
Improving the throughput 
of an atmospheric model 
using an asynchronous 
parallel I/O server

Xavier Yepes-Arbós

27/04/2018
Master in Innovation and Research in 
Informatics (MIRI), specialization in 
High Performance Computing (HPC)

Supervisor: Mario C. Acosta

Co-supervisor: Francisco J. Doblas-Reyes

Tutor: Daniel Jiménez-González



Index

1. Introduction

2. State-of-the-art overview

3. Components description

4. IFS-XIOS integration

5. Performance analysis and optimization

6. Evaluation

7. Conclusions

2



1. Introduction



Introduction

• IFS is a global forecasting system developed by ECMWF

• It has two different output schemes:
• The Météo-France (MF) I/O server (ECMWF only)

• An inefficient sequential I/O scheme (the rest of users)

• The sequential I/O scheme requires a serial process:
• Gather all data in the master process of the model

• Then, the master process sequentially writes all data

• This is not scalable for higher grid resolutions, and even 
less, for future exascale machines

• IFS is also used in some Earth system models, such as 
EC-Earth

4



Introduction

• EC-Earth is a global coupled climate model, which 
integrates a number of component models in order to 
simulate the Earth system

• The two main components are IFS as the atmospheric 
model and NEMO as the ocean model

5



Introduction

• In addition, Earth system models such as EC-Earth, run 
experiments that have other tasks in their workflow

• Post-processing task can perform data format 
conversion, compression, diagnostics, etc.

6



Introduction

• When IFS is used in EC-Earth for climate modeling, 
post-processing is needed to:
• Convert GRIB to netCDF files

• Transform data to be CMIP-compliant

• Compute diagnostics

• Post-processing turns into an expensive process

7



Motivation

• In particular, we are experiencing an I/O bottleneck in 
the IFS version of EC-Earth

• EC-Earth has been recently used to run ultra-high 
resolution experiments under the H2020 PRIMAVERA 
project

• However, it suffers a considerable slowdown, where 
the I/O in IFS represents about 30% of the total 
execution time

8



Motivation

• In order to address the I/O issue, we have to select a 
suitable tool that fulfills a series of needs:

1. It must be a parallel, efficient and scalable I/O tool

2. Data must be written using netCDF format (standard in 
climate modelling) and must follow the CMIP standard

3. It must perform online post-processing along with the 
simulation, such as interpolations or data compression

• There is a tool designed to that end: XIOS

• XIOS is an I/O server

9



Motivation

The use of a tool such as XIOS has a twofold effect:
• Improve the computational performance and efficiency of a 

model, and thus, reduce the execution time

• Reduce the critical path of its workflow by avoiding the post-
processing task

10



Objectives

• Improve the I/O performance of IFS to reduce the total 
execution time and achieve a better computational 
efficiency

• Reduce the critical path of an experiment by removing 
the post-processing task

• In addition, increase the usability of IFS using an easier 
output configuration file

11



European collaboration

• European Centre for Medium-Range Weather Forecasts 
(ECMWF)
• Seasonal predictions

• XIOS as an optional I/O scheme of OpenIFS

• Netherlands eScience Center (NLeSC)/Koninklijk
Nederlands Meteorologisch Instituut (KNMI)
• Help in decisions: design, setups, etc.

12



2. State-of-the-art 
overview



State-of-the-art overview

• Sequential I/O

• Parallel I/O libraries: MPI-IO, HDF5 and netCDF

• I/O servers:
• ADIOS

• CDI-pio

• CFIO

• XIOS

14



3. Components 
description



IFS

• The Integrated Forecast System (IFS) is a global data 
assimilation and forecasting system developed by 
ECMWF

• It writes using the GRIB format (standard in weather 
forecast)

• It can use two different output schemes:
• An inefficient sequential I/O scheme

• The Météo-France (MF) I/O server

16



Subdomain decomposition in IFS

• IFS uses a blocking strategy to efficiently parallelize the 
manipulation of data arrays using OpenMP

• IFS_data_array(NPROMA, NFLEVG, NFIELDS, NGPBLKS)

NFLEVG

NPROMA

NGPBLKS 
block

One element

17



XIOS

• The XML Input/Output Server (XIOS) is an 
asynchronous MPI parallel I/O server developed by the 
Institute Pierre Simon Laplace (IPSL)

• It writes using the netCDF format

• Written data is CMIP-compliant

• It is able to post-process data online to generate 
diagnostics

18



4. IFS-XIOS 
integration



Scheme of IFS-XIOS integration

20



Output scheme approach

• If it is an output time step, at the end of it IFS 
sequentially executes three steps

• Otherwise, IFS only executes the update calendar step

21



Development steps

• XIOS setup
• Initialization
• Finalization
• Context

• Calendar
• Geometry (axis, domain and grid)

• Iodef.xml file

• Grid-point fields transfer
• NPROMA blocks gather
• Send fields

• Environment setup
• XIOS compilation
• Include and link XIOS, netCDF and HDF5
• Model script
• Supporting MPMD mode

22



Development steps

• XIOS setup
• Initialization
• Finalization
• Context

• Calendar
• Geometry (axis, domain and grid)

• Iodef.xml file

• Grid-point fields transfer
• NPROMA blocks gather
• Send fields

• Environment setup
• XIOS compilation
• Include and link XIOS, netCDF and HDF5
• Model script
• Supporting MPMD mode

23



NPROMA blocks gather

• The IFS data arrays do not match with the XIOS ones:
• IFS_data_array(NPROMA, NFLEVG, NFIELDS, NGPBLKS)

• XIOS_data_array(unidimensional 2D domain, NFLEVG)

• We have to re-shuffle fields data before sending them

• According to the blocking strategy used in IFS, we have 
to build an XIOS-style array by gathering NPROMA 
blocks

24



5. Performance 
analysis and 
optimization



Execution overview

• 702 MPI processes, each with 6 OpenMP threads

• 10 days of forecast with a time step of 600 seconds

• Output size of netCDF files: 3.2 TB

• Execution times:
• Sequential output: 9054 seconds

• MF I/O server: 7535 seconds

• IFS-XIOS integration: 7773 seconds

• No output: 7356 seconds

26



Threading with OpenMP

• Using GSTATS timers, we profiled the NPROMA blocks 
gather. For instance, the gather of the ciwc field:

• It does not take too much time. However, it only works 
the master thread, while the rest are idle

• This is not efficient and could become a bottleneck

27



Threading with OpenMP

• We used OpenMP to parallelize the NPROMA blocks 
gather

• In addition, we overlap the send of one field with the 
gather of the next one

28



Threading with OpenMP

Gather

Send
Gather and 
send 
overlap 
among two 
fields

29



Threading with OpenMP

• The profiling shows an improvement:

• The execution time is reduced 68 seconds, from 7773 
seconds to 7705 seconds

30



Optimized compilation of XIOS

• We had a lot of issues to optimally compile XIOS

• For this reason, we used a conservative option: -O1

• XIOS reports too much time for just outputting data:

C
lie

n
t

Se
rv

er

31



Optimized compilation of XIOS

• A bug was previously reported in the compilation of 
XIOS using -O2 and -O3 for Cray compilers

• However, it was reported using older Cray compilers, so 
it might be solved in newer versions

• Certainly, XIOS compiled and tests successfully passed

32



Optimized compilation of XIOS

• The execution time in both client and server sides is 
reduced

• The execution time is reduced 76 seconds, from 7705 
seconds to 7629 seconds

C
lie

n
t

Se
rv

er

33



Overlapping computation and 
communication

In an output time step, there is a slight increase in the 
execution time of the three following time steps

Non-output

Output

34



Overlapping computation and 
communication

• The trace shows that after an output time step, there is 
a delay in the communication of the next two time 
steps (MPI_Waitany and MPI_Alltoallv)

• There is a conflict between intra IFS communication 
and IFS to XIOS communication

35



Overlapping computation and 
communication

• We used a new output scheme to truly overlap XIOS 
communication with IFS computation

• It splits the three needed steps to output data through 
XIOS:

36



Overlapping computation and 
communication

• This new scheme improves the execution time of the 
three time steps that follow an output time step:

• The execution time is reduced 122 seconds, from 7629 
seconds to 7507 seconds

Output

37

Non-output



Overlapping computation and 
communication

• The trace shows that there is no delay at the beginning 
of the 2nd and 3rd time steps

• However, there is some delay at the end, but it is less 
significant

38



6. Evaluation



Optimal number of XIOS servers

40



Comparison test 

41



Comparison test 

42



Comparison test adding GRIB to netCDF
post-processing

43



Comparison test adding GRIB to netCDF
post-processing

44



Comparison test with additional computational 
resources and GRIB to netCDF post-processing

• In this test, we add to the IFS processes of the 
sequential I/O scheme the equivalent of the 
computational resources needed to run XIOS

• XIOS uses 10 cores spread along 10 nodes

• Then, the execution times with the additional 
resources are:
• XIOS v4 (702 IFS + 10 XIOS) → 7507 seconds

• Seq. I/O (702 IFS) → 22734 seconds

• Seq. I/O (702 + 10 cores = 712 IFS) → 22583 seconds

• Seq. I/O (702 + 120 cores* = 822 IFS) → 21962 seconds

45

*According to the IFS affinity used, 10 nodes = 120 cores



7. Conclusions



Conclusions

• We have presented an easy-to-use development

• The integration with no optimization already improved 
the execution time:
• Sequential output 9054 seconds (23% of overhead) → IFS-

XIOS integration 7773 seconds (5.6% of overhead)

• Using OpenMP to parallelize the NPROMA blocks 
gather, the execution time is reduced by 68 seconds
• It is really important to make an scalable gather, because it 

could become a bottleneck for future higher grid resolutions

47



Conclusions

• Using an optimized compilation of XIOS, the execution 
time is reduced by 76 seconds
• This optimization proves that it is important to compile 

external libraries using the best optimization flags

• Using a better overlapping between IFS computation 
and XIOS communication, the execution time is 
reduced by 122 seconds
• It is sometimes necessary to analyse in which places 

computation and communication can be effectively 
overlapped

48



Conclusions

• Performance highlights of the most optimized version:
• It is slightly faster than the MF I/O server: 7519 s vs. 7507 s

• It is only 151 seconds slower than no output (2% of overhead)

• Within 151 seconds IFS outputs 3.2 TB of data

• When post-processing to convert GRIB to netCDF files 
is taken into account:
• The post-processing takes 13680 seconds (3.8 hours)

• Thus, the most optimized version is a 202% faster than the 
sequential output and a 182% faster than the MF I/O server

49



Conclusions

• These numbers denote that we have implemented an 
scalable and efficient development that will address 
the I/O issue

• In EC-Earth, this new I/O development will:
• Increase the performance and efficiency of the whole model

• Perform online post-processing operations

• Save thousands of computing hours

• Save storage space, because it will only store processed data 
ready to be used

50



Conclusions

• These numbers denote that we have implemented an 
scalable and efficient development that will address 
the I/O issue

• In EC-Earth, this new I/O development will:
• Increase the performance and efficiency of the whole model

• Perform online post-processing operations

• Save thousands of computing hours

• Save storage space, because it will only store processed data 
ready to be used

51

Save money!

https://www.youtube.com/watch?v=OGc1TidI0rA

https://www.youtube.com/watch?v=OGc1TidI0rA


Thank you! 

xavier.yepes@bsc.es



Improving the throughput 
of an atmospheric model 
using an asynchronous 
parallel I/O server

Xavier Yepes-Arbós

27/04/2018
Master in Innovation and Research in 
Informatics (MIRI), specialization in 
High Performance Computing (HPC)

Supervisor: Mario C. Acosta

Co-supervisor: Francisco J. Doblas-Reyes

Tutor: Daniel Jiménez-González



Appendix



Future work

• Implement vertical interpolations, but ensuring a user-
friendly output configuration file

• The development done for IFS will be ported to 
OpenIFS

• Adapt EC-Earth components to generate online 
diagnostics through XIOS

• Port to GPUs the XIOS source code that performs costly 
computations

55



Comparison test with additional 
computational resources

56



Comparison test with additional 
computational resources

57



Comparison test with additional computational 
resources and GRIB to netCDF post-processing

58



Comparison test with additional computational 
resources and GRIB to netCDF post-processing

59


