

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Improving the throughput of an atmospheric model using an asynchronous parallel I/O server

Xavier Yepes-Arbós

Supervisor: Mario C. Acosta Co-supervisor: Francisco J. Doblas-Reyes Tutor: Daniel Jiménez-González

Master in Innovation and Research in Informatics (MIRI), specialization in High Performance Computing (HPC)

27/04/2018

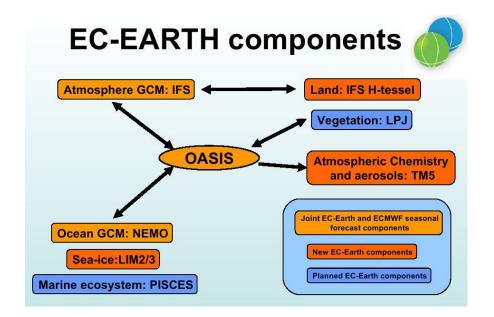
Index

- 1. Introduction
- 2. State-of-the-art overview
- 3. Components description
- 4. IFS-XIOS integration
- 5. Performance analysis and optimization
- 6. Evaluation
- 7. Conclusions

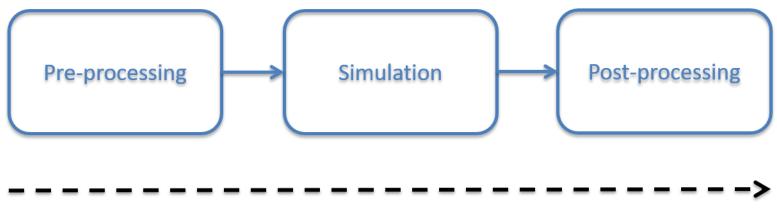
UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación


- IFS is a global forecasting system developed by ECMWF
- It has two different output schemes:
 - The Météo-France (MF) I/O server (ECMWF only)
 - An inefficient sequential I/O scheme (the rest of users)
- The sequential I/O scheme requires a serial process:
 - Gather all data in the master process of the model
 - Then, the master process sequentially writes all data
- This is not scalable for higher grid resolutions, and even less, for future exascale machines
- IFS is also used in some Earth system models, such as EC-Earth

- EC-Earth is a global coupled climate model, which integrates a number of component models in order to simulate the Earth system
- The two main components are IFS as the atmospheric model and NEMO as the ocean model



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

- In addition, Earth system models such as EC-Earth, run experiments that have other tasks in their workflow
- Post-processing task can perform data format conversion, compression, diagnostics, etc.

Critical path = Pre-processing + Simulation + Post-processing

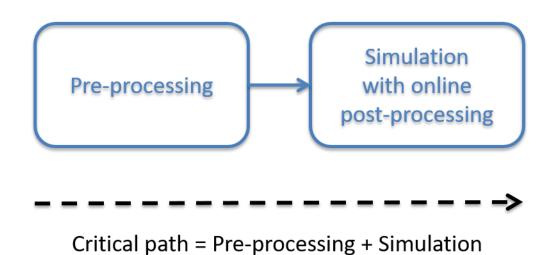
- When IFS is used in EC-Earth for climate modeling, post-processing is needed to:
 - Convert GRIB to netCDF files
 - Transform data to be CMIP-compliant
 - Compute diagnostics
- Post-processing turns into an expensive process

Motivation

- In particular, we are experiencing an I/O bottleneck in the IFS version of EC-Earth
- EC-Earth has been recently used to run ultra-high resolution experiments under the H2020 PRIMAVERA project
- However, it suffers a considerable slowdown, where the I/O in IFS represents about 30% of the total execution time

Motivation

- In order to address the I/O issue, we have to select a suitable tool that fulfills a series of needs:
 - 1. It must be a parallel, efficient and scalable I/O tool
 - 2. Data must be written using netCDF format (standard in climate modelling) and must follow the CMIP standard
 - 3. It must perform online post-processing along with the simulation, such as interpolations or data compression
- There is a tool designed to that end: XIOS
- XIOS is an I/O server



Motivation

The use of a tool such as XIOS has a twofold effect:

- Improve the computational performance and efficiency of a model, and thus, reduce the execution time
- Reduce the critical path of its workflow by avoiding the postprocessing task

Objectives

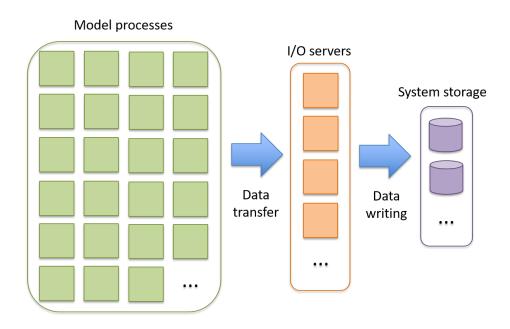
- Improve the I/O performance of IFS to reduce the total execution time and achieve a better computational efficiency
- Reduce the critical path of an experiment by removing the post-processing task
- In addition, increase the usability of IFS using an easier output configuration file

European collaboration

- European Centre for Medium-Range Weather Forecasts (ECMWF)
 - Seasonal predictions
 - XIOS as an optional I/O scheme of OpenIFS
- Netherlands eScience Center (NLeSC)/Koninklijk Nederlands Meteorologisch Instituut (KNMI)
 - Help in decisions: design, setups, etc.

2. State-of-the-art overview

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH


Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

State-of-the-art overview

- Sequential I/O
- Parallel I/O libraries: MPI-IO, HDF5 and netCDF
- I/O servers:
 - ADIOS
 - CDI-pio
 - CFIO
 - XIOS

3. Components description

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

IFS

- The Integrated Forecast System (IFS) is a global data assimilation and forecasting system developed by ECMWF
- It writes using the GRIB format (standard in weather forecast)
- It can use two different output schemes:
 - An inefficient sequential I/O scheme
 - The Météo-France (MF) I/O server



Subdomain decomposition in IFS

- IFS uses a blocking strategy to efficiently parallelize the manipulation of data arrays using OpenMP
- IFS_data_array(NPROMA, NFLEVG, NFIELDS, NGPBLKS)

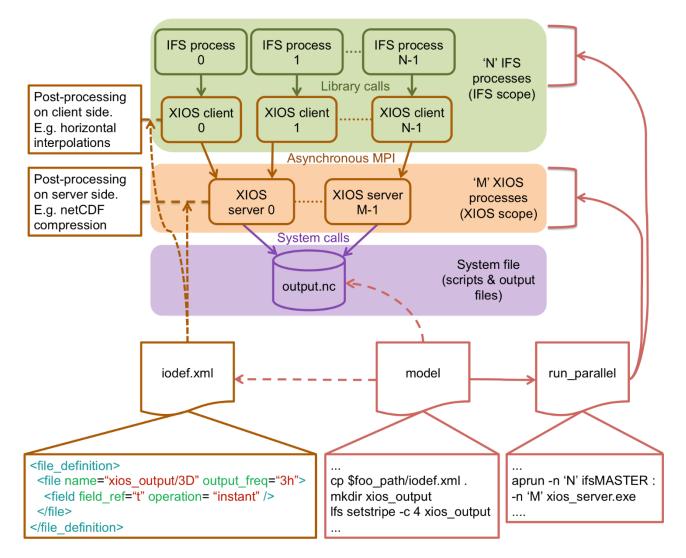
Barcelona Supercomputing Center Centro Nacional de Supercomputación

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

XIOS

- The XML Input/Output Server (XIOS) is an asynchronous MPI parallel I/O server developed by the Institute Pierre Simon Laplace (IPSL)
- It writes using the netCDF format
- Written data is CMIP-compliant
- It is able to post-process data online to generate diagnostics

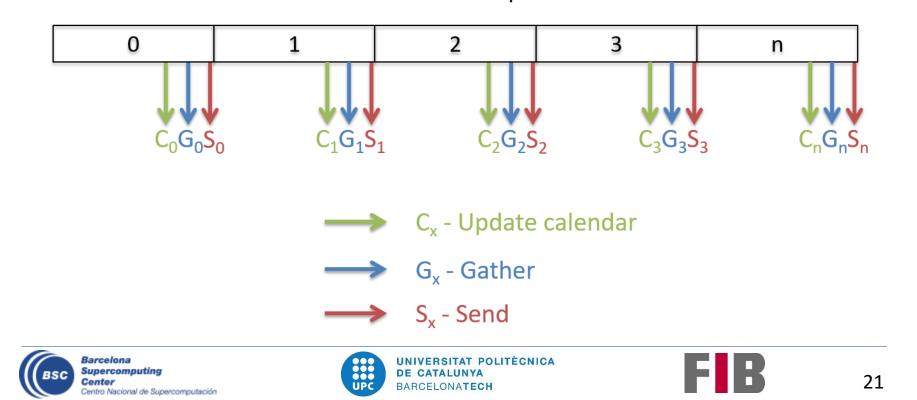
4. IFS-XIOS integration


UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Scheme of IFS-XIOS integration



Output scheme approach

- If it is an output time step, at the end of it IFS sequentially executes three steps
- Otherwise, IFS only executes the update calendar step

IFS time steps

Development steps

- XIOS setup
 - Initialization
 - Finalization
 - Context
 - Calendar
 - Geometry (axis, domain and grid)
 - *lodef.xml* file
- Grid-point fields transfer
 - NPROMA blocks gather
 - Send fields
- Environment setup
 - XIOS compilation
 - Include and link XIOS, netCDF and HDF5
 - Model script
 - Supporting MPMD mode

Development steps

- XIOS setup
 - Initialization
 - Finalization
 - Context
 - Calendar
 - Geometry (axis, domain and grid)
 - *lodef.xml* file
- Grid-point fields transfer
 - NPROMA blocks gather
 - Send fields
- Environment setup
 - XIOS compilation
 - Include and link XIOS, netCDF and HDF5
 - Model script
 - Supporting MPMD mode

NPROMA blocks gather

- The IFS data arrays do not match with the XIOS ones:
 - IFS_data_array(NPROMA, NFLEVG, NFIELDS, NGPBLKS)
 - XIOS_data_array(unidimensional 2D domain, NFLEVG)
- We have to re-shuffle fields data before sending them
- According to the blocking strategy used in IFS, we have to build an XIOS-style array by gathering NPROMA blocks

5. Performance analysis and optimization

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

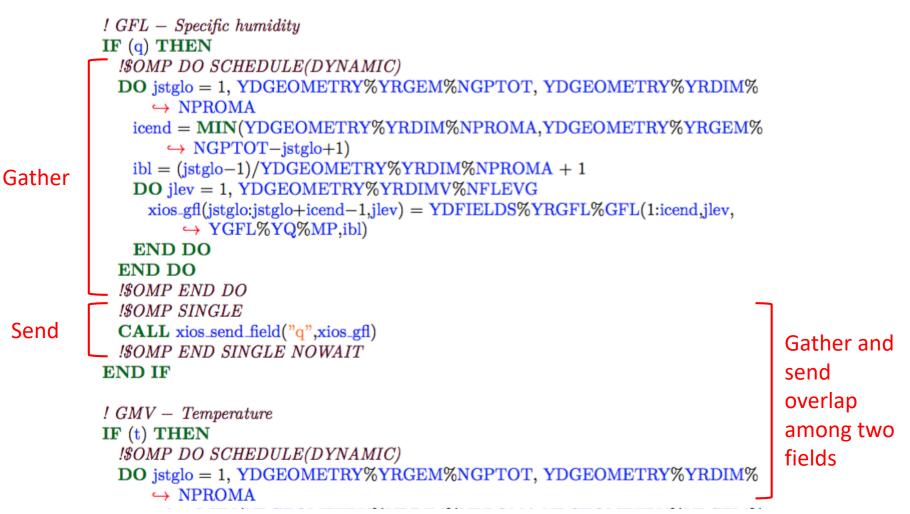
Execution overview

- 702 MPI processes, each with 6 OpenMP threads
- 10 days of forecast with a time step of 600 seconds
- Output size of netCDF files: 3.2 TB
- Execution times:
 - Sequential output: 9054 seconds
 - MF I/O server: 7535 seconds
 - IFS-XIOS integration: 7773 seconds
 - No output: 7356 seconds

• Using GSTATS timers, we profiled the NPROMA blocks gather. For instance, the gather of the ciwc field:

ROUTINECALLSSUM(s)ciwc_GATHER800.5	AVE(ms) 5.8	STDDEV(ms) 0.9	${ m MAX(ms)}\ 6.5$	SUMB(s) 0.0	FRAC(%) 0.01
------------------------------------	----------------	-------------------	---------------------	----------------	-----------------

- It does not take too much time. However, it only works the master thread, while the rest are idle
- This is not efficient and could become a bottleneck

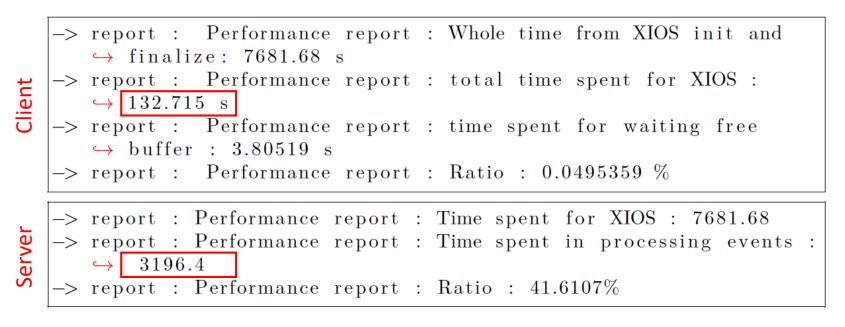

- We used OpenMP to parallelize the NPROMA blocks gather
- In addition, we overlap the send of one field with the gather of the next one


```
!$OMP PARALLEL PRIVATE(jstglo,icend,ibl,jlev)
```


• The profiling shows an improvement:

ROUTINECALLSSUM(solutionciwc_GATHER800.1		MAX(ms) 2.3	FRAC(%) 0.00

 The execution time is reduced 68 seconds, from 7773 seconds to 7705 seconds



Optimized compilation of XIOS

- We had a lot of issues to optimally compile XIOS
- For this reason, we used a conservative option: -O1
- XIOS reports too much time for just outputting data:

Optimized compilation of XIOS

- A bug was previously reported in the compilation of XIOS using -O2 and -O3 for Cray compilers
- However, it was reported using older Cray compilers, so it might be solved in newer versions
- Certainly, XIOS compiled and tests successfully passed

Optimized compilation of XIOS

The execution time in both client and server sides is reduced

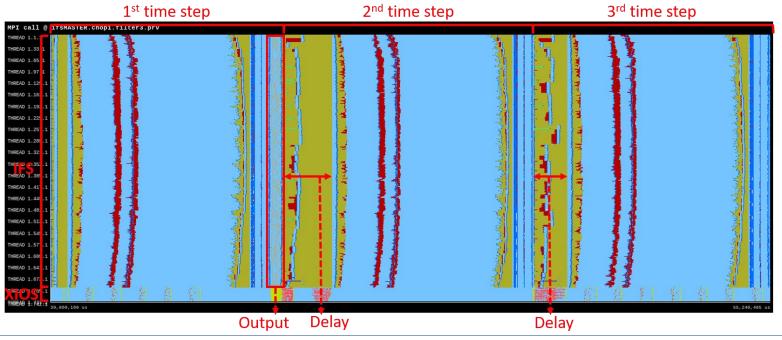
	\rightarrow report : Performance report : Whole time from XIOS init and \rightarrow finalize: 7562.36 s
ent	\rightarrow report : Performance report : total time spent for XIOS : \rightarrow 40.3018 s
Clie	-> report : Performance report : time spent for waiting free \hookrightarrow buffer : 0.463693 s
	\rightarrow report : Performance report : Ratio : 0.00613159 %
L	-> report : Performance report : Time spent for XIOS : 7562.37
Vel	-> report : Performance report : Time spent in processing events :
Sei	$\xrightarrow{\hookrightarrow} 1382.16$ $$ report : Performance report : Ratio : 18.2768%

• The execution time is reduced 76 seconds, from 7705 seconds to 7629 seconds

Overlapping computation and communication

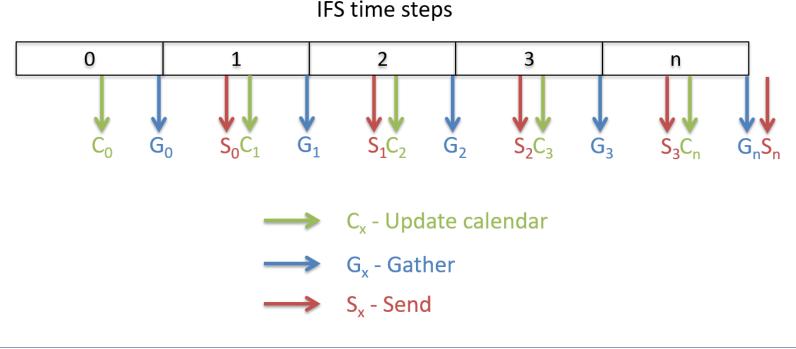
In an output time step, there is a slight increase in the execution time of the three following time steps

Non-output							
	12:24:55	0AAA00AAA STEPO	318	27.370	27.370	4.592	167:53
	$12\!:\!25\!:\!02$	0AAA00AAA STEPO	319	39.994	39.994	6.708	168:33
	$12\!:\!25\!:\!07$	0AAA00AAA STEPO	320	28.826	28.826	4.826	169:02
	$12\!:\!25\!:\!12$	0AAA00AAA STEPO	321	28.034	28.034	4.701	169:30
	$12\!:\!25\!:\!16$	0AAA00AAA STEPO	322	27.770	27.770	4.655	169:58
Output	$12\!:\!25\!:\!21$	0AAA00AAA STEPO	323	27.690	27.690	4.654	170:26
	12:25:26	0AAA00AAA STEPO	324	27.854	27.854	4.679	170:53
	$12\!:\!25\!:\!33$	0AAA00AAA STEPO	325	42.771	42.771	7.158	171:36
	$12\!:\!25\!:\!38$	0AAA00AAA STEPO	326	30.114	30.114	5.044	172:06
	$12\!:\!25\!:\!43$	0AAA00AAA STEPO	327	30.870	30.870	5.181	172:37
	12:25:48	0AAA00AAA STEPO	328	27.874	27.874	4.682	173:05



Overlapping computation and communication

- The trace shows that after an output time step, there is a delay in the communication of the next two time steps (MPI_Waitany and MPI_Alltoallv)
- There is a conflict between intra IFS communication and IFS to XIOS communication



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Overlapping computation and communication

- We used a new output scheme to truly overlap XIOS communication with IFS computation
- It splits the three needed steps to output data through XIOS:

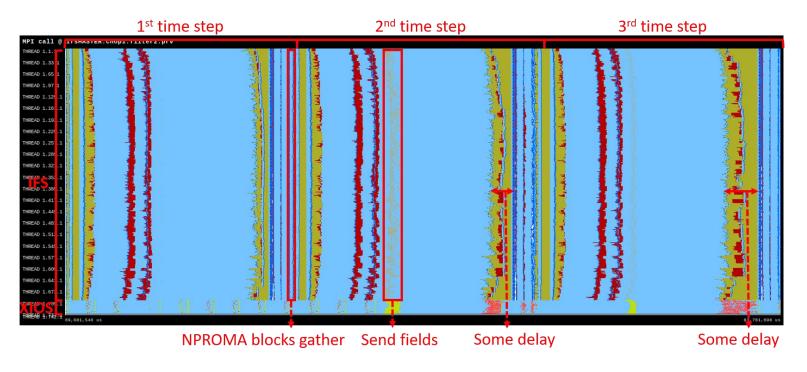
UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Overlapping computation and communication

 This new scheme improves the execution time of the three time steps that follow an output time step:

Non-output							1
	12:27:45	0AAA00AAA STEPO	318	26.926	26.926	4.514	162:23
Output	12:27:52	0AAA00AAA STEPO	319	38.414	38.414	6.441	163:01
	12:27:56	0AAA00AAA STEPO	320	27.054	27.054	4.535	163:28
	12:28:01	0AAA00AAA STEPO	321	27.030	27.030	4.534	163:55
	12:28:05	0AAA00AAA STEPO	322	26.882	26.882	4.502	164:22
	12:28:10	0AAA00AAA STEPO	323	27.394	27.394	4.607	164:50
	12:28:15	0AAA00AAA STEPO	324	27.142	27.142	4.549	165:17
	12:28:21	0AAA00AAA STEPO	325	39.310	39.310	6.579	165:56
	12:28:26	0AAA00AAA STEPO	326	28.318	28.318	4.755	166:24
	12:28:31	0AAA00AAA STEPO	327	28.686	28.686	4.813	166:53
	12:28:35	0AAA00AAA STEPO	328	26.990	26.990	4.527	167:20
	L						

• The execution time is reduced 122 seconds, from 7629 seconds to 7507 seconds



Overlapping computation and communication

- The trace shows that there is no delay at the beginning of the 2nd and 3rd time steps
- However, there is some delay at the end, but it is less significant

6. Evaluation

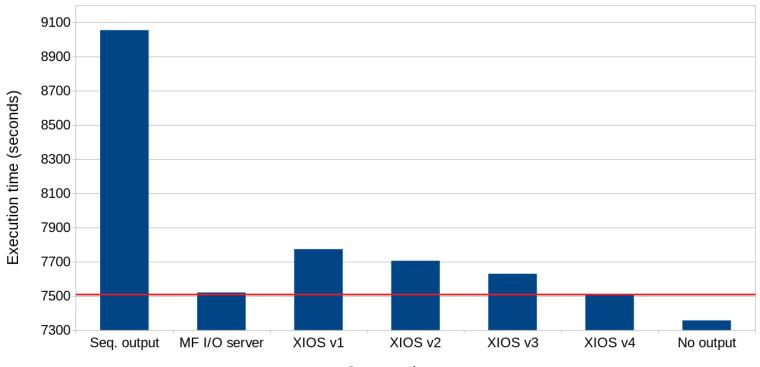
UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

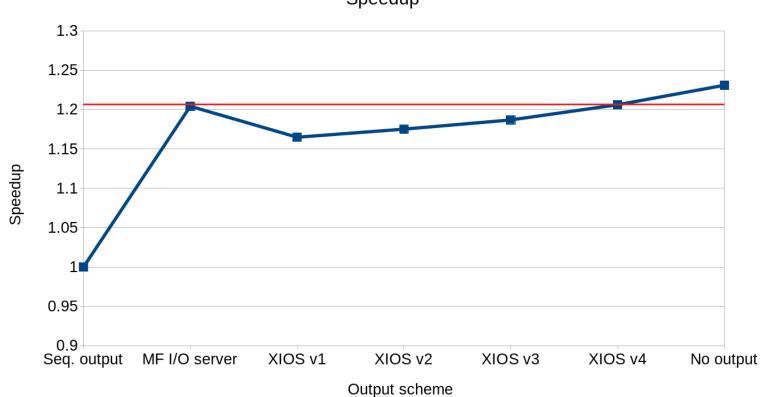
Optimal number of XIOS servers

Optimal number of XIOS servers

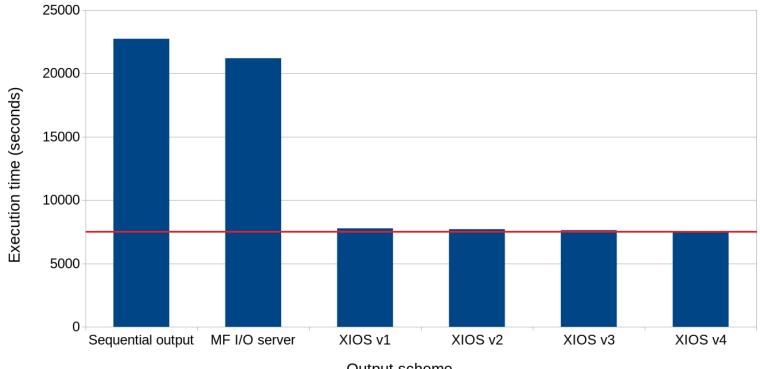


Comparison test

Average execution time

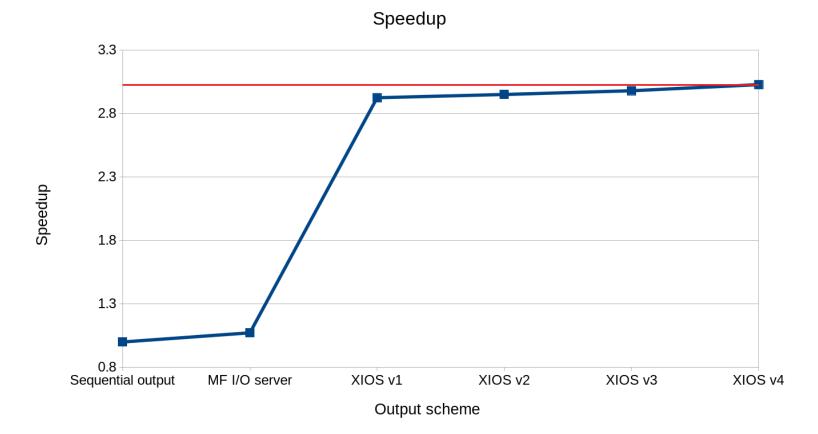

Output scheme

Comparison test



Comparison test adding GRIB to netCDF post-processing

Average execution time


Output scheme

Comparison test adding GRIB to netCDF post-processing

Comparison test with additional computational resources and GRIB to netCDF post-processing

- In this test, we add to the IFS processes of the sequential I/O scheme the equivalent of the computational resources needed to run XIOS
- XIOS uses 10 cores spread along 10 nodes
- Then, the execution times with the additional resources are:
 - XIOS v4 (702 IFS + 10 XIOS) \rightarrow 7507 seconds
 - Seq. I/O (702 IFS) \rightarrow 22734 seconds
 - Seq. I/O (702 + 10 cores = 712 IFS) \rightarrow 22583 seconds
 - Seq. I/O (702 + 120 cores* = 822 IFS) \rightarrow 21962 seconds

*According to the IFS affinity used, 10 nodes = 120 cores

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

- We have presented an easy-to-use development
- The integration with no optimization already improved the execution time:
 - Sequential output 9054 seconds (23% of overhead) → IFS-XIOS integration 7773 seconds (5.6% of overhead)
- Using OpenMP to parallelize the NPROMA blocks gather, the execution time is reduced by 68 seconds
 - It is really important to make an scalable gather, because it could become a bottleneck for future higher grid resolutions

- Using an optimized compilation of XIOS, the execution time is reduced by 76 seconds
 - This optimization proves that it is important to compile external libraries using the best optimization flags
- Using a better overlapping between IFS computation and XIOS communication, the execution time is reduced by 122 seconds
 - It is sometimes necessary to analyse in which places computation and communication can be effectively overlapped

- Performance highlights of the most optimized version:
 - It is slightly faster than the MF I/O server: 7519 s vs. 7507 s
 - It is only 151 seconds slower than no output (2% of overhead)
 - Within 151 seconds IFS outputs 3.2 TB of data
- When post-processing to convert GRIB to netCDF files is taken into account:
 - The post-processing takes 13680 seconds (3.8 hours)
 - Thus, the most optimized version is a 202% faster than the sequential output and a 182% faster than the MF I/O server

- These numbers denote that we have implemented an scalable and efficient development that will address the I/O issue
- In EC-Earth, this new I/O development will:
 - Increase the performance and efficiency of the whole model
 - Perform online post-processing operations
 - Save thousands of computing hours
 - Save storage space, because it will only store processed data ready to be used

- These numbers denote that we have implemented an scalable and efficient development that will address the I/O issue
- In EC-Earth, this new I/O development will:
 - Increase the performance and efficiency of the whole model
 - Perform online post-processing operations
 - Save thousands of computing hours
 - Save storage space, because it will only store processed data ready to be used

https://www.youtube.com/watch?v=OGc1TidI0rA

Barcelona Supercomputing Center Centro Nacional de Supercomputación

EXCELENCIA SEVERO OCHOA

Thank you!

xavier.yepes@bsc.es

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Improving the throughput of an atmospheric model using an asynchronous parallel I/O server

Xavier Yepes-Arbós

Supervisor: Mario C. Acosta Co-supervisor: Francisco J. Doblas-Reyes Tutor: Daniel Jiménez-González

Master in Innovation and Research in Informatics (MIRI), specialization in High Performance Computing (HPC)

27/04/2018

Appendix

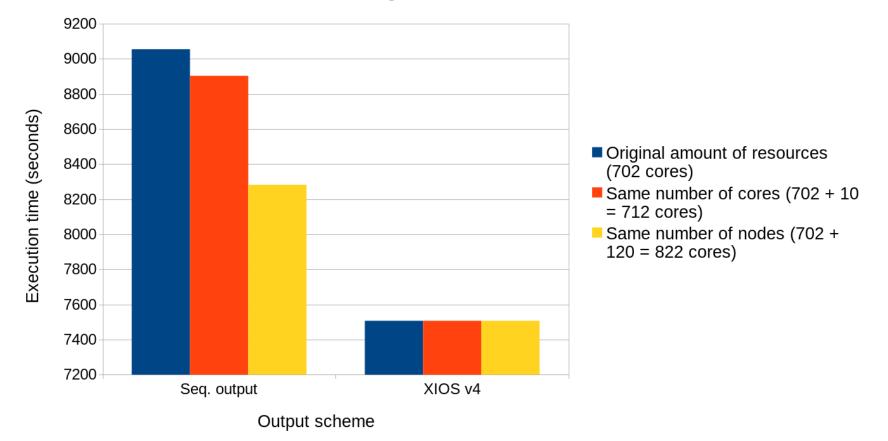
UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Barcelona Supercomputing Center Centro Nacional de Supercomputación

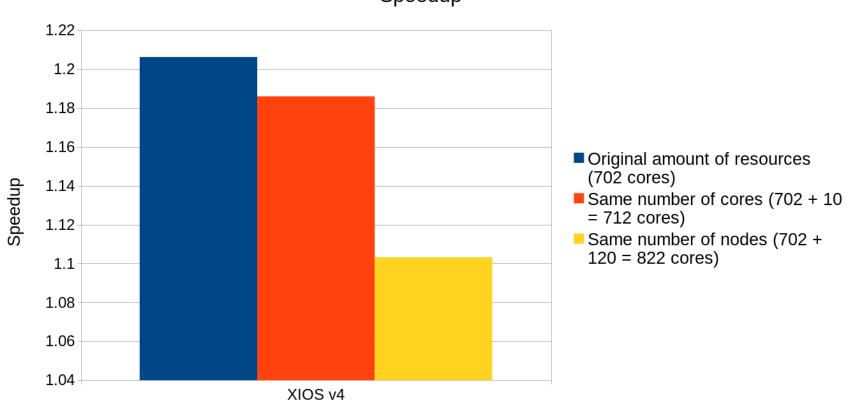
Future work

- Implement vertical interpolations, but ensuring a userfriendly output configuration file
- The development done for IFS will be ported to OpenIFS
- Adapt EC-Earth components to generate online diagnostics through XIOS
- Port to GPUs the XIOS source code that performs costly computations



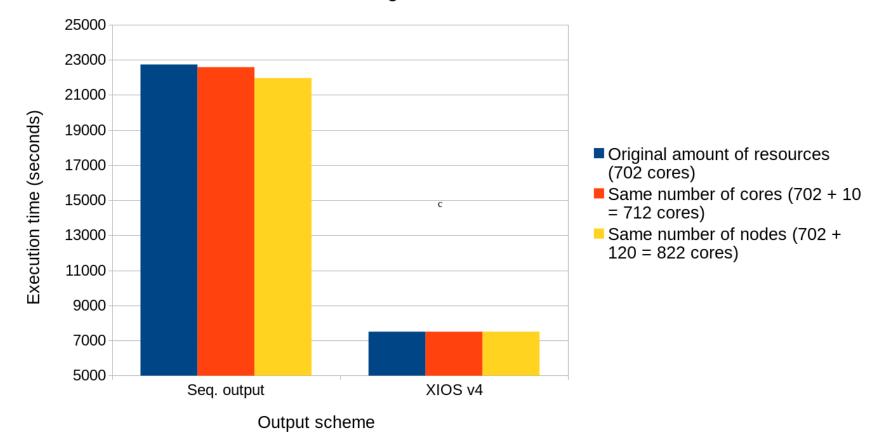
Comparison test with additional computational resources

Average execution time

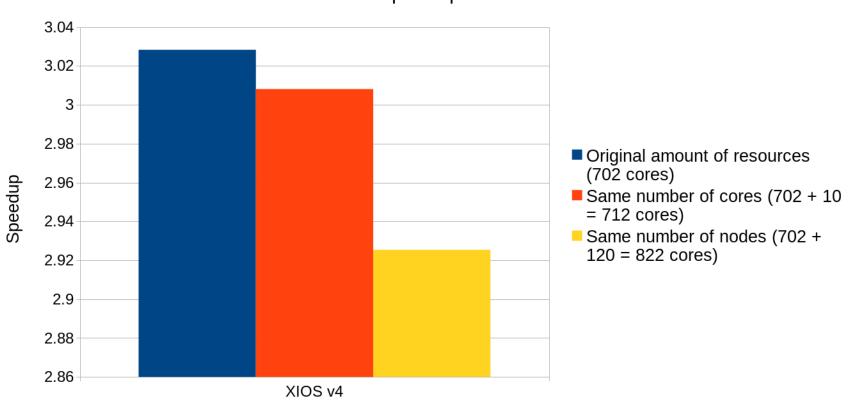


Comparison test with additional computational resources

Speedup


Output scheme

Comparison test with additional computational resources and GRIB to netCDF post-processing


Average execution time

Comparison test with additional computational resources and GRIB to netCDF post-processing

Speedup

Output scheme

