limited and the source code does not have too many
comments.

The second aspect is related to the IFS environment. It has a complex hierarchy
of scripts to prepare and run the model, which are managed using the previously
explained prepIFS and XCdp tools. The main issue is that this environment is
quite closed and restrictive, so the development was done taking into account
several requirements.

Figure 4.1 shows the IFS-XIOS integration scheme implemented and illustrates
how the different parts of both components are interconnected. In green, it is

58

shown the IFS processes which execute the client side of XIOS through its API.
They send data using asynchronous MPI communications to XIOS servers. XIOS
servers are run on server side, which are represented in orange. Finally, servers
send data to the storage system (in purple) through system calls. Both XIOS
clients and servers are configured with the iodef.xml file.

Furthermore, this figure also shows that post-processing is performed in both
clients and servers. This is because depending on the type of post-processing,
some operations are performed on client side, such as horizontal interpolations,
and some other on server side, such as netCDF compression.

There is a pair of scripts, model and run parallel, that are in charge of executing
the whole integrated system. In particular, run parallel executes both binaries in
Multiple-Program Multiple-Data (MPMD) mode using aprun.

59

Figure 4.1: Scheme of the IFS-XIOS integration. It overviews how the different
parts are interconnected.

If we focus on the structure of our code, we have followed the coding standards
of IFS. They have different prefixes for file names, where in general ”yom” is used
for variables, ”su” is used for setup routines and ”c” is used for control routines.
We have implemented three different files:

• yomxios.F90 : it contains variables related to XIOS. For example the context
handle, time step, data arrays, etc.

• suxios.F90 : it contains all the routines needed to initialize XIOS from IFS.
There are three public subroutines: suxios ini, suxios fin and suxios ctxt.

• cxios.F90 : it contains one public routine called ifs xios send fields to send

60

data.

The development has been designed so that it is really simple to use and maintain.
It is possible by calling the previous mentioned four public subroutines:

• suxios ini: it is called at the beginning of IFS because MPI is initialized by
XIOS.

• suxios fin: it is called at the end of IFS when MPI is no needed anymore,
because XIOS finalizes MPI.

• suxios ctxt: it is called during the IFS setup. It performs the configuration
of XIOS with the parameters of IFS.

• ifs xios send fields: it is called at the end of each time step to send fields to
XIOS.

The ifs xios send fields subroutine is internally designed so that it has three dif-
ferent parts or steps. This three steps are: update calendar, NPROMA blocks
gather and send fields. If IFS is running an output time step, all three steps will
be sequentially executed; otherwise if IFS is running a non-output time step, only
the update calendar step will be executed.

Figure 4.2 shows how these three steps are executed at the end of an output time
step. For illustrative purposes, in this example all time steps perform output.

61

Figure 4.2: Output scheme developed for IFS: all three steps, update calendar,
NPROMA blocks gather and send fields are sequentially executed at the end of
and output time step

In the following sections we will explain more in detail how the previous files
are implemented and the changes in the scripts. In Section 4.2 we explain the
necessary steps to perform the XIOS setup from IFS, i.e., pass the IFS parameters
that XIOS requests. It includes the design of both yomxios.F90 and suxios.F90
files. Then, in Section 4.3 we explain how we implemented the grid-point fields
transfer. This is basically the design of the cxios.F90 file. Finally, in Section 4.4
we explain the necessary changes in the IFS environment, including model and
run parallel scripts, to be able to run the whole integrated system.

4.2 XIOS setup

In order to set up XIOS to be fully operational, we have to follow a series of steps.
First of all, XIOS must be initialized, which internally initializes MPI. Then, we
have to setup the whole context. This part includes the calendar, which is very
important to have both IFS and XIOS fully coordinated when the simulation pro-
gresses along the time. It also includes the geometry of IFS. This is the definition of
the IFS grid, including the horizontal domain and the vertical axis. Thus, XIOS

62

knows how received data from different independent processes has to be placed
over the world. Finally, once the simulation finishes, we have to finalize XIOS,
which internally also finalizes MPI.

4.2.1 Data and variables module

According to our development structure, we have a module in yomxios.F90 that
contains variables related to the XIOS context, calendar variables, identifiers for
the axes and domains, and three data arrays that are used to send fields to XIOS.
Code snippet 4.1 shows the yomxios module.

1 MODULE yomxios
2
3 USE PARKIND1, ONLY : JPIM, JPRB
4 USE xios
5
6 IMPLICIT NONE
7
8 SAVE
9

10 ! XIOS context
11 TYPE(xios context) :: context handle
12 CHARACTER(len=3) :: model name = ”ifs”
13 CHARACTER(len=3) :: ifs context = ”ifs”
14
15 ! Calendar management
16 TYPE(xios date) :: time origin
17 TYPE(xios date) :: start date
18 TYPE(xios duration) :: time step
19
20 ! Axes definition
21 CHARACTER(len=12) :: model axis name = ”model levels”
22
23 ! Domains definition
24 CHARACTER(len=16) :: gaussian domain name=”reduced Gaussian”
25
26 ! Arrays to gather NPROMA blocks and send fields to XIOS
27 REAL(KIND=JPRB), ALLOCATABLE :: xios gmv(:,:), xios gmvs(:), xios gfl(:,:)
28
29 END MODULE yomxios

Code snippet 4.1: Overview of the data and variables module

63

4.2.2 Initialization

The first step is to initialize XIOS and MPI. It is possible to initialize MPI through
IFS or XIOS. According to the XIOS documentation, they recommend to initial-
ize it through XIOS. This means that we have to ensure that IFS does not call
MPI Init.

As mentioned, XIOS will use the MPI COMM WORLD communicator for both
components, it will use its own communicator, and it will return a local commu-
nicator to be used by IFS.

IFS is already prepared to work with MPI COMM WORLD or with a provided
local communicator. This avoided us to adapt IFS to support provided communi-
cators.

The mechanism to change the IFS communicator is through two variables: LM-
PLUSERCOMM and MPLUSERCOMM. Code snippet 4.2 shows how to do it.
Setting up LMPLUSERCOMM to true, we are specifying to use a provided com-
municator, which will be provided with the MPLUSERCOMM. When we initialize
XIOS, the subroutine xios initialize returns a local communicator.

1 ! Enabling the usage of MPLUSERCOMM communicator, rather than
↪→ MPI COMM WORLD

2 LMPLUSERCOMM = .TRUE.
3
4 ! Initialization of XIOS and definition of the MPLUSERCOMM communicator to be used

↪→ by IFS
5 CALL xios initialize(model name,return comm=MPLUSERCOMM)

Code snippet 4.2: Mechanism to change IFS communicators

This code is part of the public suxios ini subroutine.

64

4.2.3 Finalization

After the simulation, it is needed to finalize XIOS and MPI. Code snippet 4.3
shows how to do it. First of all, we deallocate some arrays that are used for
sending fields to XIOS (it is explained in Section 4.3).

Then, we have to call xios context finalize and xios finalize subroutines to finalize
XIOS and MPI. Since in the initialization we specified to IFS to use a provided
communicator, it will not call MPI Finalize, which is called by XIOS.

1 ! Deallocating XIOS arrays
2 DEALLOCATE(xios gmv)
3 DEALLOCATE(xios gmvs)
4 DEALLOCATE(xios gfl)
5
6 ! Finalization of XIOS context
7 CALL xios context finalize()
8
9 ! Finalization of XIOS and MPI

10 CALL xios finalize()

Code snippet 4.3: MPI and XIOS finalization

This code is part of the public suxios fin subroutine.

4.2.4 Context

One important step is the XIOS context setup. Code snippet 4.4 shows how to
perform the setup. There are three first subroutines to start the IFS context
definition scope, which is closed using the xios close context definition. It contains
three main private subroutines:

• ifs xios set calendar : it is used to inform XIOS which type of calendar uses
IFS, the start date of the simulation and the duration of the time step.
Section 4.2.5 explains how it is implemented.

65

• ifs xios set axis and ifs xios set domain: both subroutines are used to set
up the geometry of the model. It is essential to inform XIOS about the
distribution of each one of the grid-points over the Earth, as well as how
they are distributed between all IFS processes. Thus, XIOS can output
valid data, where each grid-point has a longitude and a latitude over the
Earth’s surface. Section 4.2.6 explains how they are implemented.

After the context definition close, we allocate some arrays used to send fields to
XIOS (the same arrays that we deallocated in Section 4.2.3, i.e., in finalization).

1 ! Context initialization
2 CALL xios context initialize(ifs context, MPLUSERCOMM)
3 CALL xios get handle(ifs context, context handle)
4 CALL xios set current context(context handle)
5
6 ! Date setting
7 CALL ifs xios set calendar
8
9 ! Definition of axes

10 CALL ifs xios set axis(YDGEOMETRY)
11
12 ! Definition of domains
13 CALL ifs xios set domain(YDGEOMETRY)
14
15 ! Close context definition
16 CALL xios close context definition()
17
18 ! Allocating XIOS arrays
19 ALLOCATE(xios gmv(YDGEOMETRY%YRGEM%NGPTOT,YDGEOMETRY%

↪→ YRDIMV%NFLEVG))
20 ALLOCATE(xios gmvs(YDGEOMETRY%YRGEM%NGPTOT))
21 ALLOCATE(xios gfl(YDGEOMETRY%YRGEM%NGPTOT,YDGEOMETRY%

↪→ YRDIMV%NFLEVG))

Code snippet 4.4: Needed calls to set up the XIOS context

This code is part of the public suxios ctxt subroutine.

66

4.2.5 Calendar

XIOS needs to know the type of calendar that IFS is using, in this case the Grego-
rian one. It is set up calling xios define calendar. Then, we set up the time origin
and the start date using xios set time origin and xios set start date subroutines
respectively. In this case, we use the same date and time for both. IFS stores the
initial date using format AAAAMMDD in variable NINDAT, and the initial time
in seconds in variable NSSSSS.

Finally, the last parameter to be set up is the time step that IFS is using. IFS
stores the time step in a variable called TSTEP, and it is passed to XIOS using
the xios set timestep subroutine. Code snippet 4.5 shows how the calendar setup
is done.

1 INTEGER(KIND=JPIM) :: year, month, day, hours, minutes, seconds
2
3 year = NINDAT/10000
4 month = MOD(NINDAT/100, 100)
5 day = MOD(NINDAT, 100)
6 hours = NSSSSS/3600
7 minutes = (NSSSSS − hours∗3600)/60
8 seconds = NSSSSS − hours∗3600 − minutes∗60
9

10 CALL xios define calendar(type=”Gregorian”)
11
12 ! Time origin of the time axis. It will appear as meta−data attached to the time axis in

↪→ the output file
13 CALL xios set time origin(time origin=xios date(year, month, day, hours, minutes,

↪→ seconds))
14
15 ! Start date of the simulation for the current context
16 CALL xios set start date(start date=xios date(year, month, day, hours, minutes, seconds

↪→))
17
18 ! Updated date = start date + NSTEP∗YRRIP%TSTEP
19 time step%second = YRRIP%TSTEP
20 CALL xios set timestep(time step)

Code snippet 4.5: XIOS setup to use IFS calendar

This code is part of the private ifs xios set calendar subroutine.

67

4.2.6 Geometry

One of the most difficult parts in setting up XIOS is the IFS geometry transfer to
XIOS. Since we are working with a 3D grid, it consists of two parts: the 1D axis
definition and the 2D domain definition.

Code snippet 4.6 shows how to perform the vertical axis definition. Using the loop,
it basically builds and array with as many positions as the number of vertical levels.
Each position of the array contains the number of the vertical level. IFS stores
the number of vertical levels in variable NFLEVG.

Then, using the xios set axis attr subroutine, we set up different attributes for
the vertical axis: total number of vertical levels, the array containing the vertical
levels, the units (we are working on sigma levels, so there are no units), and the
direction of the axis, which is positive.

1 INTEGER(KIND=JPIM) :: i
2 REAL(KIND=JPRB) :: j
3 REAL(KIND=JPRB), ALLOCATABLE :: zML(:)
4
5 ! Definition of model levels axis
6 ALLOCATE(zML(YDGEOMETRY%YRDIMV%NFLEVG))
7
8 j = 1.0
9 DO i = 1, YDGEOMETRY%YRDIMV%NFLEVG

10 zML(i) = j
11 j = j + 1.0
12 END DO
13
14 ! Output all model levels
15 CALL xios set axis attr(model axis name, n glo=YDGEOMETRY%YRDIMV%

↪→ NFLEVG, value=zML, unit=”−”, positive=”up”)
16
17 DEALLOCATE(zML)

Code snippet 4.6: Vertical axis definition

Code snippet 4.6 is part of the private ifs xios set axis subroutine.

The second part is the domain definition. First of all, we need to build the local

68

domain data (Code snippet 4.7) by iterating over all grid-points in the global do-
main to find and store in the i index array which are the grid-points of the local
domain. Thus, each IFS process will communicate to its XIOS client which are
the local grid-points.

1 !
2 !∗ Local domain data
3 !
4 j = 0
5 DO i = 1, ni glo
6 IF (YDGEOMETRY%YRMP%NGLOBALPROC(i) == MYPROC) THEN
7 j = j + 1
8 ! XIOS requires indexing from 0
9 i index(j) = i − 1

10 END IF
11 END DO

Code snippet 4.7: Local domain data setup

After that, there is a bigger loop (Code snippet 4.8) which is in charge of setting
up the longitudes and latitudes of each one of the local i index grid-points. They
are stored in arrays lonvalue 1d and latvalue 1d. Furthermore, we also have to
set up the boundaries for each grid-point. Boundaries are used to delimit the area
that represents each grid-point. There are 4 corners for the area of each grid-point.
The easiest way to determine the boundaries of each grid-point is using the middle
point between two latitudes and the middle point between two longitudes. We
have to be careful in the first and last latitudes, since there are not grid-points on
the poles. Boundaries are stored in arrays bounds lon 1d and bounds lat 1d.

69

1 zrgauslat(0) = 90.0 JPRB
2 zrgauslat(ndglg+1) = −90.0 JPRB
3 zrgauslat(1:ndglg) = ASIN(YDGEOMETRY%YRCSGLEG%RMU(1:ndglg))∗(180.0

↪→ JPRB/(RPI))
4
5 DO i = 1, ni
6 !
7 !∗ Longitudes and latitudes for local domain grid−points (from radians to degrees)
8 !
9 latvalue 1d(i) = REAL(YDGEOMETRY%YRGSGEOM NB%GELAT(i)∗(180.0 JPRB

↪→ /RPI),JPRB)
10 lonvalue 1d(i) = REAL(YDGEOMETRY%YRGSGEOM NB%GELAM(i)∗(180.0

↪→ JPRB/RPI),JPRB)
11
12 !
13 !∗ Cells’ boundaries for local domain grid−points
14 !
15 zdeltax = 0.5 JPRB∗360.0 JPRB/REAL(YDGEOMETRY%YRGEM%NLOENG(

↪→ YDGEOMETRY%YRGSGEOM NB%NGPLAT(i)))
16 zdeltayup = 0.5 JPRB∗(zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) −

↪→ 1) − zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i)))
17 zdeltaydw = 0.5 JPRB∗(zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) +

↪→ 1) − zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i)))
18
19 IF (zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) − 1) == 90.0 JPRB)

↪→ zdeltayup = 2.0 JPRB∗zdeltayup
20 IF (zrgauslat(YDGEOMETRY%YRGSGEOM NB%NGPLAT(i) + 1) == −90.0 JPRB

↪→) zdeltaydw = 2.0 JPRB∗zdeltaydw
21
22 bounds lon 1d(1,i) = lonvalue 1d(i) + zdeltax
23 bounds lat 1d(1,i) = latvalue 1d(i) + zdeltaydw
24 bounds lon 1d(2,i) = lonvalue 1d(i) + zdeltax
25 bounds lat 1d(2,i) = latvalue 1d(i) + zdeltayup
26 bounds lon 1d(3,i) = lonvalue 1d(i) − zdeltax
27 bounds lat 1d(3,i) = latvalue 1d(i) + zdeltayup
28 bounds lon 1d(4,i) = lonvalue 1d(i) − zdeltax
29 bounds lat 1d(4,i) = latvalue 1d(i) + zdeltaydw
30 END DO

Code snippet 4.8: Longitudes

Finally, all these arrays that we have build, are passed to XIOS using the xios set domain attr
subroutine. In addition, we send other parameters, such as the type of domain
(Gaussian), the number of global grid-points and the number of local grid-points.
We also specify that the local domain and the data domain have the same size,

70

i.e., there will be no halos in the data arrays that we will send for each one of the
fields. Code snippet 4.9 shows how it is done.

1 ! Define global domain and local domain index
2 CALL xios set domain attr(gaussian domain name, type=’gaussian’, ni glo=ni glo,

↪→ ibegin=0, ni=ni, i index=i index)
3 ! Define local domain data
4 CALL xios set domain attr(gaussian domain name, data dim=1, data ibegin=0, data ni

↪→ =ni)
5 ! Define longitudes and latitudes for grid−point cells
6 CALL xios set domain attr(gaussian domain name, lonvalue 1d=lonvalue 1d, latvalue 1d

↪→ =latvalue 1d)
7 ! Define cell’s boundaries
8 CALL xios set domain attr(gaussian domain name, nvertex=nvertex, bounds lon 1d=

↪→ bounds lon 1d, bounds lat 1d=bounds lat 1d)
9

10 DEALLOCATE(i index)
11 DEALLOCATE(lonvalue 1d, latvalue 1d)
12 DEALLOCATE(bounds lon 1d, bounds lat 1d)
13 DEALLOCATE(zrgauslat)

Code snippet 4.9: Horizontal domain definition

Code snippets 4.7, 4.8 and 4.9 are part of the private ifs xios set domain subrou-
tine.

4.2.7 Iodef.xml file

In order to complement the dynamic setup done through the XIOS API, we also
had to implement the iodef.xml file to perform the static setup. It contains several
sections that we will briefly mention.

The first one is the field definition (Code snippet 4.10). There are declared 12 3D
fields and one 2D field: temperature, ozone, surface pressure, etc. They have a
reference to the corresponding grid.

71

1 <field definition level=”1” enabled=”.TRUE.” default value=”1.e20” >
2 <field group id=”3D fields” >
3 <field id=”t” long name=”Temperature” standard name=”t” grid ref=”

↪→ model levels” unit=”K” />
4 <field id=”u” long name=”U component of wind” standard name=”u” grid ref

↪→ =”model levels” unit=”m∗s−1” />
5 <field id=”v” long name=”V component of wind” standard name=”v” grid ref

↪→ =”model levels” unit=”m∗s−1” />
6 <field id=”q” long name=”Specific humidity” standard name=”q” grid ref=”

↪→ model levels” unit=”kg∗kg−1” />
7 <field id=”vo” long name=”Vorticity (relative)” standard name=”vo” grid ref

↪→ =”model levels” unit=”s−1” />
8 <field id=”d” long name=”Divergence” standard name=”d” grid ref=”

↪→ model levels” unit=”s−1” />
9 <field id=”o3” long name=”Ozone mass mixing ratio” standard name=”o3”

↪→ grid ref=”model levels” unit=”kg∗kg−1” />
10 <field id=”cc” long name=”Fraction of cloud cover” standard name=”cc”

↪→ grid ref=”model levels” unit=”(0−1)” />
11 <field id=”crwc” long name=”Specific rain water content” standard name=”

↪→ crwc” grid ref=”model levels” unit=”kg∗kg−1” />
12 <field id=”cswc” long name=”Specific snow water content” standard name=”

↪→ cswc” grid ref=”model levels” unit=”kg∗kg−1” />
13 <field id=”clwc” long name=”Specific cloud liquid water content”

↪→ standard name=”clwc” grid ref=”model levels” unit=”kg∗kg−1” />
14 <field id=”ciwc” long name=”Specific cloud ice water content” standard name

↪→ =”ciwc” grid ref=”model levels” unit=”kg∗kg−1” />
15 </field group>
16
17 <field group id=”2D dynamical fields” >
18 <field id=”sp” long name=”Surface pressure” standard name=”sp” grid ref=”

↪→ surface fields” unit=”Pa” />
19 </field group>
20 </field definition>

Code snippet 4.10: Field definition used in iodef.xml

Then, there is the file definition (Code snippet 4.11). It contains two different
files, file 3D bench and file 2D bench, which are used to output 3D and 2D fields
respectively. Both files have an output frequency of 3 hours, they output instant
values (no post-processing applied), they are output in multiple file mode, the
frequency sampling of each field is 3 hours and files are forced to be flushed into
the storage system at the end of 1 simulated day.

72

1 <file definition type=”multiple file” format=”netcdf4” par access=”collective”
↪→ sync freq=”1d” min digits=”4” >

2 <file id=”file 3D bench” name=”xios output/prognostic 3D fields benchmarking”
↪→ output freq=”3h” output level=”10” enabled=”.TRUE.” >

3 <field field ref=”t” name=”temperature” freq op=”3h” operation=”instant” />
4 <field field ref=”u” name=”u−wind” freq op=”3h” operation=”instant” />
5 <field field ref=”v” name=”v−wind” freq op=”3h” operation=”instant” />
6 <field field ref=”q” name=”specific humidity” freq op=”3h” operation=”instant

↪→ ” />
7 <field field ref=”vo” name=”vorticity” freq op=”3h” operation=”instant” />
8 <field field ref=”d” name=”divergence” freq op=”3h” operation=”instant” />
9 <field field ref=”o3” name=”ozone” freq op=”3h” operation=”instant” />

10 <field field ref=”cc” name=”cloud fraction” freq op=”3h” operation=”instant”
↪→ />

11 <field field ref=”crwc” name=”rain” freq op=”3h” operation=”instant” />
12 <field field ref=”cswc” name=”snow” freq op=”3h” operation=”instant” />
13 <field field ref=”clwc” name=”liquid water” freq op=”3h” operation=”instant”

↪→ />
14 <field field ref=”ciwc” name=”ice water” freq op=”3h” operation=”instant” />
15 </file>
16 <file id=”file 2D bench” name=”xios output/prognostic 2D fields benchmarking”

↪→ output freq=”3h” output level=”10” enabled=”.TRUE.” >
17 <field field ref=”sp” name=”surface pressure” freq op=”3h” operation=”instant

↪→ ” />
18 </file>
19 </file definition>

Code snippet 4.11: File definition used in iodef.xml

After that, there are the definitions of axes, domains and grids (Code snippet 4.12).
We simply have one vertical axis, one reduced Gaussian domain, and two different
grids: model levels to represent 3D fields and surface fields to represent 2D fields.

73

1 <axis definition>
2 <axis id=”model levels” long name=”vertical model levels” unit=”−” positive=”

↪→ up” />
3 </axis definition>
4
5 <domain definition>
6 <domain id=”reduced Gaussian” long name=”octahedral reduced Gaussian grid”

↪→ type=”gaussian” />
7 </domain definition>
8
9 <grid definition>

10 <grid id=”surface fields” description=”2D dynamical and physical output fields” >
11 <domain domain ref=”reduced Gaussian” />
12 </grid>
13 <grid id=”model levels” description=”3D output fields on model levels” >
14 <domain domain ref=”reduced Gaussian” />
15 <axis axis ref=”model levels” />
16 </grid>
17 </grid definition>

Code snippet 4.12: Axis, domain and grid definition used in iodef.xml

Finally, there are some variables which are used to set up XIOS from a computa-
tional point of view: size of the buffers, server or attached mode, info level, print
performance reports, etc. Code snippet 4.13 shows the variables used.

1 <context id=”xios”>
2 <variable definition>
3 <variable group id=”buffer” >
4 <variable id=”optimal buffer size” type=”string”>performance</variable>
5 <variable id=”buffer size factor” type=”double”>1.0</variable>
6 </variable group>
7
8 <variable group id=”parameters” >
9 <variable id=”using server” type=”bool”>XIOS USING SERVER</variable>

10 <variable id=”using oasis” type=”bool”>false</variable>
11 <variable id=”info level” type=”int”>50</variable>
12 <variable id=”print file” type=”bool”>true</variable>
13 </variable group>
14 </variable definition>
15 </context>

Code snippet 4.13: XIOS variables definition used in iodef.xml

74

4.3 Grid-point fields transfer

Once the setup is done, at the end of each time step, we have to inform XIOS
about the current time step and query if we have to send any field. If so, we will
send the requested data.

Code snippet 4.14 shows how the time step is updated and how to process just one
field, in this case a 3D GMV field which is temperature. First of all, we update
the time step calling the xios update calendar subroutine. IFS stores the current
time step in variable NSTEP.

After that, we query if the field that we want to send is active in the current time
step. In the example, the subroutine xios field is active is used to query if we have
to send the temperature field.

If the field is active, we have to build an XIOS-style array before sending data. If
we remember what we explained in Section 3.1.3, IFS uses a data structure that is
not usual, having the following dimensions: NPROMA, NFLEVG, NFIELDS and
NGPBLKS. This does not match with the XIOS data arrays, where we need to
send an array with the following dimensions: longitude, latitude and vertical levels.
When it uses unstructured or reduced Gaussian grids, XIOS merges the first two
dimensions, so it needs and array with these two dimensions: uni-dimensional 2D
domain and vertical levels. Therefore, we have to re-organize data of each field
before sending it, which means to perform the NPROMA blocks gather.

To perform the gather, in Code snippet 4.14 we iterate over blocks of size NPROMA,
until all the NGPTOT grid-points of the subdomain are processed. Then, for each
block we have to iterate all the block grid-points for all NFLEVG vertical levels.
We do not need to iterate over the total number of fields because we are gathering
data of just one field.

Note that the gather is at the subdomain level, i.e., intra-node shared-memory, so
MPI communications are not needed at all.

Once data is re-organized following the XIOS-style array, we can send it calling
the xios send field subroutine.

75

1 INTEGER(KIND=JPIM) :: jstglo, jlev, icend, ibl, i, j
2
3 ! Update calendar of XIOS with the current time step
4 CALL xios update calendar(NSTEP)
5
6 ! GMV
7 ! Temperature
8 IF (xios field is active(”t”, .TRUE.)) THEN
9 ! Array accessing optimized for GMV, not for xios gmv

10 DO jstglo = 1, YDGEOMETRY%YRGEM%NGPTOT, YDGEOMETRY%YRDIM%
↪→ NPROMA

11 icend = MIN(YDGEOMETRY%YRDIM%NPROMA,YDGEOMETRY%YRGEM%
↪→ NGPTOT−jstglo+1)

12 ibl = (jstglo−1)/YDGEOMETRY%YRDIM%NPROMA + 1
13 DO jlev = 1, YDGEOMETRY%YRDIMV%NFLEVG
14 i = jstglo
15 DO j = 1, icend
16 xios gmv(i,jlev) = YDFIELDS%YRGMV%GMV(j,jlev,YDFIELDS%YRGMV%

↪→ YT0%MT,ibl)
17 i = i + 1
18 END DO
19 END DO
20 END DO
21 CALL xios send field(”t”,xios gmv)
22 END IF

Code snippet 4.14: NPROMA blocks gather and send of temperature field

One important thing to highlight are the XIOS thread-safe calls. Since IFS uses
OpenMP for intra-node parallelization and XIOS does not support threading, we
must ensure that only one thread at each MPI process calls XIOS subroutines.
Although in previous code snippets we have not used any kind of mechanism, in
our development we actually used the OpenMP SINGLE construct. Code snip-
pet 4.15 illustrates the mechanism that we followed to have thread-safe calls.

1 !$OMP SINGLE
2 ! One single thread region
3 !$OMP END SINGLE

Code snippet 4.15: Mechanism to have thread-safe calls

76

4.4 Environment setup

Besides the source code development, it is really important to adapt the scripts in
order to run IFS and XIOS. In the following sections we will give an overview of
the main changes that were needed.

4.4.1 XIOS compilation

One of the challenges was the XIOS compilation. Since we are working in a Cray
machine and the IFS 43r3 version and its libraries that we are using are only
compiled with Cray, we had to compile XIOS using Cray as well. The problem
is that there are not many Cray machines in Europe, so XIOS is almost always
compiled with Intel or GNU. This probably implies that XIOS is not usually tested
with Cray and as a consequence, there are some issues.

First of all, the parallel compilation does not work in Cray compilers due to dif-
ferent bugs, something that has been reported to the XIOS developers to solve
the problem. For example, a parallel compilation with Intel using eight threads, it
takes about five minutes, while a sequential Cray compilation it takes about eight
hours.

The bigger issue was related with the version of the Cray Developer Toolkit (CDT).
By default, it loads the version 17.03, which successfully compiled XIOS, but it
always failed when passing the XIOS tests. We tried different compilation flags,
but this did not solve the issue. At the end, we discovered that using an older
version of the CDT, the 16.04 version, we were able to pass the XIOS tests.

However, we also had other minor issues, such as that by default, Cray compiler
generates mod files in capital letters, but they were not recognized when linking
with XIOS. We solved this issue by using the -ef flag, which generates .mod files
in lowercase letters.

Finally, we used a conservative compilation for XIOS, i.e., using the -O1 optimiza-
tion flag, because we read that for some old Cray compilers there was a bug using
the -O3 flag.

77

4.4.2 Including and linking XIOS

XIOS needs to be included and linked like all libraries. This is not difficult, but it
was needed to find the exact place between the large amount of IFS scripts.

Code snippet 4.16 shows how the include can be done.

1 VPATH := . $(VPATH) /perm/ms/spesiccf/c3xy/xios2/inc

Code snippet 4.16: XIOS including

Code snippet 4.17 shows how the link can be done. Note that we also include the
libcray-c++-rts library, since XIOS is programmed in C++.

1 −L/opt/cray/cce/8.4.6/CC/x86−64/lib/x86−64 −lcray−c++−rts \
2 −L/perm/ms/spesiccf/c3xy/xios2/lib −lxios

Code snippet 4.17: XIOS linking

4.4.3 Parallel netCDF and HDF5 versions

Although IFS output is in GRIB format, it is linked through environment modules
with netCDF and HDF5, libraries which have been covered in Section 2.2. IFS
uses sequential versions of them, but depending on the XIOS configuration, it
needs the netCDF and HDF5 parallel versions.

We changed the two lines of Code snippet 4.18 by the two lines of Code snip-
pet 4.19.

1 LOAD MODULE cray−netcdf/${ netcdf version}
2 LOAD MODULE cray−hdf5/${ hdf5 version}

Code snippet 4.18: Old netCDF and HDF5 modules

78

1 LOAD MODULE cray−netcdf−hdf5parallel/${ netcdf version}
2 LOAD MODULE cray−hdf5−parallel/${ hdf5 version}

Code snippet 4.19: New netCDF and HDF5 modules

4.4.4 Model script

Previously, in Figure 3.12 we have seen that an IFS experiment has several tasks
in its workflow. One of them is called model, which is in charge of running the
model. The associated script is obviously called model and it also calls other
scripts, like the run parallel one, which is in charge of executing the IFS binary.
The run parallel script modification is explained in next Section 4.4.5.

However, before calling run parallel we have to prepare the environment. Code
snippet 4.20 shows some preliminary steps. First of all, there are two variables
that will be substituted by XCdp. Remember that we said that through XCdp we
can set up at run-time variables which are between percentage symbols. Then, we
have to copy the iodef.xml file and replace the string XIOS USING SERVER to
indicate if we will run XIOS in attached or server mode. We also have to copy the
XIOS binary if it is run in server mode.

There is another important setup regarding the Lustre striping. Lustre [51] is
an open-source parallel file system that supports many requirements of leadership
class HPC simulation environments. Lustre stores a file in one or more Object
Storage Target (OST) devices. By default, it uses one OST, but it is possible to
divide the file into chunks that are stored in different OSTs. This is known as
striping, and it is used for performance purposes, especially for really big files.
ECMWF recommends to stripe a file of size more than a few hundred GBs.

According to our iodef.xml file, XIOS will store netCDF files into the xios output
directory, but depending on the configuration, files can be really huge. To be
cautious, we apply an striping of 4 OSTs for each one of the netCDF files that will
be stored in xios output.

If we had not changed the number of OSTs per file, we could affect the perfor-

79

mance of the whole system, including the rest of users that are performing I/O at
that moment. This is because we could fill up the OST in the parallel file system
where the big netCDF file would be in. When such OST runs out of space, it also
affects other user’s jobs.

1 xios using server=%XIOS USING SERVER:false%
2 xios path=%XIOS PATH%
3
4 cp $TROOT/$EXPVER/ifs−repo/ifs−source/scripts/gen/iodef.xml .
5 sed −i −− ”s/XIOS USING SERVER/$xios using server/g” ./iodef.xml
6
7 mkdir xios output
8 lfs setstripe −c 4 xios output
9

10 if [[$xios using server = true]] ; then
11 cp ${xios path}/bin/xios server.exe .
12 fi

Code snippet 4.20: XIOS and Lustre setup in model script

Once all setup is done, it is possible to call run parallel to execute the IFS binary.
Code snippet 4.21 shows a simplified version of how to use run parallel. If we
want to run IFS and XIOS in MPMD mode, we need to pass to run parallel a
file that contains in different lines each one of the binaries and their arguments.
Otherwise, we call run parallel as usual, which means that IFS will use XIOS in
attached mode.

1 if [[$xios using server = true]] ; then
2 touch executables file
3 chmod u+x executables file
4 echo ”ifsMASTER −f h%FCLENGTH% −t $timestep −v ecmwf −e $EXPVER” >>

↪→ executables file
5 echo ”xios server.exe” >> executables file
6 run parallel −m 2 executables file 2>ifs.err >ifs.log
7 else
8 run parallel ifsMASTER −f h%FCLENGTH% −t $timestep −v ecmwf −e $EXPVER

↪→ 2>ifs.err >ifs.log
9 fi

Code snippet 4.21: MPMD mode preliminary setup in model script

80

4.4.5 Supporting MPMD mode

The last major change that we did was in the run parallel script to run IFS and
XIOS in Multiple-Program Multiple-Data (MPMD) mode. This script was already
prepared to run binaries in MPMD mode, but it seems that was never tested and it
contained some errors. We fixed them and extended the script to be fully integrated
with XIOS. We will show some code snippets that are useful to understand what
we did.

At the beginning, we set up through XCdp several variables that are used by XIOS
(Code snippet 4.22). They are related to the affinity of XIOS: number of XIOS
servers, number of servers per node, number of server per Non-Uniform Memory
Access (NUMA) socket within a node, etc. We also specify that we do not want
threads, since XIOS does not use OpenMP.

1 xios using server=%XIOS USING SERVER:−1%
2
3 if [[$xios using server = true]]; then
4 submit total tasks=%NPES FC:−1%:%NPES XIOS:−1%
5 submit tasks per node=$submit tasks per node:%XIOS TASKS PER NODE:−1%
6 submit tasks per numa node=$submit tasks per numa node:%

↪→ XIOS TASKS PER NUMA NODE:−1%
7 submit cpus per compute unit=$submit cpus per compute unit:1
8 omp num threads=$omp num threads:1
9 elif [[$xios using server = false]]; then

10 submit total tasks=%NPES FC:−1%
11 fi

Code snippet 4.22: XIOS variables setup

Another important variable is MPICH DMAPP APP IS WORLD, which by de-
fault is set to 0. When we were testing the MPMD mode, we were having a
deadlock in the execution without any kind of error. We spent a lot of time
trying to understand why it was happening. We fixed the error by using the
setup of Code snippet 4.23. Cray MPICH internally uses DMAPP, and if we set
MPICH DMAPP APP IS WORLD to 1, it uses MPMD for MPI, but treats each
DMAPP application as if it is a distinct job. MPI ranks are globally contiguous

81

and global MPI communication is possible.

1 export MPICH DMAPP APP IS WORLD=1

Code snippet 4.23: Environment variable to run in MPMD mode

Finally, in Code snippet 4.24 we show the command line that will execute both
IFS and XIOS. This command line is the result of executing the code that we im-
plemented in run parallel. It has several parameters that determine the geometry
of the parallel job.

Binaries are separated by a colon and their arguments are passed after the name.
For example, IFS has several arguments, while XIOS does not have anyone. Then,
each binary has its own aprun parameters: the number of processes (-n), the
number of processes per node (-N), the number of processes per NUMA socket (-
S), the number of cores per each process (-d) and the number of logical threads, i.e.,
hyperthreading (-j). In addition, there are global parameters for both binaries,
such as CPU binding (-cc), amount of memory per each process (-m) and the
NUMA memory affinity (-ss).

Note that for IFS, we also set the number of OpenMP threads.

1 aprun −cc cpu −m8000h −n 702 −N 12 −S 6 −j 2 −d 6 −ss env
↪→ OMP NUM THREADS=6 ./ifsMASTER −f h240 −t 600.0 −v ecmwf −e b0s8 :
↪→ −cc cpu −n 10 −N 1 −j 1 −d 1 ./xios server.exe

Code snippet 4.24: Example of an aprun command running IFS and XIOS

82

Chapter 5

Performance analysis and
optimization

After the integration, the next step is to study the computational performance to
detect potential bottlenecks and optimize them if possible.

The methodology that we used to analyze the performance and optimize the code
is illustrated in Figure 5.1.

Firstly, we measure the execution time to use it as a reference. Then, using a
profiling and/or tracing tool, we detect any possible bottleneck. Following up, we
apply the proper optimization technique, and we also verify that the results are
correct.

After that, we measure the execution time again, and depending on the time im-
provement of the optimization, we definitely integrate it or we discard it. If we
discard the optimization, we try to find a better optimization, while if we integrate
the optimization, we have to choose the next step: if the overall speedup including
all the optimization is good enough, we end up the process; otherwise, we start a
new iteration by performing a new performance analysis.

83

Figure 5.1: Performance analysis and optimization flowchart

84

Before explaining the optimization techniques that we performed, it is better to
give some execution times about the IFS-XIOS integration. It is very important
to keep in mind that all the performance numbers that appear in this master’s
thesis are using the IFS configuration explained in later Section 6.1. In summary,
we use: the T1279 octahedral reduced Gaussian grid with 137 verticals levels; the
forecast has a length of 10 days with a time step of 600 seconds and outputs at
a frequency of 3 hours; IFS uses 702 MPI processes with 6 OpenMP threads per
process, which gives a total of 4212 cores.

The total execution time of IFS and XIOS without any optimization takes 7773
seconds for a total of 1440 time steps, being this total execution time the summa-
tion of all time steps plus a period of initialization and finalization of the model. To
have a reference and changing only the I/O scheme, the sequential output scheme
takes 9054 seconds, the MF I/O server takes 7535 seconds, and the same execution
disabling the output takes 7356 seconds.

If we focus on the execution of one time step, the execution times are of the order
of less than 10 seconds. One of the IFS log files reports the execution time per
each time step. Code snippet 5.1 illustrates a simplified output from time step
311 to 321. The 7th column indicates the individual execution time. Regular time
steps last about 4.7 seconds, while one out of six time steps last about 6.7 seconds.
The slower ones are in charge of also executing the radiation (it is not computed
at each time step due to computational cost reasons).

1 1 2 : 24 : 21 0AAA00AAA STEPO 311 27.918 27 .918 4 .680 164 :25
2 1 2 : 24 : 25 0AAA00AAA STEPO 312 28.082 28 .082 4 .702 164 :54
3 1 2 : 24 : 32 0AAA00AAA STEPO 313 40.167 40 .167 6 .734 165 :34
4 1 2 : 24 : 37 0AAA00AAA STEPO 314 27.714 27 .714 4 .646 166 :01
5 1 2 : 24 : 41 0AAA00AAA STEPO 315 28.526 28 .526 4 .788 166 :30
6 1 2 : 24 : 46 0AAA00AAA STEPO 316 28.086 28 .086 4 .714 166 :58
7 1 2 : 24 : 51 0AAA00AAA STEPO 317 27.938 27 .938 4 .679 167 :26
8 1 2 : 24 : 55 0AAA00AAA STEPO 318 27.370 27 .370 4 .592 167 :53
9 1 2 : 25 : 02 0AAA00AAA STEPO 319 39.994 39 .994 6 .708 168 :33

10 1 2 : 25 : 07 0AAA00AAA STEPO 320 28.826 28 .826 4 .826 169 :02
11 1 2 : 25 : 12 0AAA00AAA STEPO 321 28.034 28 .034 4 .701 169 :30

Code snippet 5.1: IFS log file with non-output time steps

85

Furthermore, in Code snippet 5.2 we provide specific execution times of our de-
veloped code and included in the IFS execution. These times are obtained using
the GSTATS profiling tool, briefly explained in following Section 5.1. There are
three profiled subroutines, SUXIOS INI, SUXIOS CTXT and CXIOS, which cor-
responds to our public suxios ini, suxios ctxt and ifs xios send fields subroutines
respectively. Note that suxios fin does not appear, although we tried to profile it.
It could be related to the fact that it finalizes MPI and as a consequence GSTATS
is not able to properly finish the profiling.

The time that these three subroutines take is not considerable: initialization takes
0.5 seconds, context setup takes 9.5 seconds, and the NPROMA blocks gather and
send of fields take 84.8 seconds. In relative terms, they sum 1.24% of the total
execution time (last column).

1 ROUTINE CALLS SUM(s) AVE(ms) STDDEV(ms) MAX(ms) SUMB(s) FRAC(%)
2 SUXIOS INI 1 0 .5 526 .5 0 .0 526 .5 0 .0 0 .01
3 SUXIOS CTXT 1 9 .5 9473 .2 0 .0 9473 .2 0 .0 0 .12
4 CXIOS 1441 84 .8 58 .9 240 .3 1158 .2 15 .2 1 .11

Code snippet 5.2: Profiling analysis with GSTATS of the non-optimized IFS-
XIOS integration

In Section 5.1, we will briefly explain the tools that we used to study the compu-
tational performance.

After that, we will explain the different optimization techniques that we used (5.2,
5.3, 5.4) and the reason why we used them.

Finally, in Section 5.5 we explain three additional optimization techniques that we
did not implement due to the following reasons:

• It was not possible to use it.

• It was implemented by the compiler using the proper compilation flag.

• It is enabled by default, but it was interesting to see what happens if not
used.

86

5.1 Tools

We basically used two kind of tools: profiling and tracing. They are explained in
the following two sections.

5.1.1 Profiling

Profiling is the analysis of the application’s behavior using information gathered
as the program executes in order to determine which parts need to be optimized.
To achieve this goal, a profiling tool takes into account aspects such as execution
time per subroutine, execution time per line of code (this implies to know which
instructions have more cost), which are the dependencies between functions (it
builds a tree with calls), the number of times that each function has been called,
etc. We can get all this data without looking at the source code or even without
having to instrument it.

One popular tool is gprof, which offers simplicity. However, since we are not
interested in profiling the entire code, we used the GSTATS timers. IFS has its
own low overhead timers called GSTATS. They are really simple to use: declare
an identifier of the region that you want to instrument, and add two calls, at the
beginning and at the end of the region.

At the end of the execution, GSTATS generates a profile for each instrumented
region: number of executed times, the average, the aggregated, the maximum,
standard deviation, etc.

5.1.2 Tracing

Tracing is the process of recording event-based performance data along the execu-
tion of a program. Using a viewer we can see the behavior of the application in
our machine, focusing on hardware counters, communication patterns or memory
hierarchy. The tools used to trace the model were Extrae and Paraver, which are
open-source and developed by the BSC Performance Tools group [52]:

87

• Extrae is a package used to instrument the code automatically and/or manu-
ally through its API. It generates Paraver trace-files with hardware counters,
MPI messages and other information for a post-mortem analysis. It can be
downloaded and installed in any HPC facility.

• Paraver is a trace browser that can show a global visual qualitative per-
spective of the application behavior for later focus on the bottlenecks with
a detailed quantitative analysis. The tool allows to create views with any
parameter recorded and points to a region of a code, making process of
modification easier.

Figure 5.2 shows an example of a trace, which in this case is a regular time step
from an IFS-XIOS execution. A trace has the timeline on the x axis and the MPI
processes on the y axis.

Along the timeline, some (or many) events happen, which can be related to MPI
calls, cache misses, Million Instructions Per Second (MIPS) and many other per-
formance metrics. These events can be chosen with Paraver, but it depends on
the configuration of Extrae, i.e., we have to set up in an XML file the events that
we want to generate.

The trace of the Figure 5.2 shows MPI call events, where each color represents an
MPI function. Figure 5.3 illustrates in detail each one of the possible colors, i.e.,
possible MPI functions. Note that the first color, light blue, it is actually not an
MPI function, but it represents computation (outside MPI).

88

Figure 5.2: Example of a trace with MPI call events. It shows a complete regular
time step of an IFS-XIOS execution. Timeline is on the x axis and MPI processes
on the y axis.

Figure 5.3: Legend with the colors representation of the MPI calls used by Paraver

Although other metrics have been evaluated too, the figures showed in this docu-
ment are traces related to MPI call events because it is enough for the performance
analyses and optimization techniques that we used.

89

5.2 Threading with OpenMP

One of the optimization was to parallelize the NPROMA blocks gather using
OpenMP threads. As we explained in Section 4.3, the gather was necessary be-
cause the requested XIOS arrays have different dimensions with regard the IFS
ones, so it was necessary to build those new arrays.

According to the profiling analysis with GSTATS timers, the gather does not rep-
resent too much time. Code snippet 5.3 shows in detail the gather of the ciwc
field. It takes about 5.8 ms, so the optimization would not have a large impact
in the execution time for these tests. However, while the OpenMP master thread
is performing the gather, the rest of threads are idle, so this operation is actually
inefficient. In addition, it could become a bottleneck for future experiments de-
manding more computational power. Thus, it is better to use all the threads.

1 ROUTINE CALLS SUM(s) AVE(ms) STDDEV(ms) MAX(ms) SUMB(s) FRAC(%)
2 ciwc GATHER 80 0 .5 5 .8 0 .9 6 .5 0 . 0 0 .01

Code snippet 5.3: Profiling analysis with GSTATS of a field gather

We followed the parallelization strategy of Code snippet 5.4. It contains the gather
and send of two fields, specific humidity and temperature, in order to understand
how we try to overlap the send of one field with the gather of the next one. This
is extended to many other fields using the same strategy, but showing two fields is
enough for illustrative purposes.

Note that now, the condition of each IF is a logical variable, since we have per-
formed the call to the xios field is active subroutine and stored the condition before
the OpenMP parallel region. This is because XIOS subroutines are not thread-safe.

We start by parallelizing the gather using an OMP DO directive, where the gran-
ularity of chunks is an NPROMA block. This strategy is beneficial for OpenMP,
since IFS data arrays were designed to that end. We explained the benefits of this
design in Section 3.1.3.

90

After that, once we have an XIOS-style array, we can send it to XIOS. Only one
of the threads will perform the send, while the others will perform the gather of
the next field. This overlapping is possible because we use the NOWAIT clause in
the SINGLE construct.

91

1 !$OMP PARALLEL PRIVATE(jstglo,icend,ibl,jlev)
2
3 ! GFL − Specific humidity
4 IF (q) THEN
5 !$OMP DO SCHEDULE(DYNAMIC)
6 DO jstglo = 1, YDGEOMETRY%YRGEM%NGPTOT, YDGEOMETRY%YRDIM%

↪→ NPROMA
7 icend = MIN(YDGEOMETRY%YRDIM%NPROMA,YDGEOMETRY%YRGEM%

↪→ NGPTOT−jstglo+1)
8 ibl = (jstglo−1)/YDGEOMETRY%YRDIM%NPROMA + 1
9 DO jlev = 1, YDGEOMETRY%YRDIMV%NFLEVG

10 xios gfl(jstglo:jstglo+icend−1,jlev) = YDFIELDS%YRGFL%GFL(1:icend,jlev,
↪→ YGFL%YQ%MP,ibl)

11 END DO
12 END DO
13 !$OMP END DO
14 !$OMP SINGLE
15 CALL xios send field(”q”,xios gfl)
16 !$OMP END SINGLE NOWAIT
17 END IF
18
19 ! GMV − Temperature
20 IF (t) THEN
21 !$OMP DO SCHEDULE(DYNAMIC)
22 DO jstglo = 1, YDGEOMETRY%YRGEM%NGPTOT, YDGEOMETRY%YRDIM%

↪→ NPROMA
23 icend = MIN(YDGEOMETRY%YRDIM%NPROMA,YDGEOMETRY%YRGEM%

↪→ NGPTOT−jstglo+1)
24 ibl = (jstglo−1)/YDGEOMETRY%YRDIM%NPROMA + 1
25 DO jlev = 1, YDGEOMETRY%YRDIMV%NFLEVG
26 xios gmv(jstglo:jstglo+icend−1,jlev) = YDFIELDS%YRGMV%GMV(1:icend,jlev,

↪→ YDFIELDS%YRGMV%YT0%MT,ibl)
27 END DO
28 END DO
29 !$OMP END DO
30 !$OMP SINGLE
31 CALL xios send field(”t”,xios gmv)
32 !$OMP END SINGLE NOWAIT
33 END IF
34 ! .
35 ! . Gather and send many other fields
36 ! .
37 !$OMP END PARALLEL

Code snippet 5.4: Parallelization strategy of the NPROMA blocks gather

This optimization slightly improves the performance as it can be seen in results

92

Section 6.3 (see Figures 6.2 and 6.3). The execution time is reduced from 7773
second to 7705 seconds. It is important to highlight that depending on the dis-
tribution of cores between MPI and OpenMP, we could exploit much more this
optimization. For example, if we have a configuration where we use more cores
for OpenMP threads and less cores for MPI processes, we would have less subdo-
mains, but much bigger. Thus, the gather with just one thread would be much
more significant, because subdomains would have much more data to be gathered.

Code snippet 5.5 shows the profiling analysis of the field ciwc with GSTATS timers
using the optimization. The average time is reduced from 5.8 ms to 1.2 ms. Note
that this is also extensible to all other fields that we need to output.

1 ROUTINE CALLS SUM(s) AVE(ms) STDDEV(ms) MAX(ms) SUMB(s) FRAC(%)
2 ciwc GATHER 80 0 .1 1 .2 0 .2 2 .3 0 . 0 0 .00

Code snippet 5.5: Profiling analysis with GSTATS of an optimized gather

5.3 Optimized compilation of XIOS

The following optimization was the compilation of XIOS. The compilation of XIOS
using the -O1 flag should be improved in order to take advantage of the optimiza-
tion introduced by the compiler automatically, where the use of -O2 or -O3 are
the options recommended by default. However, as we explained in Section 4.4.1
we had a lot of issues to use them.

We were analyzing the performance reports of XIOS and we realized that it was
spending a considerably amount of time for just writing data, especially on client
side. Code snippet 5.6 shows that IFS spent about 132 seconds in executing XIOS
client code, while Code snippet 5.7 shows that XIOS servers spent about 3196
seconds in processing events.

We know that enabling post-processing leads to an increase of the XIOS execu-
tion time. Depending on the post-processing filter used, this post-processing is

93

performed on client side or on server side. For example, horizontal domain in-
terpolations are performed on client side, while data compression is performed on
server side. However, since in our tests there is not post-processing at all, the
execution time for XIOS seems to be too much high. For this reason, we thought
that it would be interesting to try to improve the XIOS compilation.

1 −> r epo r t : Performance r epor t : Whole time from XIOS i n i t and
↪→ f i n a l i z e : 7681.68 s

2 −> r epo r t : Performance r epor t : t o t a l time spent f o r XIOS :
↪→ 132.715 s

3 −> r epo r t : Performance r epor t : time spent f o r wa i t ing f r e e
↪→ b u f f e r : 3 .80519 s

4 −> r epo r t : Performance r epor t : Ratio : 0 .0495359 %

Code snippet 5.6: XIOS report on client side

1 −> r epo r t : Performance r epor t : Time spent f o r XIOS : 7681.68
2 −> r epo r t : Performance r epor t : Time spent in p r o c e s s i n g events :

↪→ 3196 .4
3 −> r epo r t : Performance r epor t : Ratio : 41.6107%

Code snippet 5.7: XIOS report on server side

As we mentioned in Section 4.4.1, we read that for some old Cray compilers there
was a bug using the -O3 flag. However, this bug may have been solved in new
versions, so once updated, we tried to use -O3. Interestingly, XIOS compiled and
tests successfully passed.

When we tried this new optimized version with IFS, we experienced an improve-
ment in the execution time as it can be seen in results Section 6.3 (see Figures
6.2 and 6.3). The execution time is reduced from 7705 seconds to 7629 seconds.
Code snippet 5.8 shows that the execution time on client side is reduced from 132
seconds to 40 seconds. On server side (Code snippet 5.9), same effect occurs and
execution time is reduced from 3196 seconds to 1382 seconds.

94

1 −> r epo r t : Performance r epor t : Whole time from XIOS i n i t and
↪→ f i n a l i z e : 7562.36 s

2 −> r epo r t : Performance r epor t : t o t a l time spent f o r XIOS :
↪→ 40.3018 s

3 −> r epo r t : Performance r epor t : time spent f o r wa i t ing f r e e
↪→ b u f f e r : 0 .463693 s

4 −> r epo r t : Performance r epor t : Ratio : 0 .00613159 %

Code snippet 5.8: XIOS report on client side once optimized

1 −> r epo r t : Performance r epor t : Time spent f o r XIOS : 7562.37
2 −> r epo r t : Performance r epor t : Time spent in p r o c e s s i n g events :

↪→ 1382.16
3 −> r epo r t : Performance r epor t : Ratio : 18.2768%

Code snippet 5.9: XIOS report on server side once optimized

This optimization will be especially useful when post-processing is used, since it
typically requires a lot of computation.

5.4 Overlapping computation and communica-
tion

The last optimization that we implemented was an overlapping between the com-
putation of IFS and the MPI communications to XIOS.

We mentioned that non-output time steps have execution times of about 4.7 sec-
onds (regular time step) and about 6.7 seconds (time step with radiation) as showed
in Code snippet 5.1. However, we realized that in an output time step, there is
a slight increase in the execution time of the three following time steps. Code
snippet 5.10 illustrates this effect: time step 324 performs output through XIOS,
however, the time steps which experience an increase are 325, 326 and 327. This
increase actually has many variability among similar output time steps, which
means that sometimes is negligible and sometimes is really noticeable.

95

Nevertheless, in general we can observe this pattern in the following three time
steps of an output time step.

1 1 2 : 24 : 55 0AAA00AAA STEPO 318 27.370 27 .370 4 .592 167 :53
2 1 2 : 25 : 02 0AAA00AAA STEPO 319 39.994 39 .994 6 .708 168 :33
3 1 2 : 25 : 07 0AAA00AAA STEPO 320 28.826 28 .826 4 .826 169 :02
4 1 2 : 25 : 12 0AAA00AAA STEPO 321 28.034 28 .034 4 .701 169 :30
5 1 2 : 25 : 16 0AAA00AAA STEPO 322 27.770 27 .770 4 .655 169 :58
6 1 2 : 25 : 21 0AAA00AAA STEPO 323 27.690 27 .690 4 .654 170 :26
7 1 2 : 25 : 26 0AAA00AAA STEPO 324 27.854 27 .854 4 .679 170 :53
8 1 2 : 25 : 33 0AAA00AAA STEPO 325 42.771 42 .771 7 .158 171 :36
9 1 2 : 25 : 38 0AAA00AAA STEPO 326 30.114 30 .114 5 .044 172 :06

10 1 2 : 25 : 43 0AAA00AAA STEPO 327 30.870 30 .870 5 .181 172 :37
11 1 2 : 25 : 48 0AAA00AAA STEPO 328 27.874 27 .874 4 .682 173 :05

Code snippet 5.10: IFS log file with one output time step

In order to understand what was happening, we traced the execution with Extrae.
Figure 5.4 illustrates three time steps, where the first one is performing output at
the end. The major part of processes of the trace are the IFS ones, while some
processes on the bottom are the XIOS ones.

In this trace, IFS is using the output scheme that we explained in Chapter 4 and
showed in Figure 4.2. This scheme sequentially executes at the end of an output
time step these three steps: update calendar, NPROMA blocks gather and send
fields. If it is not an output time step, it only performs the update calendar step.

The trace reveals an interesting point: at the beginning of the next time step
after an output time step (second time step in Figure 5.4), there is an increase
in the communications among IFS processes. They are basically performing an
MPI Waitany and an MPI Alltoallv, but they seem to be delayed according to the
time step where this should be done.

The problem is related to the moment where some fields are sent to XIOS. Al-
though they are sent using asynchronous communications to overlap with compu-
tation, at the beginning of the time step IFS is not performing computation, but
synchronous communication. This leads IFS to wait for XIOS asynchronous com-
munications and its own synchronous communications. IFS communications have

96

to wait because nodes and network are already occupied by XIOS communications.

In addition, at the beginning of the third time step there is also a delay in the
MPI Waitany and MPI Alltoallv execution, though at the end of the second time
step no field is sent at all. So we concluded that when executing the update calen-
dar after an output time step, XIOS performs costly communications that occupy
the network resources which cannot be used by IFS at that moment.

Figure 5.4: Trace with three IFS time steps

Then, knowing that update calendar and send fields steps can potentially collide
with IFS communications, we considered to re-order them along the execution
time to truly overlap XIOS communication with IFS computation. According to
Figure 5.4, at each time step there is a huge area (light blue) where IFS is only
performing computation. This region is in charge of executing the psychics of IFS.
Ideally, it is a perfect place to perform the XIOS communications.

Our new scheme with re-ordered steps is illustrated in Figure 5.5: the update
calendar step (Cx) is prior called at the beginning of the physics in the same time
step; the NPROMA blocks gather (Gx) is the only step that remains at the end of
the same time step; and the send fields step (Sx) is delayed to the next time step
at the beginning of the physics, called before the update calendar of the next time

97

step (Cx+1).

Once all time steps are performed, we may need to execute the send fields step
(Sn) of the last time step, something that it is negligible for the final execution
time.

Figure 5.5: Optimized output scheme developed for IFS. The three needed steps
to output data are split: the update calendar is performed in the middle of the
time step; the NPROMA blocks gather is maintained at the end of the time step;
and the send fields is delayed to the next time step

The approach to implement the first scheme was to use just one subroutine called
ifs xios send fields, which contained the three essential steps: update calendar,
NPROMA blocks gather and send fields.

The implementation of the new scheme is not difficult: we split the three steps
into three different subroutines:

• ifs xios calendar : it contains the call to the xios update calendar subroutine
and all the calls to xios field is active for each one of the fields to individually
store in logical variables if they need to be sent or not.

• ifs xios gather fields: depending on the values of the logical variables, this
subroutine will perform the NPROMA blocks gather of the fields that need

98

to be sent.

• ifs xios send fields: depending on the values of the logical variables, this
subroutine will send the fields which are active.

These three public subroutines are placed in the proper places of the IFS code so
that the new scheme is fully implemented.

According to the results that are shown in Section 6.3 (see Figures 6.2 and 6.3),
it is the optimization that gives more improvement in the total execution time: it
is reduced from 7629 seconds of the previous optimization to 7507 seconds.

This new scheme improves the execution time of the three time steps that follow
an output time step. Code snippet 5.11 shows this behaviour: time step 324 per-
forms output, but it almost does not affect the execution time of time steps 325,
326 and 327.

1 1 2 : 27 : 45 0AAA00AAA STEPO 318 26.926 26 .926 4 .514 162 :23
2 1 2 : 27 : 52 0AAA00AAA STEPO 319 38.414 38 .414 6 .441 163 :01
3 1 2 : 27 : 56 0AAA00AAA STEPO 320 27.054 27 .054 4 .535 163 :28
4 1 2 : 28 : 01 0AAA00AAA STEPO 321 27.030 27 .030 4 .534 163 :55
5 1 2 : 28 : 05 0AAA00AAA STEPO 322 26.882 26 .882 4 .502 164 :22
6 1 2 : 28 : 10 0AAA00AAA STEPO 323 27.394 27 .394 4 .607 164 :50
7 1 2 : 28 : 15 0AAA00AAA STEPO 324 27.142 27 .142 4 .549 165 :17
8 1 2 : 28 : 21 0AAA00AAA STEPO 325 39.310 39 .310 6 .579 165 :56
9 1 2 : 28 : 26 0AAA00AAA STEPO 326 28.318 28 .318 4 .755 166 :24

10 1 2 : 28 : 31 0AAA00AAA STEPO 327 28.686 28 .686 4 .813 166 :53
11 1 2 : 28 : 35 0AAA00AAA STEPO 328 26.990 26 .990 4 .527 167 :20

Code snippet 5.11: IFS log file with one output time step once optimized

If we trace this new scheme, Figure 5.6 indicates that there is no delay in the
MPI Waitany and MPI Alltoallv operations at the beginning of an IFS time step.
It is visible how IFS executes the NPROMA blocks gather at the end of the first
time step and the call to send fields at the beginning of the physics in the second
time step.

However, it is also important to remark that now there is a delay at the end of
time steps two and three, but it is less significant than the delay of the first scheme.

99

Figure 5.6: Trace with three IFS time steps once optimized

Figure 5.7 shows a comparison of the two output schemes. Traces of Figures 5.4
and 5.6 are compared using the same elapsed time. It is visible how the three time
steps of the trace that uses the optimized output scheme (below) finish earlier than
the other three time steps, the ones that use the non-optimized scheme.

100

Figure 5.7: Trace comparison using the same elapsed time between the non-
optimized overlapping (above) and the optimized overlapping (below). The three
time steps of the optimized trace finish earlier than the three ones of the non-
optimized trace

5.5 Explored options

We also considered three additional optimization techniques, but as we explained
at the beginning of this chapter, we did not implement them.

101

5.5.1 Vectorization with SIMD instructions

One of the key points in current x86 machines is the use of vector instructions,
also known as Single Instruction, Multiple Data (SIMD) instructions. We thought
that they would be really important for performing the NPROMA blocks gather,
in order to speed up the whole process.

However, before any kind of implementation, we checked the assembly code to
know if compiler was using them. Effectively, Cray compiler was vectorizing the
gather, as it is shown in Code snippet 5.12. At the beginning, it uses a series of
vmovaps instructions to move data from memory to vector registers (xmm). Then,
this data is moved from vector registers to the stack (rsp). Finally, once all data
is in the stack, Cray compiler calls the xios send field r8 2d subroutine using the
callq instruction.

102

1 21482846: c6 84 24 e0 00 00 00 movb $0x74,0xe0(%rsp)
2 2148284d: 74
3 2148284e: c5 f8 28 05 6a 55 89 vmovaps 0x2489556a(%rip),%xmm0 #45d17dc0 <

↪→ $data init$yomxios +0x440>
4 21482855: 24
5 21482856: c5 f8 28 0d 52 55 89 vmovaps 0x24895552(%rip),%xmm1 #45d17db0 <

↪→ $data init$yomxios +0x430>
6 2148285d: 24
7 2148285e: c5 f8 28 15 3a 55 89 vmovaps 0x2489553a(%rip),%xmm2 #45d17da0 <

↪→ $data init$yomxios +0x420>
8 21482865: 24
9 21482866: c5 f8 28 1d 22 55 89 vmovaps 0x24895522(%rip),%xmm3 #45d17d90 <

↪→ $data init$yomxios +0x410>
10 2148286d: 24
11 2148286e: c5 f8 28 25 0a 55 89 vmovaps 0x2489550a(%rip),%xmm4 #45d17d80 <

↪→ $data init$yomxios +0x400>
12 21482875: 24
13 21482876: c5 f8 28 2d f2 54 89 vmovaps 0x248954f2(%rip),%xmm5 #45d17d70 <

↪→ $data init$yomxios +0x3f0>
14 2148287d: 24
15 2148287e: c5 f8 29 84 24 50 01 vmovaps %xmm0,0x150(%rsp)
16 21482885: 00 00
17 21482887: c5 f8 29 8c 24 40 01 vmovaps %xmm1,0x140(%rsp)
18 2148288e: 00 00
19 21482890: c5 f8 29 94 24 30 01 vmovaps %xmm2,0x130(%rsp)
20 21482897: 00 00
21 21482899: c5 f8 29 9c 24 20 01 vmovaps %xmm3,0x120(%rsp)
22 214828a0: 00 00
23 214828a2: c5 f8 29 a4 24 10 01 vmovaps %xmm4,0x110(%rsp)
24 214828a9: 00 00
25 214828ab: c5 f8 29 ac 24 00 01 vmovaps %xmm5,0x100(%rsp)
26 214828b2: 00 00
27 214828b4: 48 89 e0 mov %rsp,%rax
28 214828b7: 48 05 e0 00 00 00 add $0xe0,%rax
29 214828bd: 48 89 84 24 d0 00 00 mov %rax,0xd0(%rsp)
30 214828c4: 00
31 214828c5: 48 c7 84 24 d8 00 00 movq $0x1,0xd8(%rsp)
32 214828cc: 00 01 00 00 00
33 214828d1: 48 8b bc 24 d0 00 00 mov 0xd0(%rsp),%rdi
34 214828d8: 00
35 214828d9: 48 89 e6 mov %rsp,%rsi
36 214828dc: 48 81 c6 00 01 00 00 add $0x100,%rsi
37 214828e3: ba 01 00 00 00 mov $0x1,%edx
38 214828e8: e8 53 2a 4f 03 callq 24975340 <xios send field r8 2d$idata >

Code snippet 5.12: Vectorization of the NPROMA blocks gather

103

5.5.2 Memory affinity

The majority of HPC machines use Non-Uniform Memory Access (NUMA) nodes.
This type of computers are characterized by having more than one processor, which
share memory without uniform access time. This means that the whole memory is
distributed across the processors, where each processor locally owns a part of the
memory. However, processors are able to access other processors’ local memory,
but more slowly.

Cray XC40 nodes have two NUMA sockets (or processors), each one with 18 cores
and its own local memory. When running a parallel job with aprun, it is possible
to specify if sockets are allowed to allocate memory from each other or not. The
-ss flag indicates that a core or a thread can allocate only the memory local to its
assigned NUMA socket.

In theory, using this flag it should give more computational performance, since
slow crossed memory allocations between sockets are not allowed. This type of
tests are known as memory affinity. Our idea was to test and potentially use
the -ss optimal option. However, by default IFS uses the -ss flag to run, so this
optimization was already in use.

Nevertheless, we thought that it would be useful to see if -ss was certainly op-
timizing the run of IFS, so we repeated the experiment removing this flag. We
observed that the total execution time dramatically increased by 20%. Thus, we
proved that the -ss flag to achieve NUMA affinity is mandatory for this kind of
applications.

5.5.3 Derived MPI Datatypes

We have seen that IFS-style arrays and XIOS-style arrays are different, so we
needed to perform an NPROMA blocks gather before sending fields to XIOS. We
occurred that using derived MPI Datatypes could be possible to avoid the gather.

The idea of using derived MPI Datatypes [53] is to describe the layout of data
structures in memory. This means that they are used to describe how data is

104

stored: stride between elements, how many contiguous elements per block and the
block count. It is possible to describe vectors, structs, etc. Thus, the NPROMA
blocks gather would not be needed.

Nevertheless, we were not able to use this technique because we do not directly
work with MPI subroutines when we send data to XIOS. The only way is by calling
the xios send field subroutine, which is from the XIOS API. Although this cannot
be done, it could be suggested to the XIOS developers to add it as a new feature
in the future.

105

Chapter 6

Evaluation

In this chapter we will evaluate the results of the development and the optimization
techniques. In Section 6.1 we explain the IFS configuration that we used to perform
the benchmark tests. Then, in Section 6.2 we show the two metrics that are used
to measure the computational performance. Finally, in Section 6.3 we explain all
the different tests that we performed.

6.1 IFS configuration

It is really important to choose a proper IFS configuration to benchmark our
development, since we want to be as close as possible to real experiments. Thus,
we could have an exact idea of the benefits of using XIOS.

We will compare and discuss in Section 6.3 the different output schemes: sequential
ouput, MF I/O server, XIOS server (different optimized versions) and also no
output, to know which is the maximum achievable speedup.

Table 6.1 shows a summary of the basic IFS parameters that are used in the config-
uration to compare all the output schemes. We use the octahedral reduced Gaus-
sian grid in high resolution (see Section 3.1.2), which is the same that ECMWF
uses for its operational forecast. We also use 702 MPI processes with 6 OpenMP

106

threads for each one, which gives a total of 4212 processing elements. This dis-
tribution of processing elements is recommended by ECMWF, because it offers a
good balance between performance and efficiency. Moreover, we do not change
neither the number of MPI processes nor the number of OpenMP threads because
it would be a scalability study, but it is not part of this work. In order to evaluate
the computational performance of our development, it is preferable to focus on the
number of processes of XIOS and the output size.

We almost used all the default values that prepIFS sets up when a new experi-
ment is created. We just changed a few parameters, especially the ones related to
performance and output.

Basic IFS parameters
Grid type Cubic octahedral reduced Gaussian
Horizontal resolution 1279
Vertical resolution 137
Forecast length 10 days
Time step 600 seconds
Compile environment cdt/16.04
NPROMA size 16
Output frequency 3 hours
2D prognostic fields 1
3D prognositc fields 12
Diagnostics No
Forecast tasks (MPI processes) 702
OpenMP threads per forecast task 6
Hyperthreading Yes

Table 6.1: Summary of the IFS configuration

The parameters that change between output schemes are the following:

• Sequential output: we do not need additional processes for I/O servers. We
do not want to write data using the Fields Data Base (FDB).

• MF I/O server: we have to specify the number of dedicated processes for
I/O, which the recommended amount by ECMWF is 18. We do want to

107

write data using FDB.

• XIOS: we have to specify the number of dedicated processes for I/O, which
the recommended amount is analyzed in later Section 6.3.1. We cannot use
FDB, so we disable it.

The output is characterized by being quite large in size: we are outputting data
at a frequency of 3 hours, while in the operational forecast is at 6 hours. Thus, we
are able to stress the schemes and prove that XIOS works well. In any case, there
are real configurations where a frequency of 3 hours could be used.

We output the following 12 3D prognostic fields:

• U component of wind

• V component of wind

• Temperature

• Divergence

• Vorticity

• Specific humidity

• Cloud fraction

• Ozone

• Specific rain water content (rain)

• Specific snow water content (snow)

• Specific cloud liquid water content (liquid water)

• Specific cloud ice water content (ice water)

In addition, we also output this 2D prognostic field:

• Surface pressure

It is important to be aware of the output size of this particular configuration
because it is considerably large and it is directly related to the time used for the

108

output process. However, it depends on the data format:

• GRIB format: files’ size is about 770 GB.

• NetCDF format: files’ size is about 3.2 TB.

This difference in size between both formats is due to compression. While GRIB
files are compressed, netCDF files do not have any kind of compression. However,
we could enable the netCDF files compression in the XIOS configuration, which
would not affect the overall performance because it is done on server side. But,
we do not do that because we are only evaluating I/O aspects.

Finally, in order to evaluate the results, for each case we make the average of three
executions. It is true that when measuring I/O the sampling should be bigger,
about 10 runs, because the variability considerably grows. Nevertheless, we do
not do it because of two reasons. The first one is because the I/O variability is
not reflected in the total execution time, since I/O servers have enough time to
”buffer” it. The second reason is because we are running huge experiments, so we
cannot afford wasting such amount of CPU hours.

6.2 Metrics

In order to compare and evaluate the two IFS output schemes against the different
optimization versions of our development, we will use two basic metrics in computer
sciences: execution time and speedup.

We measured the execution time as the elapsed time from the beginning of the
IFS-XIOS execution to completion.

The speedup measures the relative performance between two systems solving the
same problem. Systems can be of any type: hardware systems, software systems,
etc. In our case, we compare different output schemes for IFS, which always uses
the configuration explained in previous Section 6.1.

We define the speedup as:

109

S = Tbaseline

Toptimized

Where:

• S is the speedup.

• Tbaseline is the execution time of the case that we take as a reference.

• Toptimized is the execution time of cases that we want to know the relative
improvement against the reference case.

6.3 Results

In this section we will explain all the different tests that we performed to measure
our development. First of all, in Section 6.3.1 we will show how the optimal
number of XIOS servers change in function of the output size. After that, in
Section 6.3.2 we perform a comparison between all the output schemes that we
previously mentioned. In Section 6.3.3 we perform the same type of comparison,
but adding the time needed to convert GRIB to netCDF files. Finally, in Section
6.3.4 we perform a comparison test by adding to non-XIOS schemes the same
number of cores and nodes that XIOS uses.

Figures use some abbreviations for XIOS: v1, v2, v3 and v4. They include the
different optimization versions which are in increasing order. For example, v3
includes v1 and v2. The list is the following:

• XIOS v1: non-optimized version. It is only the IFS-XIOS integration devel-
opment. It corresponds to Chapter 4.

• XIOS v2: it includes the optimization of the NPROMA blocks gather par-
allelization with OpenMP threads. It corresponds to Section 5.2.

• XIOS v3: it includes the optimized compilation of XIOS. It corresponds to
Section 5.3.

110

• XIOS v4: it includes the overlapping computation and communication opti-
mization. It corresponds to Section 5.4.

6.3.1 Optimal number of XIOS servers

In this test we execute IFS with XIOS under the same conditions, only changing
the number of fields to be output. The purpose is to find the minimum number
of XIOS servers needed that do not increase the total execution time depending
on the output size. This means that we are finding the optimal number of XIOS
servers for different number of fields to be output.

XIOS servers consume a considerable amount of memory to maintain the value of
variables needed in some post-processing operations. This means that depending
on the volume of the set of fields, more or less memory is allocated by XIOS servers.
This is solved using the memory of more or less nodes of the supercomputer. Ad-
ditionally, the more servers are working at the same time, the more fields can be
processed in parallel, avoiding a bottleneck during the output process. In Figure
6.1 we use three different output sizes to find the corresponding optimal numbers:
12 3D fields, 6 3D fields and 1 3D field. When we output 12 fields, we need 10
servers, with 6 fields we need 5 servers and with 1 field we just need 1 server. It is
visible that the number of needed servers scales in function of the output size.

111

Figure 6.1: Optimal number of XIOS servers in function of the output size

There is an important point to mention. For this test we are placing one server
per node, because if we try to fit those number of cores in less nodes, the execution
crashes due to lack of memory. Thus, we can also say that Figure 6.1 shows the
number of nodes needed in function of the output size. However, note that if we
increase the number of XIOS servers per node, but keeping the needed amount of
nodes, the execution successfully finishes spending the same elapsed time.

Therefore, this figure suggests that XIOS is memory sensitive. As we have ex-
plained, XIOS consumes a lot of memory because it accumulates data on server
side just in case it is needed to apply time integration filters, i.e., post-processing
over a period of time.

112

6.3.2 Comparison test between different output schemes

In this test we compare the different output schemes that we have available: IFS
sequential output, MF I/O server, different IFS-XIOS optimized versions and IFS
with no output. The fact that I/O schemes are compared with the no output
case is to know the maximum achievable speedup because it does not have I/O
overhead at all. It is important to remind that all executions are done using 702
MPI processes with 6 OpenMP threads each one. In addition, we are going to
show results that take into account the whole execution of IFS-XIOS, this is, from
the beginning to the end of the execution.

Figure 6.2 shows the execution time of the different schemes. The first column is
the sequential scheme, which takes 9054 seconds. It is considerably slower than
the rest of schemes. The second one, the MF I/O server, takes 7519 seconds. It is
a good time compared to no output, which takes 7356 seconds.

The next four columns are the different XIOS versions. It is visible how each opti-
mization improves the previous one. The XIOS v1 is only the IFS-XIOS integra-
tion, which takes 7773 seconds. It is faster than the sequential output, but slower
than the MF I/O server. The next one, XIOS v2, parallelizes the NPROMA blocks
gather using OpenMP threads. This optimization avoids that only the OpenMP
master thread works while the rest of threads are idle. It takes 7705 seconds, which
is a reduction of 68 seconds regarding the XIOS v1.

After that, the XIOS v3 uses the optimized compilation of XIOS. It is very impor-
tant to reduce both client and server execution time, especially if it is necessary to
run post-processing, which typically implies a lot of computation. The execution
time is improved by 76 seconds with regard the XIOS v2, taking 7629 seconds.

Finally, the most optimized version, XIOS v4, re-orders the three necessary steps to
perform output: update calendar, NPROMA blocks gather and send fields. The
send fields step is performed in the IFS physics computation, taking advantage
that there are not communications at all. Thus, it is possible to achieve better
overlapping between XIOS communication and IFS computation. The execution
time takes 7507 seconds, 122 seconds faster than the previous XIOS v3. It is also

113

slightly faster than the MF I/O server (12 seconds), and much more than the se-
quential output (1547 seconds). In addition, it is only 151 seconds slower than no
output.

Figure 6.2: Comparison of the execution time of different output schemes

Figure 6.3 shows the speedup of the same previous comparison. The maximum
achievable speedup is 1.231x, i.e., a 23.1% faster than the sequential output. Both
MF I/O server and XIOS v4 execution time improvements are 20.4% and 20.6%
respectively.

Comparing the sequential output (9054 seconds) and the no output tests (7356
seconds), it is easy to check that the output process requires an average of 1698
seconds, which represents a 23% more of the execution time of IFS. However,
thanks to the most optimized version of the IFS-XIOS integration, this time is
reduced from 1698 to 151 seconds, which represents only a 2% of the execution
time of IFS, achieving that almost all the output process is hidden with the IFS
computation.

114

Figure 6.3: Comparison of the speedup of different output schemes

6.3.3 Comparison test adding the GRIB to netCDF post-
processing

This test is the same as the previous one (Section 6.3.2), but with the additional
cost of converting GRIB files to netCDF files. This cost is only added in sequential
ouput and MF I/O server schemes, since they are the ones that write in GRIB
format. Note that we do not include the no output case, which does not have
neither GRIB format nor netCDF format, since it does not generate data.

This test is useful to know the potential benefit of using XIOS to avoid the costly
GRIB to netCDF post-processing.

Figure 6.4 shows a comparison between the different output schemes, where the
time needed to convert GRIB files to netCDF files is taken into account. The

115

post-processing time needed for the conversion is really huge, about 13680 seconds
(3.8 hours). It is much more slower than the simulation itself.

The execution time of the sequential output scheme is increased from 9054 seconds
to 22734 seconds, and for the MF I/O server from 7519 seconds to 21199 seconds.
It represents an increase of 151.1% and 181.9% respectively.

Figure 6.4: Comparison of the execution time of different output schemes, where
both sequential output and MF I/O server have the additional cost of converting
GRIB to netCDF files

Figure 6.5 shows the speedup of the same previous comparison. It is considerable
the speedups that XIOS achieves in all its optimization versions: 2.92x in v1, 2.95x
in v2, 2.97x in v3 and 3.02x in v4.

It is really evident that if we take into account both model and post-processing
tasks, the benefit of using XIOS compared to the current I/O schemes is huge.

116

Figure 6.5: Comparison of the speedup of different output schemes, where both
sequential output and MF I/O server have the additional cost of converting GRIB
to netCDF files

6.3.4 Comparison test with additional computational re-
sources

Finally, we perform a comparison with additional computational resources between
the sequential output scheme and the most optimized version of IFS-XIOS, i.e.,
XIOS v4. The idea is to use in both cases, firstly, the same amount of cores, and
secondly, the same amount of nodes. Thus, we guarantee that we compare cases
using the same amount of computational resources. Furthermore, at the end there
is the same comparison test, but also taking into account the GRIB to netCDF
conversion cost for the sequential output scheme.

It is important to keep in mind that each Cray XC40 node has 36 physical cores, so
using hyperthreading 72 threads. In our case, we are running 12 MPI processes per
node, where each one has 6 OpenMP threads. Thus, we are completely fulfilling

117

nodes.

We always take as a reference the optimal amount of XIOS servers (and nodes)
that will be added to the other cases. Since we are outputting 12 3D fields, we
use 10 XIOS servers spread along 10 nodes. Therefore, those additional resources
used by XIOS, are added to the sequential output scheme as follows: if using the
same amount of cores, we use 10 additional cores to run IFS (702 + 10 = 712).
On the contrary, if using the same amount of nodes, we use 120 additional cores
to run IFS (702 + 120 = 822).

Note that we do not include the MF I/O server. This is because of two reasons.
Firstly, if we want to use 10 cores as dedicated I/O processes, the execution crashes
since there are not enough resources. The minimum amount is 18, the default
value. And secondly, if we want to use 10 nodes to place I/O processes, we cannot
set it up because I/O processes are internally distributed by IFS. It is not possible
to choose the geometry of the parallel job through aprun.

Figure 6.6 shows the execution time comparison of the two evaluated schemes. The
first case is the sequential output. It has a considerable improvement using the
same amount of nodes, where execution time is reduced from 9054 seconds to 8282
seconds. The second case is the XIOS v4, where the execution time is always kept
to 7507 seconds, because it is the reference case regarding the amount of resources.

118

Figure 6.6: Comparison test with additional computational resources of the exe-
cution time of two different output schemes. In blue they are using the original
amount of resources, in orange they are using the same amount of cores, and in
yellow they are using the same amount of nodes

From previous Figure 6.6 we compute the speedup of Figure 6.7. It illustrates how
the XIOS v4 scheme achieves a lower speedup when the sequential output scheme
uses more computational resources.

119

Figure 6.7: Speedup of XIOS v4 against the sequential output scheme with addi-
tional computational resources. In blue the original amount of resources, in orange
the same amount of cores, and in yellow the same amount of nodes

Figure 6.8 illustrates the same execution time comparison of previous Figure 6.6,
but also taking into account the execution time of converting GRIB to netCDF
files. In this scenario, the benefit of using more computational resources for the
sequential output scheme is less significant, because the increase added by the
format conversion is really big.

120

Figure 6.8: Execution time comparison test with additional computational re-
sources and GRIB to netCDF conversion cost of two different output schemes. In
blue they are using the original amount of resources, in orange they are using the
same amount of cores, and in yellow they are using the same amount of nodes

Figure 6.9 shows the speedup computed from the previous figure, where it is evident
that XIOS offers a considerable improvement with regard to the sequential output
scheme. The speedup of XIOS v4 is 3.00x using the same amount of cores and
2.92x using the same amount of nodes.

121

Figure 6.9: Speedup of XIOS v4 against the sequential output scheme with addi-
tional computational resources and GRIB to netCDF conversion cost. In blue the
original amount of resources, in orange the same amount of cores, and in yellow
the same amount of nodes

122

Chapter 7

Conclusions and future work

7.1 Conclusions

In this master’s thesis we have integrated XIOS into IFS with a twofold objective:
reduce the total execution time of the model and reduce the workflow’s critical
path by using online post-processing. In addition, we had a secondary objective
which was to increase the usability of IFS by using an easier output configuration
file compared to the current approach.

In order to achieve the objectives, we have presented a development which is
characterized by being very easy to use. IFS initializes, sets up and finalizes XIOS
through three subroutines. Then, we have designed a scheme to write data at the
end of each output time step. This output scheme is made of three steps: update
calendar, NPROMA blocks gather and send fields. This first development already
improved the execution time with regard the sequential output scheme, despite of
not being optimized. The execution time takes 7773 seconds, while the sequential
output takes 9054 seconds, which adds a 23% of time to the execution of IFS.

After that, we have applied several optimization techniques to improve the bottle-
necks that we detected in the performance analysis.

In the first optimization we have used OpenMP threads to parallelize the NPROMA

123

blocks gather. Although it does not give a large improvement, it is important to
not have threads in idle, while only works the master thread. This optimization
would be especially beneficial when having larger subdomains with less MPI pro-
cesses and more OpenMP threads per MPI process to ensure a good scalability
for any configuration of future developments. The execution time is reduced 68
seconds with regard the first development.

The second optimization is an improvement in the XIOS compilation. After sorting
out all the issues that we were having, we achieved to compile XIOS using the -O3
optimization flag. Not surprisingly, there is an improvement in the execution time,
which is reduced by 76 seconds regarding the previous optimization. This proves
that it is important to compile external libraries using the best optimization flags
of the compiler. Although this could seem trivial, a non-optimized compilation of
external libraries could be a bottleneck for the scalability of a model.

The last optimization is the most beneficial in terms of computational perfor-
mance. We have used more sophisticated tools such as Extrae and Paraver to find
what could be improved. We have realized that there was not a real overlap in
the computation and communication of IFS and XIOS respectively, so we have
designed a new output scheme to re-arrange the steps and achieve an improved
overlap. In this new scheme, the three steps of the first output scheme are split
and placed along the IFS time step. This optimization takes 7507 seconds, im-
proving the execution time by 122 seconds. Thanks to this last optimization, it
is even slightly faster than the MF I/O server, which takes 7519 seconds. Fur-
thermore, it is important to mention that this optimization, which also includes
the previous ones, is only 151 seconds slower than IFS without outputting data at
all, which represents only a 2% of the execution time of IFS. Within 151 seconds,
IFS outputs through XIOS 3.2 TB of data. This optimization proves that the
use of asynchronous communications to overlap with computation is sometimes
not enough. In some cases, an additional study is needed to detect in which areas
computation and communication can be effectively overlapped, taking into account
other communication stages along the complete execution.

We have also considered other optimization techniques such as vectorization with

124

SIMD instructions, memory affinity and derived MPI Datatypes. However, we
have not implemented them due to different reasons: the vectorization of the code
that we would have implemented, it is already done by the compiler; the memory
affinity improvement is already in use in IFS (however, we have proved that its
use is very important for the performance of the execution); and the derived MPI
Datatypes are not possible to be used, since data is sent to XIOS through Fortran
subroutines.

When we also take into account the post-processing task to compare performance
results, the benefit of using XIOS becomes enormous. In both sequential output
and MF I/O server schemes is necessary to convert GRIB files to netCDF files in
the post-processing task, which takes 13680 seconds (3.8 hours). The execution
time is increased up to 22734 seconds in the sequential output and 21199 seconds
in the MF I/O server. Our most optimized version is a 202% faster than the
sequential output scheme and a 182% faster than the MF I/O server. Thus, we
have implemented an scalable development that will address the I/O issue that
is limiting the computational performance of IFS within EC-Earth. It represents
a first step in EC-Earth that will considerably reduce the total execution time of
large experiments, as well as it will increase the efficiency. This does not only imply
to save thousands of computing hours, but also storage space because we will only
store processed data ready to be used, instead of a huge amount of temporary raw
data.

We have actively worked, discussed and collaborated with two European institu-
tions, ECMWF and NLeSC, to succeed in the completion of this master’s thesis.
ECMWF is interested in this work because they will distribute OpenIFS with
XIOS as an optional I/O scheme. They also showed interest to use XIOS for IFS
in its seasonal forecasts, taking into account the benefits of avoiding the GRIB to
netCDF files conversion.

Furthermore, the EC-Earth community is very interested in this work, because it
is one of the key developments that need to be implemented for a future major
release of EC-Earth. Some of the institutions involved in this community are BSC,
KNMI, SMHI, etc.

125

7.2 Future work

In order to keep improving this work, there are several tasks that will be gradually
and sequentially implemented in the future by different institutions:

• It is needed to implement vertical interpolations, but ensuring a user-friendly
output configuration file. The problem it that XIOS has some online post-
processing features that are (still) not available. This will be solved by re-
using code from FullPos, but ensuring that the XIOS output configuration
file does not lose usability.

• All the work done for IFS, will be ported to OpenIFS.

• At that time, XIOS will be already integrated with OpenIFS and NEMO,
so it will be necessary to adapt EC-Earth components to generate on-line
diagnostics through XIOS.

• Port to GPUs the XIOS source code that performs costly computations, such
as diagnostics or interpolations.

126

Acronyms

ADIOS ADaptable I/O System.

AOGCM Atmosphere-Ocean Global Circulation Model.

API Application Programming Interface.

Arpege Action de Recherche Petite Echelle Grande Echelle.

BSC Barcelona Supercomputing Center.

CAM Community Atmosphere Model.

CDI Climate Data Interface.

CDI-pio CDI with parallel I/O.

CDT Cray Developer Toolkit.

CeCILL CEA CNRS INRIA Logiciel Libre.

CESM Community Earth System Model.

CFIO Climate Fast Input/Output.

CMIP Coupled Model Intercomparison Project.

CMOR Climate Model Output Rewriter.

CPU Central Processing Unit.

DART Decoupled and Asynchronous Remote Transfers.

127

DKRZ German Climate Computing Centre.

ECMWF European Centre for Medium-Range Weather Forecasts.

ESM Earth System Modelling.

FDB Fields Data Base.

GPU Graphic Processing Unit.

GRIB General Regularly-distributed Information in Binary form.

H2020 Horizon 2020.

HDF Hierarchical Data Format.

HPC High Performance Computing.

HPCF High Performance Computing Facility.

I/O Input/Output.

IFS Integrated Forecast System.

ILP Instruction Level Parallelism.

IPSL Institute Pierre Simon Laplace.

KNMI Koninklijk Nederlands Meteorologisch Instituut.

MF Météo-France.

MIPS Million Instructions Per Second.

MPG Max-Planck-Institute for Meteorology.

MPI Message Passing Interface.

MPMD Multiple-Program Multiple-Data.

NEMO Nucleus for European Modelling of the Ocean.

128

netCDF Network Common Data Format.

NLeSC Netherlands eScience Center.

NUMA Non-Uniform Memory Access.

NWP Numerical Weather Prediction.

OpenMP Open Multi-Processing.

OST Object Storage Target.

PIO Parallel I/O library.

POSIX Portable Operating System Interface.

PRIMAVERA PRocess-based climate sIMulation: AdVances in high-resolution
modelling and European climate Risk Assessment.

SIMD Single Instruction, Multiple Data.

SMHI Swedish Meteorological and Hydrological Institute.

SMS Supervisor Monitor Scheduler.

SURFEX Surface Externalisée.

WAM WAve Model.

XIAS XIOS Interface for Arpege-climat and Surfex.

XIOS XML Input/Output Server.

XML Extensible Markup Language.

129

References

[1] Efecan Poyraz, Heming Xu, and Yifeng Cui. “Application-specific I/O Opti-
mizations on Petascale Supercomputers”. In: ICCS 2014. 14th International
Conference on Computational Science. Vol. 29. Elsevier, Jan. 2014, pp. 910–
923. doi: 10.1016/J.PROCS.2014.05.082.

[2] C. Prodhomme, L. Batté, F. Massonnet, P. Davini, O. Bellprat, V. Gue-
mas, F. J. Doblas-Reyes, C. Prodhomme, L. Batté, F. Massonnet, P. Davini,
O. Bellprat, V. Guemas, and F. J. Doblas-Reyes. “Benefits of Increasing
the Model Resolution for the Seasonal Forecast Quality in EC-Earth”. In:
Journal of Climate 29.24 (Dec. 2016), pp. 9141–9162. issn: 0894-8755. doi:
10.1175/JCLI-D-16-0117.1.

[3] Hisashi Yashiro, Koji Terasaki, Takemasa Miyoshi, and Hirofumi Tomita.
“Performance evaluation of a throughput-aware framework for ensemble data
assimilation: the case of NICAM-LETKF”. In: Geoscientific Model Develop-
ment 9.7 (2016), pp. 2293–2300. issn: 1991-9603. doi: 10.5194/gmd- 9-
2293-2016.

[4] Adrian Jackson, Fiona Reid, Joachim Hein, Alejandro Soba, and Xavier Saez.
“High Performance I/O”. In: 2011 19th International Euromicro Conference
on Parallel, Distributed and Network-Based Processing. IEEE, Feb. 2011,
pp. 349–356. isbn: 978-1-4244-9682-2. doi: 10.1109/PDP.2011.16.

[5] Xavier Yepes-Arbós, M. C. Acosta, Kim Serradell, Alicia Sanchez Lorente,
and Francisco J. Doblas-Reyes. Simulation-based performance analysis of
EC-Earth 3.2.0 using Dimemas. Tech. rep. 2017, p. 30.

[6] Xavier Yepes-Arbós, M. C. Acosta, Kim Serradell, Alicia Sanchez Lorente,
and Francisco J. Doblas-Reyes. “Simulation-based performance analysis of

130

https://doi.org/10.1016/J.PROCS.2014.05.082
https://doi.org/10.1175/JCLI-D-16-0117.1
https://doi.org/10.5194/gmd-9-2293-2016
https://doi.org/10.5194/gmd-9-2293-2016
https://doi.org/10.1109/PDP.2011.16

EC-Earth 3.2.0 using Dimemas”. In: EGU General Assembly 2017. Vienna:
Copernicus GmbH, 2017.

[7] Xavier Yepes-Arbós, M. C. Acosta, Kim Serradell, Oriol Mula-Valls, and
Francisco J. Doblas-Reyes. Scalability and performance analysis of EC-Earth
3.2.0 using a new metric approach (Part II). Tech. rep. 2016, p. 56.

[8] Mario C. Acosta, Xavier Yepes-Arbós, Kim Serradell, Alicia Sanchez Lorente,
and Francisco J. Doblas-Reyes. Performance study of OpenIFS : towards a
more efficiently scalable model. 2017.

[9] Zhuo Liu, Bin Wang, Teng Wang, Yuan Tian, Cong Xu, Yandong Wang,
Weikuan Yu, Carlos A. Cruz, Shujia Zhou, Tom Clune, and Scott Klasky.
“Profiling and Improving I/O Performance of a Large-Scale Climate Sci-
entific Application”. In: 2013 22nd International Conference on Computer
Communication and Networks (ICCCN). IEEE, July 2013, pp. 1–7. isbn:
978-1-4673-5775-3. doi: 10.1109/ICCCN.2013.6614174.

[10] S.R.M. Barros, D. Dent, L. Isaksen, G. Robinson, G. Mozdzynski, and F.
Wollenweber. “The IFS model: A parallel production weather code”. In:
Parallel Computing 21.10 (1995), pp. 1621–1638. issn: 0167-8191. doi: 10.
1016/0167-8191(96)80002-0.

[11] Wilco Hazeleger, Camiel Severijns, Tido Semmler, Simona Ştefănescu, Shut-
ing Yang, Xueli Wang, Klaus Wyser, Emanuel Dutra, José M. Baldasano,
Richard Bintanja, Philippe Bougeault, Rodrigo Caballero, Annica M. L. Ek-
man, Jens H. Christensen, Bart van den Hurk, Pedro Jimenez, Colin Jones,
Per K̊allberg, Torben Koenigk, Ray McGrath, Pedro Miranda, Twan Van
Noije, Tim Palmer, José A. Parodi, Torben Schmith, Frank Selten, Trude
Storelvmo, Andreas Sterl, Honoré Tapamo, Martin Vancoppenolle, Pedro
Viterbo, and Ulrika Willén. “EC-Earth: A Seamless Earth-System Predic-
tion Approach in Action”. In: Bulletin of the American Meteorological So-
ciety 91.10 (Oct. 2010), pp. 1357–1363. issn: 0003-0007. doi: 10 . 1175 /
2010BAMS2877.1.

[12] PRIMAVERA Wiki. PRIMAVERA. url: http://proj.badc.rl.ac.uk/
primavera (visited on 04/12/2018).

131

https://doi.org/10.1109/ICCCN.2013.6614174
https://doi.org/10.1016/0167-8191(96)80002-0
https://doi.org/10.1016/0167-8191(96)80002-0
https://doi.org/10.1175/2010BAMS2877.1
https://doi.org/10.1175/2010BAMS2877.1
http://proj.badc.rl.ac.uk/primavera
http://proj.badc.rl.ac.uk/primavera

[13] PCMDI - Program For Climate Model Diagnosis and Intercomparison. CMIP
- Coupled Model Intercomparison Project - Overview. url: https://cmip.
llnl.gov (visited on 01/08/2018).

[14] Yann Meurdesoif, A Caubel, R Lacroix, J Dérouillat, and M H Nguyen. XIOS
Tutorial. 2016.

[15] Rajeev Thakur. Parallel I/O and MPI-IO.
[16] Yu-Heng Tseng and Chris Ding. “Efficient Parallel I/O in Community Atmo-

sphere Model (CAM)”. In: The International Journal of High Performance
Computing Applications 22.2 (May 2008), pp. 206–218. issn: 1094-3420. doi:
10.1177/1094342008090914.

[17] Luis Kornblueh, Deike Kleberg, Uwe Schulzweida, Mathias Pütz, Christoph
Pospiech, Thomas Jahns, Moritz Hanke, Jörg Behrens, and Mathis Rosen-
hauer. Parallel I/O for Earth System Modelling. 2012.

[18] Kui Gao, Wei-keng Liao, Arifa Nisar, Alok Choudhary, Robert Ross, and
Robert Latham. “Using Subfiling to Improve Programming Flexibility and
Performance of Parallel Shared-file I/O”. In: 2009 International Conference
on Parallel Processing. IEEE, Sept. 2009, pp. 470–477. isbn: 978-1-4244-
4961-3. doi: 10.1109/ICPP.2009.68.

[19] Yinlong Zou, Wei Xue, and Shenshen Liu. “A case study of large-scale paral-
lel I/O analysis and optimization for numerical weather prediction system”.
In: Future Generation Computer Systems 37 (July 2014), pp. 378–389. issn:
0167-739X. doi: 10.1016/J.FUTURE.2013.12.039.

[20] Moritz Hanke. Parallel I/O: Review on information on techniques for parallel
I/O in High Performance Computing. 2010.

[21] Matthieu Haefele. Parallel I/O for High Performance Computing. 2011.
[22] Message Passing Interface Forum. MPI-2 : Extensions to the Message-Passing

Interface. Tech. rep. 2003, p. 370.
[23] Ramses van Zon. MPI-IO. 2013.
[24] HDF5 Group. HDF5. url: https://support.hdfgroup.org/HDF5 (visited

on 01/02/2018).
[25] Unidata. Network Common Data Form (NetCDF). url: https : / / www .

unidata.ucar.edu/software/netcdf (visited on 01/02/2018).

132

https://cmip.llnl.gov
https://cmip.llnl.gov
https://doi.org/10.1177/1094342008090914
https://doi.org/10.1109/ICPP.2009.68
https://doi.org/10.1016/J.FUTURE.2013.12.039
https://support.hdfgroup.org/HDF5
https://www.unidata.ucar.edu/software/netcdf
https://www.unidata.ucar.edu/software/netcdf

[26] Parallel netCDF Wiki. Network Common Data Form (NetCDF). url: https:
//trac.mcs.anl.gov/projects/parallel-netcdf (visited on 01/02/2018).

[27] John M. Dennis, Jim Edwards, Ray Loy, Robert Jacob, Arthur A. Mirin,
Anthony P. Craig, and Mariana Vertenstein. “An Application Level Parallel
I/O Library for Earth System Models”. In: The International Journal of
High Performance Computing Applications 26.1 (Feb. 2012), pp. 43–53. issn:
1094-3420. doi: 10.1177/1094342011428143.

[28] Moritz Hanke, Joachim Biercamp, Carlos Osuna Escamilla, Thomas Jahns,
Deike Kleberg, Paul Selwood, and Steve Mullerworth. Deliverable 7.3 – Ref-
erence implementations of Parallel I/O and of I/O Server. Tech. rep. 2013.

[29] Github NCAR. Parallel I/O library (PIO). url: http://ncar.github.io/
ParallelIO (visited on 10/24/2017).

[30] Chen Jin, Scott Klasky, Stephen Hodson, Weikuan Yu, Jay Lofstead, Hasan
Abbasi, Karsten Schwan, Matthew Wolf, Wei-keng Liao, Alok Choudhary,
Manish Parashar, Ciprian Docan, and Ron Oldfield. “Adaptive IO System
(ADIOS)”. In: Cray Users Group (CUG) Workshop. 2008, pp. 1–8.

[31] Norbert Podhorszki. Using the Adaptable I/O System (ADIOS). 2014.
[32] Jay Lofstead, Scott Klasky, Hasan Abbasi, and Karsten Schwan. ADaptable

IO System (ADIOS) for Scientific Codes. 2008.
[33] Max-Planck-Institut für Meteorologie. CDI. url: https://code.mpimet.

mpg.de/projects/cdi (visited on 10/24/2017).
[34] Eric Maisonnave, Irina Fast, Thomas Jahns, Joachim Biercamp, Stéphane

Sénési, Yann Meurdesoif, and Uwe Fladrich. CDI-pio & XIOS I/O servers
compatibility with HR climate models. Tech. rep. 2017, p. 19.

[35] X. M. Huang, W. C. Wang, H. H. Fu, G. W. Yang, B. Wang, and C. Zhang.
“A fast input/output library for high-resolution climate models”. In: Geo-
scientific Model Development 7.1 (Jan. 2014), pp. 93–103. issn: 1991-9603.
doi: 10.5194/gmd-7-93-2014.

[36] Yann Meurdesoif, M H Nguyen, R Lacroix, A Caubel, O Abramkina, Y
Wang, and J Dérouillat. XIOS and I/O Where are we? 2017.

[37] Stéphane Sénési. XIAS - XIOS Interface for Arpege-climat and Surfex. Tech.
rep. 2016, p. 17.

133

https://trac.mcs.anl.gov/projects/parallel-netcdf
https://trac.mcs.anl.gov/projects/parallel-netcdf
https://doi.org/10.1177/1094342011428143
http://ncar.github.io/ParallelIO
http://ncar.github.io/ParallelIO
https://code.mpimet.mpg.de/projects/cdi
https://code.mpimet.mpg.de/projects/cdi
https://doi.org/10.5194/gmd-7-93-2014

[38] ECMWF. Atmospheric dynamics. url: https : / / www . ecmwf . int / en /
research/modelling-and-prediction/atmospheric-dynamics (visited
on 10/23/2017).

[39] ECMWF. Atmospheric physics. url: https://www.ecmwf.int/en/research/
modelling-and-prediction/atmospheric-physics (visited on 10/23/2017).

[40] ECMWF. Modelling and Prediction. url: https://www.ecmwf.int/en/
research/modelling-and-prediction (visited on 01/24/2018).

[41] Sarah N. Collins, Robert S. James, Pallav Ray, Katherine Chen, Angie
Lassman, and James Brownlee. “Grids in Numerical Weather and Climate
Models”. In: Climate Change and Regional/Local Responses. Ed. by Yuanzhi
Zhang and Pallav Ray. InTech, 2013. Chap. 4, pp. 111–128. isbn: 978-953-
51-1132-0. doi: 10.5772/55922.

[42] Paul Dando. Changes to ECMWF’s grids in 2016. Reading, 2015.
[43] Sylvie Malardel, Nils Wedi, Willem Deconinck, Michail Diamantakis, Chris-

tian Kühnlein, George Mozdzynski, Mats Hamrud, and Piotr Smolarkiewicz.
“A new grid for the IFS”. In: ECMWF 146 (Jan. 2016), pp. 23–28. doi:
10.21957/zwdu9u5i.

[44] ECMWF. IFS Documentation – Cy43r1 Operational implementation 22 Nov
2016. Part VI: Technical and Computational Procedures. Tech. rep. 2016,
pp. 1–227.

[45] Nils P. Wedi. PrepIFS - User Guide. url: http://www.prism.enes.org/
Software / WSS / prepifs / prepIFSUserGuide / prepIFSUserGuide . html
(visited on 03/19/2018).

[46] Yann Meurdesoif. XIOS User Guide. Tech. rep. 2017, pp. 1–51.
[47] Yann Meurdesoif. XIOS Fortran Reference Guide. Tech. rep. 2017, pp. 1–52.
[48] George J. Boer, Douglas M. Smith, Christophe Cassou, Francisco Doblas-

Reyes, Gokhan Danabasoglu, Ben Kirtman, Yochanan Kushnir, Masahide
Kimoto, Gerald A. Meehl, Rym Msadek, Wolfgang A. Mueller, Karl E. Tay-
lor, Francis Zwiers, Michel Rixen, Yohan Ruprich-Robert, and Rosie Eade.
“The Decadal Climate Prediction Project (DCPP) contribution to CMIP6”.
In: Geoscientific Model Development 9.10 (Oct. 2016), pp. 3751–3777. issn:
1991-9603. doi: 10.5194/gmd-9-3751-2016.

134

https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-dynamics
https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-dynamics
https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics
https://www.ecmwf.int/en/research/modelling-and-prediction/atmospheric-physics
https://www.ecmwf.int/en/research/modelling-and-prediction
https://www.ecmwf.int/en/research/modelling-and-prediction
https://doi.org/10.5772/55922
https://doi.org/10.21957/zwdu9u5i
http://www.prism.enes.org/Software/WSS/prepifs/prepIFSUserGuide/prepIFSUserGuide.html
http://www.prism.enes.org/Software/WSS/prepifs/prepIFSUserGuide/prepIFSUserGuide.html
https://doi.org/10.5194/gmd-9-3751-2016

[49] Brian Eaton, Jonathan Gregory, Bob Drach, Karl Taylor, Steve Hankin, Jon
Blower, John Caron, Rich Signell, Phil Bentley, Greg Rappa, Heinke Höck,
Alison Pamment, Martin Juckes, and Martin Raspaud. NetCDF Climate and
Forecast (CF) Metadata Conventions. Tech. rep. 2009, p. 156.

[50] ECMWF. Supercomputer. url: https://www.ecmwf.int/en/computing/
our-facilities/supercomputer (visited on 01/24/2018).

[51] Lustre. About the Lustre File System. url: http://lustre.org/about
(visited on 04/06/2018).

[52] BSC. BSC tools. url: https://tools.bsc.es (visited on 02/28/2018).
[53] MPI Data Types. 2012.

135

https://www.ecmwf.int/en/computing/our-facilities/supercomputer
https://www.ecmwf.int/en/computing/our-facilities/supercomputer
http://lustre.org/about
https://tools.bsc.es

Appendix A

Grid-point decomposition
variables

Variable Arrays dimensions and description
LSPLITLAT (1:NDGENL)

Logical indicating whether a given row on the ”A” set is split
with another ”A” set.

MYFRSTACTLAT Scalar
The first latitude row (global index) on this ”A” set
(1..NDGLG)
(Equivalent to NFRSTLAT(MYSETA))

MYLATS (1:NDGENL)
The latitude row (global index) a given row on this ”A” set
corresponds to.

MYLSTACTLAT Scalar
The last latitude row (global index) on this ”A” set
(1..NDGLG)
(Equivalent to NLSTLAT(MYSETA))

136

MYPROC Scalar
Logical processor ID (1..NPROC). Note, processor numbering
does not follow the normal Fortran array ordering (row first),
but instead runs in a column first order, so processor ”1” is
in the North Western corner, processor ”2” in to the South of
this and so on

MYSETA Scalar
Which ”A” set (North-South) this processor is in (1..NPRG-
PNS)

MYSETB Scalar
Which ”B” set (East-West) this processor is in (1..NPRG-
PEW)

NDGENL Scalar
Number of latitude rows handled by this ”A” set

NFRSTLAT (1..NPRGPNS)
The first latitude row (global index) for a given ”A” set.
(1..NDGLG)

NFRSTLOFF Scalar
Offset of the first latitude row (global index).
(Equivalent to MYFRSTACTLAT-1)

NLSTLAT (1:NPRGPNS)
The last latitude row (global index) for a given ”A” set.
(1..NDGLG)

NPTRFRSTLAT (1:NPRGPNS)
Index of the first latitude strip on the given ”A” set. (Used
for indexing NSTA and NONL arrays)

NPTRLAT (1:NDGLG)
Index of the first latitude strip of the given global latitude.
(Used for indexing NSTA and NONL arrays)

137

NPTRLSTLAT (1:NPRGPNS)
Index of the last latitude strip on the given ”A” set. (Used
for indexing NSTA and NONL arrays)

NSTA (1:NDGLG+NPRGPNS-1, 1:NPRGPEW)
Number of grid points from Greenwich meridian at the start
of the given latitude strip on the given ”B” set. Counting
starts at 1, so for a grid point at the start of a row (i.e. on
the meridian) NSTA(Index,1)=1

NONL (1:NDGLG+NPRGPNS-1, 1:NPRGPEW)
Number of grid points on this latitude strip within my ”B”
set

Table A.1: Variables describing the grid-point decomposition (Adapted from [44])

138

Figure A.1: Variables describing the grid-point decomposition (Reproduced from
[44])

139

Figure A.2: NSTA and NONL arrays in the grid-point decomposition (Reproduced
from [44])

140

	List of Figures
	List of Tables
	List of Code snippets
	Introduction
	Motivation
	Objectives
	European collaboration
	Document organization

	State-of-the-art
	I/O overview
	Parallel I/O
	I/O servers
	ADIOS
	CDI-pio
	CFIO
	XIOS

	Discussion: comparison and choice

	Context
	IFS description
	Brief overview
	Octahedral reduced Gaussian grid
	Parallelization and domain decomposition
	Data structures
	IFS output schemes
	Environment tools

	XIOS description
	Overview
	Concept
	Initialization
	Finalization
	Grid definition
	Fields
	Files
	Filters
	Performance tuning
	CMIP

	Computing environment

	Development of the IFS-XIOS integration
	Overview
	XIOS setup
	Data and variables module
	Initialization
	Finalization
	Context
	Calendar
	Geometry
	Iodef.xml file

	Grid-point fields transfer
	Environment setup
	XIOS compilation
	Including and linking XIOS
	Parallel netCDF and HDF5 versions
	Model script
	Supporting MPMD mode

	Performance analysis and optimization
	Tools
	Profiling
	Tracing

	Threading with OpenMP
	Optimized compilation of XIOS
	Overlapping computation and communication
	Explored options
	Vectorization with SIMD instructions
	Memory affinity
	Derived MPI Datatypes

	Evaluation
	IFS configuration
	Metrics
	Results
	Optimal number of XIOS servers
	Comparison test between different output schemes
	Comparison test adding the GRIB to netCDF post-processing
	Comparison test with additional computational resources

	Conclusions and future work
	Conclusions
	Future work

	Acronyms
	Appendices
	Grid-point decomposition variables

