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1. Introduction



Introduction

• IFS is a global forecasting system developed by ECMWF

• It has two different output schemes:
• The Météo-France (MF) I/O server (ECMWF only)

• An inefficient sequential I/O scheme (the rest of users)

• The sequential I/O scheme requires a serial process:
• Gather all data in the master process of the model

• Then, the master process sequentially writes all data

• This is not scalable for higher grid resolutions, and even 
less, for future exascale machines

• IFS is also used in some Earth system models, such as 
EC-Earth
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Introduction

• EC-Earth is a global coupled climate model, which 
integrates a number of component models in order to 
simulate the Earth system

• The two main components are IFS as the atmospheric 
model and NEMO as the ocean model
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Introduction

• In addition, Earth system models such as EC-Earth, run 
experiments that have other tasks in their workflow

• Post-processing task can perform data format 
conversion, compression, diagnostics, etc.
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Introduction

• When IFS is used in EC-Earth for climate modeling, 
post-processing is needed to:
• Convert GRIB to netCDF files

• Transform data to be CMIP-compliant

• Compute diagnostics

• Post-processing turns into an expensive process
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Motivation

• In particular, we are experiencing an I/O bottleneck in 
the IFS version of EC-Earth

• EC-Earth has been recently used to run ultra-high 
resolution experiments under the H2020 PRIMAVERA 
project

• However, it suffers a considerable slowdown, where 
the I/O in IFS represents about 30% of the total 
execution time
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Motivation

• In order to address the I/O issue, we have to select a 
suitable tool that fulfills a series of needs:

1. It must be a parallel, efficient and scalable I/O tool

2. Data must be written using netCDF format (standard in 
climate modelling) and must follow the CMIP standard

3. It must perform online post-processing along with the 
simulation, such as interpolations or data compression

• There is a tool designed to that end: XIOS

• XIOS is an I/O server
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Motivation

The use of a tool such as XIOS has a twofold effect:
• Improve the computational performance and efficiency of a 

model, and thus, reduce the execution time

• Reduce the critical path of its workflow by avoiding the post-
processing task
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Objectives

• Improve the I/O performance of IFS to reduce the total 
execution time and achieve a better computational 
efficiency

• Reduce the critical path of an experiment by removing 
the post-processing task

• In addition, increase the usability of IFS using an easier 
output configuration file
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European collaboration

• European Centre for Medium-Range Weather Forecasts 
(ECMWF)
• Seasonal predictions

• XIOS as an optional I/O scheme of OpenIFS

• Netherlands eScience Center (NLeSC)/Koninklijk
Nederlands Meteorologisch Instituut (KNMI)
• Help in decisions: design, setups, etc.
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2. State-of-the-art 
overview



State-of-the-art overview

• Sequential I/O

• Parallel I/O libraries: MPI-IO, HDF5 and netCDF

• I/O servers:
• ADIOS

• CDI-pio

• CFIO

• XIOS
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3. Components 
description



IFS

• The Integrated Forecast System (IFS) is a global data 
assimilation and forecasting system developed by 
ECMWF

• It writes using the GRIB format (standard in weather 
forecast)

• It can use two different output schemes:
• An inefficient sequential I/O scheme

• The Météo-France (MF) I/O server
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Subdomain decomposition in IFS

• IFS uses a blocking strategy to efficiently parallelize the 
manipulation of data arrays using OpenMP

• IFS_data_array(NPROMA, NFLEVG, NFIELDS, NGPBLKS)

NFLEVG

NPROMA

NGPBLKS 
block

One element

17



XIOS

• The XML Input/Output Server (XIOS) is an 
asynchronous MPI parallel I/O server developed by the 
Institute Pierre Simon Laplace (IPSL)

• It writes using the netCDF format

• Written data is CMIP-compliant

• It is able to post-process data online to generate 
diagnostics
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4. IFS-XIOS 
integration



Scheme of IFS-XIOS integration
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Output scheme approach

• If it is an output time step, at the end of it IFS 
sequentially executes three steps

• Otherwise, IFS only executes the update calendar step
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Development steps

• XIOS setup
• Initialization
• Finalization
• Context

• Calendar
• Geometry (axis, domain and grid)

• Iodef.xml file

• Grid-point fields transfer
• NPROMA blocks gather
• Send fields

• Environment setup
• XIOS compilation
• Include and link XIOS, netCDF and HDF5
• Model script
• Supporting MPMD mode
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NPROMA blocks gather

• The IFS data arrays do not match with the XIOS ones:
• IFS_data_array(NPROMA, NFLEVG, NFIELDS, NGPBLKS)

• XIOS_data_array(unidimensional 2D domain, NFLEVG)

• We have to re-shuffle fields data before sending them

• According to the blocking strategy used in IFS, we have 
to build an XIOS-style array by gathering NPROMA 
blocks
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5. Performance 
analysis and 
optimization



Execution overview

• 702 MPI processes, each with 6 OpenMP threads

• 10 days of forecast with a time step of 600 seconds

• Output size of netCDF files: 3.2 TB

• Execution times:
• Sequential output: 9054 seconds

• MF I/O server: 7535 seconds

• IFS-XIOS integration: 7773 seconds

• No output: 7356 seconds
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Threading with OpenMP

• Using GSTATS timers, we profiled the NPROMA blocks 
gather. For instance, the gather of the ciwc field:

• It does not take too much time. However, it only works 
the master thread, while the rest are idle

• This is not efficient and could become a bottleneck
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Threading with OpenMP

• We used OpenMP to parallelize the NPROMA blocks 
gather

• In addition, we overlap the send of one field with the 
gather of the next one
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Threading with OpenMP

Gather

Send
Gather and 
send 
overlap 
among two 
fields
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Threading with OpenMP

• The profiling shows an improvement:

• The execution time is reduced 68 seconds, from 7773 
seconds to 7705 seconds
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Optimized compilation of XIOS

• We had a lot of issues to optimally compile XIOS

• For this reason, we used a conservative option: -O1

• XIOS reports too much time for just outputting data:
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Optimized compilation of XIOS

• A bug was previously reported in the compilation of 
XIOS using -O2 and -O3 for Cray compilers

• However, it was reported using older Cray compilers, so 
it might be solved in newer versions

• Certainly, XIOS compiled and tests successfully passed
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Optimized compilation of XIOS

• The execution time in both client and server sides is 
reduced

• The execution time is reduced 76 seconds, from 7705 
seconds to 7629 seconds
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Overlapping computation and 
communication

In an output time step, there is a slight increase in the 
execution time of the three following time steps

Non-output

Output

34



Overlapping computation and 
communication

• The trace shows that after an output time step, there is 
a delay in the communication of the next two time 
steps (MPI_Waitany and MPI_Alltoallv)

• There is a conflict between intra IFS communication 
and IFS to XIOS communication
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Overlapping computation and 
communication

• We used a new output scheme to truly overlap XIOS 
communication with IFS computation

• It splits the three needed steps to output data through 
XIOS:
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Overlapping computation and 
communication

• This new scheme improves the execution time of the 
three time steps that follow an output time step:

• The execution time is reduced 122 seconds, from 7629 
seconds to 7507 seconds

Output
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Overlapping computation and 
communication

• The trace shows that there is no delay at the beginning 
of the 2nd and 3rd time steps

• However, there is some delay at the end, but it is less 
significant
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6. Evaluation



Optimal number of XIOS servers
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Comparison test 
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Comparison test 
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Comparison test adding GRIB to netCDF
post-processing
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Comparison test adding GRIB to netCDF
post-processing
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Comparison test with additional computational 
resources and GRIB to netCDF post-processing

• In this test, we add to the IFS processes of the 
sequential I/O scheme the equivalent of the 
computational resources needed to run XIOS

• XIOS uses 10 cores spread along 10 nodes

• Then, the execution times with the additional 
resources are:
• XIOS v4 (702 IFS + 10 XIOS) → 7507 seconds

• Seq. I/O (702 IFS) → 22734 seconds

• Seq. I/O (702 + 10 cores = 712 IFS) → 22583 seconds

• Seq. I/O (702 + 120 cores* = 822 IFS) → 21962 seconds
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7. Conclusions



Conclusions

• We have presented an easy-to-use development

• The integration with no optimization already improved 
the execution time:
• Sequential output 9054 seconds (23% of overhead) → IFS-

XIOS integration 7773 seconds (5.6% of overhead)

• Using OpenMP to parallelize the NPROMA blocks 
gather, the execution time is reduced by 68 seconds
• It is really important to make an scalable gather, because it 

could become a bottleneck for future higher grid resolutions
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Conclusions

• Using an optimized compilation of XIOS, the execution 
time is reduced by 76 seconds
• This optimization proves that it is important to compile 

external libraries using the best optimization flags

• Using a better overlapping between IFS computation 
and XIOS communication, the execution time is 
reduced by 122 seconds
• It is sometimes necessary to analyse in which places 

computation and communication can be effectively 
overlapped

48



Conclusions

• Performance highlights of the most optimized version:
• It is slightly faster than the MF I/O server: 7519 s vs. 7507 s

• It is only 151 seconds slower than no output (2% of overhead)

• Within 151 seconds IFS outputs 3.2 TB of data

• When post-processing to convert GRIB to netCDF files 
is taken into account:
• The post-processing takes 13680 seconds (3.8 hours)

• Thus, the most optimized version is a 202% faster than the 
sequential output and a 182% faster than the MF I/O server
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Conclusions

• These numbers denote that we have implemented an 
scalable and efficient development that will address 
the I/O issue

• In EC-Earth, this new I/O development will:
• Increase the performance and efficiency of the whole model

• Perform online post-processing operations

• Save thousands of computing hours

• Save storage space, because it will only store processed data 
ready to be used
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Save money!

https://www.youtube.com/watch?v=OGc1TidI0rA

https://www.youtube.com/watch?v=OGc1TidI0rA


Thank you! 

xavier.yepes@bsc.es



Improving the throughput 
of an atmospheric model 
using an asynchronous 
parallel I/O server

Xavier Yepes-Arbós

27/04/2018
Master in Innovation and Research in 
Informatics (MIRI), specialization in 
High Performance Computing (HPC)

Supervisor: Mario C. Acosta

Co-supervisor: Francisco J. Doblas-Reyes

Tutor: Daniel Jiménez-González



Appendix



Future work

• Implement vertical interpolations, but ensuring a user-
friendly output configuration file

• The development done for IFS will be ported to 
OpenIFS

• Adapt EC-Earth components to generate online 
diagnostics through XIOS

• Port to GPUs the XIOS source code that performs costly 
computations
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Comparison test with additional 
computational resources
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Comparison test with additional 
computational resources
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Comparison test with additional computational 
resources and GRIB to netCDF post-processing
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Comparison test with additional computational 
resources and GRIB to netCDF post-processing
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