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ii Abstract

Abstract

Tropical cyclones (TCs) pose a great threat to lives and have the potential to induce

huge financial losses. In particular, insurance businesses are interested in estimating the

damage potential of TCs and their future developments. Commonly used indices to assess

the destructive potential of TCs focus on the use of the maximum wind speed only. They

fall short to include the size of the storms, which has been found to be a crucial factor

to estimating cyclone-related damages. Integrated Kinetic Energy (IKE) is a recent

integrated measure which takes into account maximum intensity and the spatial extent

of the wind field. As the first study to do so, this work investigates the effect of increased

horizontal model resolution and the impact of climate change on the simulation of IKE of

TCs. This is done by comparing various integrations of the CNRM climate model: two

uncoupled atmosphere-only experiments for a historical forced simulation (1950-2014)

and a future projection (2015-2050), following the CMIP6 HighResMIP protocol, each

run at a standard (LR: 1.4◦ × 1.4◦) and an enhanced resolution (HR: 0.5◦ × 0.5◦).

Analyses of the TC climatology in the northern hemisphere (NH) show an increase

in storm intensity and frequency with resolution in all ocean basins. However, the

number of storms in both configurations is still biased low with respect to observations.

Surprisingly, comparing the present and the future period in LR and HR against each

other does not reveal a considerable change in global TC activity. Probability densities

(PDs) of TC maximum lifetime IKE in the Western North Pacific (WNP) and the North

Atlantic (NA) are significantly impacted by the refinement in resolution, although the

opposing effects of higher wind speed and reduced storm size with resolution somewhat

balance one another and result in relatively similar IKE values, with storm size being the

stronger IKE driver. Seasonally accumulated track IKE (TIKE) is considerably higher

in HR than in LR for all basins, owing to the higher storm frequency. The increase

from LR to HR is most pronounced over the NA, where the range of the TIKE exhibits

reasonable values compared to observations. Interestingly, it is shown that for both

resolutions there is no clear impact of the change in forcings on storm size and intensity

which is in contrast to previous studies. Consequently, the PDs of maximum IKE are

not significantly distinguishable from one another between the periods and no robust

basin wide changes could be found in any of the basins.

Overall, the presented study highlights the relevance of model resolution for estimating

TC IKE as it impacts storm intensity and size. Including the storm size in IKE estimates

is emphasised as it can balance the effect of changing intensities. The influence of a

changing climate on maximum IKE of the simulated storms in this particular model and

experiment configuration is unexpectedly low, potentially owing to the single ensemble

member tested here. Especially, insurances could benefit from further studies to establish

IKE as a robust measure to extrapolate future changes in losses related to TCs.
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Zusammenfassung

Tropische Zyklonen (TCs) stellen eine lebensgefährliche Bedrohung dar und haben das

Potenzial, enorme finanzielle Verluste zu verursachen. Insbesondere Versicherungsun-

ternehmen sind daran interessiert, das Schadenspotenzial von TCs und deren Entwick-

lung in der Zukunft abzuschätzen. Häufig verwendetete Indizes um das zerstörerische

Potenzial von TCs zu erfassen konzentrieren sich lediglich auf die Verwendung der max-

imalen Windgeschwindigkeit. Sie vernachlässigen die Einbeziehung der Sturmgröße,

welche als wesentlicher Faktor für die Bestimmung von Schäden durch Zyklonen iden-

tifiziert werden konnte. Integrierte Kinetische Energie (IKE) ist eine Größe, die neben

der maximalen Windgeschwindigkeit auch die räumliche Ausdehnung des Windfeldes

miteinbezieht. Als erste Studie untersucht diese Arbeit den Einfluss einer verbesserten

horizontalen Modellauflösung und die Auswirkung des Klimawandels auf die Simulation

der IKE von TCs. Dies wird durch den Vergleich verschiedener Modellläufe des CNRM

Klimamodells realisiert: Zwei ungekoppelte Experimente mit einem Atmosphärenmo-

dell, eine Simulation mit historischen Klimabedingungen (1950-2014) und eine Zukunfts-

projektion (2015-2050), die beide dem CMIP6-HighResMIP-Protokoll folgen, werden

jeweils mit einer Standardauflösung (LR: 1.4◦×1.4◦) und einer erhöhten Auflösung (HR:

0.5◦ × 0.5◦) durchgeführt.

Analysen der Klimatologie der TCs in der nördlichen Hemisphäre (NH) zeigen einen

Anstieg der Sturmintensität und -frequenz mit der Modellauflösung in allen Ozean-

becken, dennoch bleibt die Anzahl der Stürme unter den Werten von Beobachtun-

gen. Überraschenderweise liefert der Vergleich zwischen den beiden Zeiträumen mit

unterschiedlichen Klimabedingungen keinen erheblichen Unterschied in der globalen Ak-

tivität von TCs. Die Wahrscheinlichkeitsdichten (PDs) der maximalen IKE der TCs

im westlichen Nordpazifik (WNP) und Nordatlantik (NA) werden signifikant durch die

Verbesserung der Auflösung beeinflust, obwohl sich der gegenteilige Effekt von erhöhten

Windgeschwindigkeiten und reduzierten Sturmgrößen mit der Auflösung nahezu gegen-

seitig ausgleichen und zu vergleichbaren IKE-Werten führen, wobei die Sturmgröße der

ausschlaggebende Faktor für die IKE ist. Die IKE, kumuliert über die Zugbahnen aller

TCs einer Sturmsaison (seasonal TIKE), zeigt in HR beträchtlich erhöhte Werte im Ver-

gleich zu LR, begründet durch die höhere Sturmfrequenz. Der größte Anstieg von LR zu

HR ist im NA festzustellen, wo die Reichweite der TIKE realistische Werte verglichen mit

Beobachtungsdaten liefert. Interessanterweise wird für beide Modellauflösungen gezeigt,

dass kein klarer Einfluss durch die unterschiedlichen Klimabedingungen auf Sturminten-

sität und -größe ausgeübt wird, was im Widerspruch zu anderen Studien steht. Folglich

können die PDs der maximalen IKE nicht signifikant zwischen den zwei Zeiträumen

unterschieden werden und in keinem der Ozeanbecken können robuste Änderungen fest-

gestellt werden.
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Die vorgelegte Studie hebt die Relevanz der Modellauflösung für die Abschätzung der

IKE von TCs hervor, da diese die Sturmintensität und -größe beeinflusst. Des Weiteren

zeigt sie die Wichtigkeit der Einbeziehung der Sturmgröße für die Abschätzung der IKE,

da sie den Einfluss sich ändernder Windgeschwindigkeiten ausgleichen kann. Der Einfluss

des Klimawandels auf die maximale IKE der simulierten Stürme in dieser Modell- und

Experimentanordnung ist unerwarteterweise gering, möglicherweise zurückzuführen auf

das Testen von nur einem Ensemble-Mitglieds. Besonders Versicherungsunternehmen

könnten von weiteren Studien zur Etablierung der IKE als robustes Maß für die Ex-

trapolierung von zukünftigen Änderungen in Schäden und Verlusten hervorgerufen durch

TCs profitieren.
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1 Introduction

Natural disasters are high-impact events that affect thousands of people worldwide each

year (World Economic Forum, 2019). They pose a great threat to lives and have the

potential to cause significant damage to property, structures and to provoke considerable

financial losses (Munich Re, 2018). Tropical cyclones (TCs) - intense storms that form

over warm tropical oceans and are characterised by low atmospheric pressure (e.g., hur-

ricanes in the Atlantic) - are one of the costliest catastrophes (Landsea, 2000; Emanuel,

2005; Aon Benfield, 2018; Munich Re, 2018) as they can bring a number of hazards

such as high winds, heavy precipitation, storm surges, inland and coastal flooding, tor-

nadoes or landslides. An infamous example is the Bhola Cyclone (1970) that struck

present-day Bangladesh and killed in excess of 300 000 people (Landsea, 2000). It is

regarded as the deadliest TC on record and as one of the deadliest natural disasters to

have ever occurred. As of today, Hurricane Katrina (2005) has been the costliest TC

with US$160 billion in damage, followed by Hurricane Sandy (2012) (NOAA, 2018). A

few of the storms from the 2017 Atlantic hurricane season (Hurricanes Harvey, Irma and

Maria) also rank among the storms associated with the highest financial losses. More

recent examples like Hurricane Dorian (2019) and Cyclone Harold (2020), which caused

widespread damage across the Bahamas and in the South Pacific respectively, show that

TCs have the potential to threaten some of the most vulnerable countries which makes

them especially dangerous.

As a large portion of the costs caused by TCs is insured (Munich Re, 2018), insurance

companies are highly interested in predicting storm activity and the associated potential

damages and losses. Traditionally, the destructive potential of TCs is estimated by their

maximum intensity, i.e., their 1-minute maximum sustained wind speed and classifica-

tion on the Saffir-Simpson Hurricane Wind Scale (SSHWS) (Simpson, 1971; NOAA,

2019) which can be seen in Tab. 1. Commonly used indices to estimate the damage

potential are the Accumulated Cyclone Energy index (ACE) (Bell et al., 2000) and the

Power Dissipation Index (PDI) (Emanuel, 2005) which are integrated measures of num-

ber, intensity and duration of cyclones that can be used to represent the level of activity

of a hurricane season. ACE and PDI have the ability to reflect changes in key factors

influencing TC activity, such as sea surface temperatures (SSTs) (Camargo & Sobel,

2005; Villarini & Vecchi, 2012). Particularly, the PDI has been found to show empirical

and statistical relationships with further key factors like wind shear and vorticity which

can help simulate future TC activity in a changing climate (Emanuel, 2007), making

both indices useful tools. However, ACE and PDI neglect the actual storm size which

is why these measures introduce uncertainties to damage estimates (Kantha, 2006). For

instance, the ACE has been suggested to inordinately overestimate the energy content of

TCs (Yu et al., 2009; Yu & Chiu, 2012). Studies by Mahendran (1998), Kantha (2006)
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Description Category
Wind speed

in m s−1
Wind speed
in km h−1

Associated minimum
pressure in hPa

Major hurricane 5 ≥ 70 ≥ 252 < 920

Major hurricane 4 58 – 69 209 – 251 920 – 945

Major hurricane 3 50 – 57 178 – 208 945 – 965

Hurricane 2 43 – 49 154 – 177 965 – 980

Hurricane 1 33 – 42 119 – 153 > 980

Tropical storm 0 18 – 32 63 – 118 > 1000

Table 1: SSHWS with associated categorisation and ranges of wind speed and minimum
pressure (Simpson, 1971; Kantha, 2006; NOAA, 2019).

and Zhai & Jiang (2014) show that including the storm size and structure is beneficial

to damage estimates and the explained variance in associated losses.

A more recent measure to address this issue, the so-called Integrated Kinetic Energy

(IKE) (Powell & Reinhold, 2007), was developed. This metric includes the size of the

storm by integrating the energy of the entire wind field. As IKE is a measure that

is equivalent to the wind pressure, it thus is a good indicator for the wind loading on

structures and thus potential damages (ASCE, 2016), hence why it is supposed to cor-

relate better with damages (Wang & Toumi, 2016). Moreover, storms from the past

two decades have shown the importance of introducing storm size to damage estimates:

hurricanes that caused extensive damage and mortality in the US like Ivan (2004) and

Katrina (2005) were rated relatively weak on the SSHWS at landfall, for example com-

pared to category 5 hurricane Camille (1969) which caused considerably less damage.

However, in terms of IKE, these storms would be rated as significantly more dangerous

owing to the large extent of their wind fields (see Tab. 2), more in line with the large dev-

astation they brought (Kantha, 2006; Powell & Reinhold, 2007; Kozar & Misra, 2019).

Another topic of interest for insurance companies is the projection of damages and

losses associated with TCs in the future. The processes determining TC formation,

intensification and propagation, and thus defining the related hazards, are non-linear

and non-stationary and strongly dependent on the prevalent environmental conditions
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Storm name SSHWS category
Radius of the tropical
storm wind field in km

IKE of the tropical storm
wind field in TJ

Camille (1969) 5 230 65

Ivan (2004) 3 326 81

Katrina (2005) 3 454 122

Table 2: Comparison of Hurricanes Camille, Ivan (in Alabama) and Katrina (in Louisiana)
at landfall with respect to SSHWS category and IKE (Powell & Reinhold, 2007).

(Gray, 1975). How these conditions will be impacted by anthropogenic climate change

will be crucial to assessing the future risk associated with TCs. The relatively short-lived

database of observed storms makes it difficult to extrapolate a robust trend in TC char-

acteristics and, moreover, natural variabilities inherent in the climate system may mask

existing trends (Walsh et al., 2016; Knutson et al., 2019). Consequently, climate models

are the best available tool for assessing potential changes in TCs related to a changing

climate and thus for estimating future damages. Recent studies using climate models

suggest that certain TC characteristics, including precipitation or the maximum lifetime

intensity, are projected to increase (Knutson et al., 2019). Other features like the overall

global frequency and storm size have been projected with contradicting results and are

still unclear. In particular, changes at the individual ocean basin scale remain highly

uncertain (Knutson et al., 2019).

With usual diameters of about 400 km (Chavas & Emanuel, 2010), TCs are (rela-

tively) small-scale phenomena, especially compared to extratropical cyclones (see Fig. 1)

which typically reach diameters of about 1000 km (Rudeva & Gulev, 2007). Thus, the

horizontal model resolution plays a crucial role in representing TCs and the processes

relevant to their formation. Krishnamurti et al. (1989) showed that TC formation and

motion could significantly be enhanced with an increase in horizontal resolution because

key processes such as surface layer fluxes could be represented with higher fidelity. The

importance of horizontal resolution has been further highlighted by various recent stud-

ies. These studies find that, among others, TC characteristics like genesis potential,

formation, frequency, intensity, size, geographical distribution and climate modes such

as the Madden-Julian Oscillation (MJO) and El Niño/Southern Oscillation (ENSO) -

which influence those characteristics - are positively impacted by a refinement in resolu-

tion (Bengtsson et al., 2007; Shaffrey et al., 2009; Caron et al., 2011; Jiang et al., 2012;

Shaevitz et al., 2014; Villarini et al., 2014; Camargo & Wing, 2016; Walsh et al., 2016).
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Figure 1: Comparison of the horizontal scale of an extratropical cyclone (a) and two TCs (b)
in the Atlantic (https://scijinks.gov/noreaster/).

Due to the limitation of computational resources, most model studies during the last

decade, which aimed at investigating the impact of climate change on TC character-

istics, were restricted to resolutions between 100-300 km (Walsh et al., 2016). These

resolutions were capable of producing reasonable figures of the average number of TCs

and their variability (Zhao et al., 2009; Sugi et al., 2012). However, the representation

of the observed intense TC wind speeds and TC size remained an issue. The models

were still too coarse to resolve mixing processes and smaller-scale features within the

storms so that the models were unable to intensify storms to the observed strengths and

to represent them at the observed smaller storm sizes (Williams et al., 2015; Walsh et

al., 2016; Davis, 2018). Regional climate models, variable-resolution models or adaptive

grids are techniques that enable a local refinement of the model resolution up to 1 km

which would be sufficiently fine to resolve TC processes (Gentry & Lackmann, 2010),

but due to their high computational costs they are not used for climate studies with

scales of several decades (Skamarock & Klemp, 1993; Kendon et al., 2012; Tang et al.,

2013; Zarzycki et al., 2014; Davis et al., 2016; Baudouin et al., 2019).

The H2020 PRIMAVERA project aims at investigating the effects of increased model

resolution on the simulated climate and the sensitivity of the model projections to model

resolution. Simulations performed in PRIMAVERA follow the High Resolution Model In-

tercomparison Project (HighResMIP) (Haarsma et al., 2016) protocol, defined within

the sixth phase of the Coupled Model Intercomparison Project (CMIP6). Roberts et al.

(2020) and Roberts et al. (subm.) have provided a first analysis of TC activity in the

PRIMAVERA simulations. Both studies show that an enhancement in horizontal res-

olution toward 25 km leads to a better representation of TC frequency, intensity and

spatial distribution relative to observations. They demonstrate that existing low biases

https://scijinks.gov/noreaster/
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in northern hemisphere (NH) track density and frequency could be reduced with reso-

lution and that storm intensities increased over all models. Additionally, Roberts et al.

(subm.) were able to detect mixed responses in NH basins to future forcing.

However, so far, no study has assessed the role of climate change and model resolu-

tion on IKE. Given the interest in enhancing TC simulation and predicting the risks

associated with them, this study aims at answering the following two questions:

� What is the influence of a refinement in horizontal model resolution on the sim-

ulation of Integrated Kinetic Energy?

� How is Integrated Kinetic Energy impacted by a future climate change scenario?

These questions will be addressed by using a cyclone tracker to analyse two integrations

of the CNRM climate model, which has been found to produce TC wind speeds and

frequencies close to observations (Roberts et al., 2020) and thus is a a suitable model.

TC activity and IKE statistics in a historical forced experiment and a future projection

at a standard and an increased horizontal resolution will be compared in order to obtain

insight into their relationships with the prevalent climate conditions and model resolu-

tion. The PRIMAVERA project offers the ideal framework to perform these experiments

and to contribute to answering the questions mentioned above.

The structure of this study is as follows: Sect. 2 provides an overview of the mecha-

nisms and the current state-of-the-art knowledge related to TCs. In Sect. 3, the project

framework, technical information on the model, definitions and statistical methods are

described. The process of setting up the cyclone tracker used to analyse the model data

is outlined in Sect. 4. Sect. 5 presents the findings and discusses them. Finally, in Sect. 6,

the conclusions are drawn.
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2 Background

2.1 Characteristics of Tropical Cyclones (TCs)

2.1.1 Preconditioning, Formation and Propagation

TCs are an inherent mechanism of the Earth system to redistribute heat between the

tropics and the poles. Due to the tilt of the Earth, the tropics receive, on average, more

solar energy than higher latitudes which results in an energy imbalance. The planet tries

to balance this discrepancy by transporting heat poleward via the mean atmospheric and

oceanic circulations. The atmosphere accounts for the majority of this transport as air

can travel at faster speeds than water, is also available over the continents and because

the troposphere extends, on average, more than the ocean. Nevertheless, at times of

intense differential heating like the respective hemispheric summer months, the regular,

laminar atmospheric flow can fail to balance this discrepancy. As a consequence, the

meridional temperature gradient becomes very pronounced and thus provides an energy

source for a more effective, turbulent flow that can lead to meso- to synoptic scale eddies

like TCs. In more detail, a list of preconditions has to be met before tropical cyclogenesis

can be initiated and a tropical storm can be born (Gray, 1975):

� High enough SSTs to fuel the storm with energy;

� Large enough distance to the equator to allow Coriolis force to deviate inflow of

air (at least 5◦);

� Atmospheric instability to allow for convection;

� Sufficient humidity in the lower and middle part of the troposphere to facilitate

condensation and to provide enough energy to maintain the system;

� Low-level disturbances with sufficient vorticity and convergence to enable organ-

ised convection;

� Little vertical wind shear to prevent the storm from being vertically disrupted

(barotropic conditions).

A TC is a prime example of a Carnot heat engine in which heat energy is extracted

from the ocean and converted to kinetic/mechanical energy (i.e., wind) and dissipated

by surface friction (Emanuel, 1987). In order to provide enough heat energy, SSTs need

to exceed 26.5◦C so enough water can evaporate (typically in the tropics), rise and form

a pronounced negative sea surface air pressure anomaly. As adjacent air tries to balance

the negative anomaly, a convergent inflow of air is created which is further accelerated

and deviated away from the centre of the anomaly by the Coriolis force to form an anti-

clockwise rotating system in the NH and a clockwise rotating system in the southern
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Figure 2: (a) A satellite image of Hurricane Isabel in 2003 with clearly visible spiral
structures (https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Hurricane_
isabel2_2003.jpg/1200px-Hurricane_isabel2_2003.jpg). (b) Depiction of the eyewall
and eye of Hurricane Katrina in 2005 as seen from a Hurricane Hunter aircraft (https:
//thenanitesolution.wordpress.com/2016/03/26/how-does-a-hurricane-form/).

hemisphere (SH): a cyclone. If the atmosphere is unstable and facilitates convection,

the warm air continues to rise and to rotate cyclonically. During its ascent through the

troposphere, the positive vorticity created by the convergent airflow needs to be main-

tained and organised to form a potent storm. Low-level disturbances in the atmosphere

can provide the convergence and vorticity needed to do so. These features often arise

from tropical waves, disturbances in the intertropical convergence zone (ITCZ), mon-

soon troughs, interaction with orophraphy or from outflow boundaries of other mesoscale

storm systems. Additional surface frictional forces lead to an inward displacement of the

converging air and the typical inward spiraling structures arise which are well known

from satellite imagery (Fig. 2a).

Once the ascent of the storm is organised, condensation of moisture held by the air and

the associated latent heat release can trigger thunderstorms and play an important role

in providing extra energy to maintain the system. As the air further rises, it cools and

creates an upper-level high air pressure anomaly that leads to an increasing outflow of

air near the top of the storm (height at which no further uplift is possible due to missing

buoyancy) where large cirrus cloud shields form. The divergent airflow is characterised

by negative vorticity and hence has an opposite rotation to that of the surface inflow.

The ascent of air within the moist, cloudy and rainy structure of the storm requires an

equal amount of descending air within the core (eye) of the storm or further away from

the centre where dry and cloud free conditions can be found. The eyewall is where the

highest winds and rain bands with the strongest precipitation can be observed (Fig. 2b).

https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Hurricane_isabel2_2003.jpg/1200px-Hurricane_isabel2_2003.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/7e/Hurricane_isabel2_2003.jpg/1200px-Hurricane_isabel2_2003.jpg
https://thenanitesolution.wordpress.com/2016/03/26/how-does-a-hurricane-form/
https://thenanitesolution.wordpress.com/2016/03/26/how-does-a-hurricane-form/
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Figure 3: Schematic depiction of the processes relevant to TC formation (https://sites.
google.com/site/kimberlyshurricanes/causes-of-hurricanes).

The entire system can be sustained as long as the heat supply can balance the energy

lost to friction or until the atmosphere becomes too baroclinic. In strongly baroclinic

conditions, vertical wind shear becomes too strong due to rapid changes in surface tem-

perature and thus disrupts the vertical organisation of the storm, i.e., the lower and

upper part of the storm will be disconnected from each other and the upper part will not

be supplied with sufficient moisture and latent heat energy to maintain itself (Emanuel,

1987). This limits the growth potential of the storm and plays a major role in deter-

mining the size of a storm. Together with quick surface pressure changes, the absence of

a heat/energy source is the main reason why tropical storms rapidly weaken and decay

after entering regions of cooler SSTs (usually higher latitudes) or making landfall. Fig. 3

summarises the described processes relevant to TC formation.

Whenever the above conditions are met, TCs can develop and be sustained. Usually,

they are about 200 km in radius but can reach up to several hundreds of kilometres of

radius (Chavas & Emanuel, 2010) and exceed wind speeds of 250 km h−1 (Simpson, 1971;

NOAA, 2019). All three main ocean basins can develop TCs and have their respective

names for them: In the North Atlantic (NA) and the Eastern North Pacific (ENP) the

storms are called hurricanes, in the Western North Pacific (WNP) typhoons and in the

South Pacific and Indian Ocean simply tropical cyclones. According to their maximum

intensity, i.e., their 1-minute maximum sustained wind speed, they are categorised into

different storm categories on so-called TC intensity scales of which the most known is

the SSHWS. Further differences between the basins concern the hemisphere in which

the TCs form. Fig. 4 displays recorded storm tracks from the IBTrACS data base from

1979-2007 by Knapp et al. (2010) and shows that there are almost no registered storms

in the South Atlantic and in the eastern part of the South Pacific. This is mainly due to

https://sites.google.com/site/kimberlyshurricanes/causes-of-hurricanes
https://sites.google.com/site/kimberlyshurricanes/causes-of-hurricanes
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Figure 4: Global recorded storm tracks from the IBTrACS data base from 1979-2007 (Knapp
et al., 2010). For the study by Knapp et al. (2010) the respective basins were outlined and
abbreviated: North Indian (NI), Western North Pacific (WP), Eastern North Pacific (EP),
North Atlantic (NA), South Indian (SI), South Pacific (SP) and the South Atlantic (SA).

the lower SSTs in these regions which are advected by the Antarctic Circumpolar Cur-

rent and its extensions, in specific by the Malvinas Current at the east coast of South

America (Evans & Braun, 2012) and the Humboldt Current at the west coast (Terry,

2007). In the Central South Pacific, further away from the cold-water inflow, the con-

ditions are more favourable for cyclone formation, especially in late summer when SSTs

are the highest and provide.

Further factors exacerbating cyclone formation in the eastern South Pacific and South

Atlantic are strong vertical wind shear and the lack of tropical disturbances. The strong

vertical wind shear, which is a consequence of the prevalent temperature and landmass

patterns, removes the heat and moisture from the axis of rotation of the storm system

and prevents the storm from growing vertically (Gray, 1975). The landmass distribu-

tion between the tropics in the NH and the SH, especially in the Atlantic Ocean, also

influences the required disturbances in the pressure field and thus the available vorticity:

Less landmass in the SH leads to a less southward displacement of the ITCZ during

summer and thus results in less disturbances in the development regions of the cyclones.

Moreover, the lack of landmass south of the equator hampers the development of a SH

counterpart of the African Easterly Jet in the NH which generates tropical disturbances

and thus is the main source of storm seeds in the NA (Landsea et al., 1998). In addition,

the shape of the continents and the ocean basin in the South Atlantic feature a lack of

space for storms to grow and intensify sufficiently.
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Figure 5: (a) A more pronounced and extended Bermuda High has impacts on the steering
of Atlantic hurricanes and influences their probability of making landfall in the US. (b) Vice
versa: a weaker and more contracted Bermuda High allows for an early northward propagation
of the storms and decreases the probability of US landfalls (http://www.atmo.arizona.edu/
students/courselinks/fall15/atmo336/lectures/sec2/hurricanes2.html).

Overall, about 80 TCs form under these conditions around the globe per year of

which approximately 70% develop in the NH and 30% in the SH (Ramsay, 2017). As

suggested by Fig. 4, in the NH the Western Pacific is the basin that hosts the most

storms with about 25 cyclones on average per year, followed by the Eastern Pacific with

15, the Atlantic with 13 and the Indian with about 3 storms (Ramsay, 2017). Fig. 4

also reveals that there seems to be a common pattern of propagation for storms in all

basins: first, a westward propagation, followed by a deflection toward the respective

hemispheric pole and occasionally an eastward retroflection. In fact, the biggest influ-

ence on a cyclone’s track are the prevailing local wind patterns (Carr III & Elsberry,

1990). The stronger these steering winds are, the faster a storm will move. Usually,

the trade winds are responsible for the westward steering of the storm. But also, mid

and upper troposphere conditions can significantly influence the track as troughs will

lead to a displacement of the lower troposphere system toward the trough (Molinari &

Vollaro, 1989). On the contrary, high pressure features like subtropical highs can act as

blocks and steer the storm away or around them. For example, the Bermuda High in

the Atlantic is an important mechanism for determining whether a hurricane will make

landfall in the US or turn poleward before hitting land (Wang et al., 2011). If the high

is stronger and more extended – initiated by a strong contrast in ocean surface and air

temperature in summer – the cyclones are steered along the high and toward the coast of

the US (Fig. 5a). In late summer and autumn, the temperature difference weakens and

the subtropical high is less pronounced and more contracted, steering cyclones northward

before they approach the US coast (Fig. 5b).

2.1.2 Natural Variability

Like almost all other natural processes, TCs are subject to natural variability driven by

changes in environmental conditions (Gray, 1984; Shapiro, 1989; Gray & Landsea, 1992;

http://www.atmo.arizona.edu/students/courselinks/fall15/atmo336/lectures/sec2/hurricanes2.html
http://www.atmo.arizona.edu/students/courselinks/fall15/atmo336/lectures/sec2/hurricanes2.html
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Elsner & Kocher, 2000; Fink et al., 2010; Kossin et al., 2010; Hodges & Elsner, 2012).

These variabilities may occur at a variety of time scales and can impact the formation of

cyclones, their frequency, intensity, distribution, lifetime and tracks. It is important to

identify and understand these variabilities, especially on interannual and decadal time

scales, since they can mask the long-term trend driven by anthropogenic climate change

(Walsh et al., 2016).

The most important process operating at the intraseasonal time scale and impact-

ing TCs in all major basins is the MJO (Camargo et al., 2009). The MJO is the most

prominent mode of intraseasonal variability in the tropics and characterised by large-scale

fluctuations of atmospheric deep convection along the equator with a period of about

30-80 days (Madden & Julian, 1972; Madden & Julian, 1994; Zhang, 2005). Fields

known to impact TC activity like wind shear, vorticity and moisture are modulated by

the MJO. For instance, Klotzbach (2014) was able to link increased TC formation to the

enhancement of convection in MJO affected regions.

Another oscillation influencing TCs in multiple basins is ENSO. ENSO is an inter-

annual coupled ocean-atmosphere phenomenon and describes the variability in tropical

Pacific SSTs and their feedback with the atmospheric circulation (Trenberth, 1997).

While a positive ENSO phase increases TC activity in the Central North Pacific and the

South Pacific (Chan, 1985; Chu & Wang, 1997; Lander, 1994), it decreases activity in

the Atlantic and in the Australian region (Nicholls, 1979; Revell & Goulter, 1986; Gray,

1984) and shifts activity in the WNP. El Niño events tend to increase upper troposphere

westerly winds and increase the vertical wind shear in the Atlantic which contributes

directly to decreased numbers of Atlantic storms (Pielke & Landsea, 1999). La Niña

events typically bring opposite conditions than El Niño events and thus are connected

to higher numbers of Atlantic storms.

Further climate variabilities affecting TCs in the Atlantic include the Atlantic Mul-

tidecadal Oscillation (AMO) (Goldenberg et al., 2001), the Atlantic Meridional Mode

(AMM) (Vimont & Kossin, 2007; Patricola et al., 2014) and the Atlantic Warm Pool

(AWP) (Wang et al., 2011). These variabilities modulate tropical Atlantic SSTs and

hence influence conditions for cyclone formation and propagation: SST changes related

to AMO and AMM have been shown to impact the stability of the atmosphere, low-level

vorticity, wind shear and to modulate the influence of ENSO on TC in the Atlantic (Bell

& Chelliah, 2006; Vimont & Kossin, 2007; Patricola et al., 2014). The AWP strongly

alters SSTs of tropical waters in the Caribbean. Its magnitude and size influence the

strength of the subtropical high in the Atlantic which thus have a profound impact on

hurricane tracks and whether or not these make landfall (Wang et al., 2011). A large

AWP introduces eastward steering flow anomalies along the east coast of the US and

lead to less storms making landfall (compare Fig. 5). In addition to the above mentioned

variabilities, there exist more climate factors that have been identified to modulate At-
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lantic TC activity such as precipitation in the Western Sahel region (Gray & Landsea,

1992; Fink et al., 2010), the North Atlantic Oscillation (Elsner & Kocher, 2000; Kossin

et al., 2010), the Quasi-Biennial Oscillation (Gray, 1984; Shapiro, 1989) or the 11-year

solar cycle (Hodges & Elsner, 2012). The influence of these climate variabilities on TC

activity has furthermore been shown to be non-stationary and to be varying with the

phase of the AMO (Caron et al., 2015).

The Pacific Decadal Oscillation (PDO) is - besides ENSO - one oscillation to be known

to impact TCs in the Pacific basin (Liu & Chan, 2008). SST changes in the Pacific asso-

ciated with the PDO have been demonstrated to facilitate cyclone formation, especially

in the tropical Western Pacific. Chan (2008) showed that during the positive phase of

the PDO, when SSTs are higher than normal in the south eastern part of the Western

Pacific, atmospheric convection is promoted, thus yielding more favourable conditions

for cyclone development. These conditions have the potential to steer the storms so that

they can stay over water for a long time which allows them to intensify and become

major typhoons.

2.2 Modelling TCs

The first study to investigate TCs in climate models was performed by Manabe et al.

(1970) who recognised cyclonic vortices in the tropical regions of a global atmospheric

circulation model. Although these vortices showed many characteristics of TCs such

as low surface pressure, heavy precipitation, strong convergence of air near the surface

or the development of a warm-core, the models were unable to sufficiently resolve the

vortices and intensify the storms to tropical storm strength. A landmark study on TCs

in global models by Bengtsson et al. (1982) found that the occurrence of these vortices

in a model employing an increased horizontal resolution of 1.875◦ was similar to that

of observed TCs, indicating the importance of horizontal resolution (Camargo & Wing,

2016). Further progress was made by Krishnamurti et al. (1989) who demonstrated that

a high horizontal model resolution (about 1◦ × 1◦), adequate resolution of surface layer

fluxes and parameterisations of the boundary layer and convection processes significantly

improved the representation of storm formation and motion.

Today, many global models have incorporated these processes leading to improved

simulations of TC climatology, including reasonable figures of the average number of

TCs and their year-to-year variability (Zhao et al., 2009; Sugi et al., 2012). However,

present-day models still struggle to accurately represent the observed intense wind speeds

(Williams et al., 2015) which leads to a negative bias in severe storms of category 4 and

5. A large portion of the inability to intensify storms to those strengths still arises from

the horizontal resolutions used in the simulations (Walsh et al., 2016). Many of the

processes critical to TC formation, such as up and downdrafts, convection and cloud
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formation act on scales too small to be resolved and hence are parameterised. As shown

by Bryan & Rotunno (2009) and Davis (2018), coarse resolutions within TCs (up to 25

km or 0.25◦) lead to an over-representation of horizontal mixing of angular momentum

which is thus prevented from penetrating inward and which results in a limitation of

the maximum possible wind speed. Gentry & Lackmann (2010) estimated that a 2 km

resolution or better would be needed to accurately simulate the above processes and

hence the maximum storm intensity. These resolutions can be achieved in regional cli-

mate models or in global variable-resolution models which employ a local refinement of

resolution in the area of interest (Walsh & Ryan, 2000; Chauvin et al., 2006; Kendon

et al., 2012; Tang et al., 2013; Zarzycki et al., 2014). A further technique to locally

enhance the resolution is the use of adaptive grids which automatically increase the grid

resolution where needed (Skamarock & Klemp, 1993). These can be used to locally refine

the resolution along the track of a TC and capture the small-scale processes near and

within the TC as it moves (Fulton, 2001). Due to the computational costs of running

models at these resolutions, both methods are commonly used in medium-range weather

forecasts rather than in multidecadal climate studies which makes them unavailable for

the PRIMAVERA project (Davis et al., 2016; Baudouin et al., 2019).

During the last decade, the resolutions employed in most ocean-atmosphere coupled

studies examining TCs at climate time scales typically ranged from 100-300 km and only

in the last few years, model resolutions down to 10-50 km have become available due to

limitations of computational resources (Walsh et al., 2016). Recent studies incorporating

those finer resolutions highlighted the benefits of enhanced resolution for the represen-

tation of various aspects of TCs with regard to observations, including genesis potential,

formation, frequency, intensity, size, geographical distribution, track and precipitation

patterns (Bengtsson et al., 2007; Caron et al., 2011; Scoccimarro et al., 2014; Shaevitz

et al., 2014; Villarini et al., 2014; Walsh et al., 2016). Enhanced horizontal resolutions

have also been shown to impact different small- and large-scale processes influencing

TC characteristics. For instance, Jiang et al. (2012) showed that their high-resolution

global climate model was able to reproduce the relationship between the MJO and TCs

in the North Pacific. Shaffrey et al. (2009) demonstrated a reduction in global tropical

SST errors and an improved representation of ENSO which both play a key role for TC

formation. It is expected that with further refinement of the resolution, the processes

affecting TC formation will positively impact their overall representation which is one of

the main motivations of the PRIMAVERA project.

2.3 Climate Change and Future Projections

It is of great interest to have an understanding of how TCs and the processes that in-

fluence them look like in the future and how climate change will impact them. The
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relatively short-lived reliable datasets of global TCs make it difficult to establish statis-

tically reliable trends in TC characteristics (Walsh et al., 2016; Knutson et al., 2019)

and to attribute them to climate change. The database will become more comprehensive

and detailed over time, but a lot of data for historical storms is missing as many storms

do not make landfall and the spatial coverage by measurement instruments before the

satellite era was scarce. Thus, because there are no long, global reliable datasets from

which future TC activity can be extrapolated, global climate models are the main tool

to project and estimate future activity.

Knutson et al. (2019) summarise the most recent findings of TC projections in re-

sponse to a 2◦C anthropogenic global warming. The most robust projected change is

that sea level rise accompanying the warming will lead to higher storm surges caused

by TCs. Further, a globally median increase of 14% in precipitation rates associated

with TCs is projected with at least medium-to-high confidence (Knutson et al., 2019).

TC intensity, particularly the maximum lifetime surface wind speed (ca. +5%), is also

projected to increase at a medium-to-high confidence level. Opinions are more mixed

and confidence levels generally lower for projections including a poleward shift of the

latitudes of maximum intensity, a decrease in global frequency and an increase of severe

category 4 and 5 storms (Knutson et al., 2019). An increase in the most intense storms

can be explained by the fact that storms, if they form, can become more intense due to

the increased energy supply resulting from increased SSTs. As the mechanisms deter-

mining the global annual number of TCs are still poorly understood (Emanuel & Nolan,

2004; Walsh et al., 2016), Held & Zhao (2011) demonstrated that the increase in CO2

and SSTs contributes to the reduction of future upward mass flux and they suggested

this could be the main driver for decreased TC activity. Further explanations relate the

decrease in frequency to an increase in the saturation deficit of the free troposphere with

warming (Camargo & Wing, 2016). Establishing robust trends in TC tracks across stud-

ies remains difficult although several studies suggest a poleward or eastward expansion

of TC occurrence, especially in the North Pacific. Projected changes in TC size and

translation speed are highly variable between basins and studies and elude a clear trend

(Knutson et al., 2019).
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3 Data and Methods

3.1 Framework

This study is carried out under the framework of the sixth phase of the Coupled Model

Intercomparison Project (CMIP6) which is part of the World Climate Research Pro-

gramme (WCRP). The WCRP aims at facilitating the analysis and prediction of Earth

system variability and change in order to determine the predictability of climate and

the effect of human activities on climate. The CMIP venture is a framework to har-

monise the experiments of all participating institutes and working groups and to make

the multi-model output publicly available in a standard format which will then be used

for the International Panel on Climate Change (IPCC) reports. Every group receives

the same input data (e.g., initial atmospheric and oceanic fields, boundary fields, such

as CO2 emissions, solar radiation etc.) and conducts the experiments following the

provided guidelines to see how the different model formulations will produce different

outcomes. This way, a better understanding of past, present and future climate changes

arising from natural, unforced variability or in response to changes in radiative forcing

in a multi-model context can be achieved. Moreover, the model performance during

historical periods and the quantification of the causes of the spread in future predictions

between models can be assessed.

Currently, there are 23 CMIP6-Endorsed MIPs. One of these is the so-called High

Resolution Model Intercomparison Project (HighResMIP) (Haarsma et al., 2016) which

provides a common protocol for simulations with high horizontal resolutions of 25-50 km

that will foster the analysis and understanding of the impact of model resolution and

climate change on the simulated climate, especially with respect to small-scale weather

phenomena like TCs. Prior to HighResMIP, only a few high-resolution global simulations

at climate time scale had been performed (ca. 50 km in the atmosphere, ca. 25 km in

the ocean) and without good coordination due to the extreme computational resources

needed to perform them, such as Delworth et al. (2012) and Sakamoto et al. (2012). To

assess the robustness of the response to horizontal resolution, a multi-model ensemble

with a coordinated set of experiments is needed. It has been shown that the multi-model

mean climate forecast skill has often been superior to individual models: In CMIP3 and

CMIP5, the mean of seasonal (Hagedorn et al., 2005) and decadal (Bellucci et al., 2015)

forecasting proved to be outperforming the individual models. The multi-model ensemble

mean is also a necessary procedure to overcome one of the shortcomings of the protocol,

which is the lack of multiple ensemble members for each model due to the high computa-

tional cost of running at these resolutions. With the availability of computing resources

and the design of uniform experiments, CMIP6 HighResMIP is the ideal framework for

testing and evaluating the effect of horizontal resolution on TCs in a changing climate.
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This is done by running the experiments at two different model resolutions, a standard

resolution (LR) and a high resolution (HR) which will then be compared against each

other. The HighResMIP protocol requires all model configurations to be the same for

both resolutions so that differences can directly be attributed to the change in resolu-

tion rather than to model physics or adjustments of parameterisations (Haarsma et al.,

2016).

Furthermore, this study is part of the PRIMAVERA project within the EU Hori-

zon2020 programme, which is a project that follows the CMIP6 HighResMIP protocol

to answer the questions mentioned above by carrying out the experiments. It is a collab-

oration between European partners under the lead of the Met Office and the University

of Reading. These partners use different models at different resolutions to achieve the

objectives in the CMIP6 framework.

3.2 The CNRM Climate Model

The model used to assess the effect of horizontal resolution and climate change on TC

characteristics is the CNRM model, specifically the CNRM-CM6-1 model (Voldoire et

al., 2019) which is jointly developed in France by the Centre National de Recherches

Météorologiques (CNRM) and Cerfacs, a basic and applied research center, specialised

in modelling and numerical simulation. The CNRM model has been found to be able to

produce TC wind speeds and frequencies close to observations, as discussed in Roberts et

al. (2020) which motivates its choice for this study. The CNRM-CM6-1 model is a fully

coupled atmosphere-ocean general circulation model that includes four main components

for the atmosphere, land surface, ocean and sea ice which are coupled by the OASIS3-

MCT software (Craig et al., 2017).

The atmospheric component is based on the spectral atmospheric model ARPEGE-

Climat version 6.3. It uses a linear triangular truncation T127 for the standard resolution

and T359 for the high resolution version of the model (see Tab. 3). These are adopted

together with a corresponding reduced Gaussian grid (Hortal & Simmons, 1991). The

horizontal model resolution is about 1.4◦ × 1.4◦ and 0.5◦ × 0.5◦ at the equator for LR

and HR, respectively. The CNRM-CM6-1 atmospheric component has 91 vertical levels,

following a hybrid σ-pressure discretisation, with the highest level set at 0.01 hPa (ca. 80

km) and the boundary layer described with about 15 levels below 1500 m. The dynamical

core is based on a two time level semi-Lagrangian numerical integration scheme, and a

15-min time step is used except for the radiative transfer module which is called every

hour. More in-depth details and descriptions for the other model components - which

are not used for this study and whose fields are prescribed following the HighResMIP

protocol (see Sect. 3.3) - are documented in Voldoire et al. (2019).
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Resolution Truncation
Nominal

resolution
Vertical
levels

Analysis
grid

Time
stepping

LR T127 250 km
91

(78.4 km)
regridded:
1.4◦ × 1.4◦

15 min

HR T359 50 km
91

(78.4 km)
regridded:
0.5◦ × 0.5◦

15 min

Table 3: Summary of the two CNRM model configurations of standard resolution (LR) and
enhanced resolution (HR).

3.3 Experiments and Forcings

In the following section, the HighResMIP experiments are described in detail. The

experiments are atmosphere-only experiments, which means that the other modules,

i.e., land surface, ocean and sea ice, are turned off and their fields will be prescribed

by datasets described below. Both of the following experiments are carried out at a

standard (LR) and an enhanced (HR) horizontal resolution in order to assess the effects

of a changing resolution and climate separately.

3.3.1 Historic Simulation

The highresSST-present experiment is a historical forced simulation for the period 1950

through 2014 (called “present”). The atmospheric initial conditions are provided by the

ERA-20C reanalysis dataset. While the atmosphere will be free to adjust to perturba-

tions, the ocean and the sea ice components will be prescribed by the HadISST2 dataset

(Titchner & Rayner, 2014). The HadISST2 dataset provides daily data on a 0.25◦ grid

(ca. 25 km) which is in accordance with the expectations of the protocol to approach

horizontal resolutions of up to 25 km. Fine resolutions in the ocean are also necessary

to resolve SST gradients associated with ocean fronts and eddies that can significantly

influence the state of the atmosphere via air-sea fluxes (Minobe et al., 2008; O’Reilly et

al., 2016). However, high-resolution, high-frequent forcings for uncoupled experiments

can have some adverse effects: For instance, due to the lack of atmospheric feedback to

the ocean, the cooling of the sea surface associated with the upwelling of cold sub-surface

waters resulting from divergent surface winds (associated with TCs) cannot be repre-

sented (Emanuel, 2001). This cooling reduces the exchange of heat between the ocean

and the atmosphere and leads to a weakening of the TC (Cione & Uhlhorn, 2003). As a

consequence, the intensity of TCs - with exception of rapidly moving storms - will likely

be biased high in uncoupled experiments (Cione & Uhlhorn, 2003).
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3.3.2 Future Projection

The highresSST-future experiment is a scenario extension of highresSST-present into

the future and spans the period from 2015 through 2050 (called “future”). The final

atmospheric field from highresSST-present is used but external forcings such as green-

house gases, anthropogenic aerosol concentrations, solar forcing etc. (see Sect. 3.3.3) will

be prescribed according to the high-end emission scenario of the Shared Socioeconomic

Pathways (SSPs) SSP5-8.5. Future SST and sea ice forcings follow the methodology of

Mizuta (2008) which is a blend of the HadISST2-based dataset described above and a

climate change signal from CMIP5 RCP8.5 models. Interannual variability is derived

from the period 1950-2014. This procedure enables a smooth and continuous transition

from the present day into future. Details on this method are shown in Appendix B of

Haarsma et al. (2016). Combining SST data from a CMIP5 RCP8.5 scenario with a

CMIP6 SSP greenhouse gas forcing introduces an inconsistency to the simulation, but

due to the wide range of climate sensitivity among climate models and the small dif-

ferences in the model response up to 2050 for different scenarios, this inconsistency is

argued to be minor (Haarsma et al., 2016).

3.3.3 Further Common Forcings Fields

Other forcing fields used for greenhouse gas concentrations, aerosol concentrations, land

surface properties or solar variability between 1950-2014 are mostly the same as those

used in standard CMIP6 historical simulations described in Eyring et al. (2016). As

mentioned above, future greenhouse gas and anthropogenic aerosol concentrations follow

the high-end emission scenario of SSP5-8.5. The aerosol forcing consists of a background

concentration climatology to which an anthropogenic time-varying, spatially uniform

forcing from the MACv2-SP model (Stevens et al., 2016) is added. In order to make the

model forcing as simple and thus as comparable as possible, the land surface properties

will be climatological seasonally varying conditions of the leaf area index. Moreover,

a non-dynamic vegetation and a constant land use consistent with conditions centred

around the year 2000 will be assumed. The atmosphere-land system requires several

years of spin-up to reach quasi-equilibrium as is carried out and discussed in Eyring

et al. (2016). More in-depth details on these common forcing fields can be found in

Haarsma et al. (2016).

3.4 Cyclone Tracker

The tracker used to detect the formation and propagation of TCs within the model

output data is the BSC Cyclone Tracker (called “tracker”). It is based on the Geo-

physical Fluid Dynamics Laboratory Vortex Tracker V3.5b by the National Oceanic
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and Atmospheric Administration (NOAA) (https://dtcenter.org/HurrWRF/users/

downloads/Tracker_releases/V3.5b/stand_alone_tracker_UG_v3.5b.pdf). It pro-

vides an estimate of the location of the centre of potential TC candidates, their intensity

and structure at each 6-hour time step. The tracker uses minima in the mean sea level

pressure (MSLP) field as the main tracking feature and requires a list of input param-

eters needed for the tracking of cyclones:

� The MSLP field is required.

� Both horizontal wind speed components u and v at either 850 and 700 hPa or at

500 hPa are needed to estimate the path of the storm. It is possible to use all

three pressure levels as input.

� Due to the dynamic connection between wind velocity and absolute vorticity, the

tracker can instead use the vorticity of the horizontal wind speed field at the same

levels. In this study, the wind speed components u and v are used.

� While the above listed quantities are mandatory to the tracker, the near surface

wind speed at 10 m and the geopotential height at 850 and 700 hPa are optional

values which can be used to correct the centre of the low, otherwise the centre of

the low will be fixed to the minimum MSLP.

� The 400 hPa temperature field is a further optional variable and not mandatory

for the detection of storms, but it is used to discriminate between warm-core and

cold-core cyclones, i.e., between tropical and extratropical cyclones.

Given all this input data, the tracking process searches the model data for minima

in the MSLP, lower than a given threshold parameter, selects suitable candidates and

follows their evolution over time. In order to be further classified as a low and not

to be rejected, the low requires at least one closed isobar (whose pressure level can be

determined by a parameter) around its centre. An isobar is considered closed when the

pressure at all eight neighbouring grid boxes increases with respect to the centre of the

low pressure. For grid boxes with same pressure values as the centre, the neighbouring

grid boxes of that grid box are taken into consideration. If it is not possible to close

a single isobar around the centre, the candidate will be discarded. If an isobar can be

closed, the process will be repeated until no further isobar can be closed. However,

during the tracking process, there are two additional parameters which are constantly

checked to evaluate whether the tracking of a potential cyclone should end: the outward

surface pressure gradient and the tangential wind speed at 850 hPa (or 500 hPa), both

of which need to exceed a certain threshold in order to continue the tracking of a storm.

These thresholds are parameters of the tracker and can be adjusted by the user (see

Sect. 4 for choice of parameters for this study).

https://dtcenter.org/HurrWRF/users/downloads/Tracker_releases/V3.5b/stand_alone_tracker_UG_v3.5b.pdf
https://dtcenter.org/HurrWRF/users/downloads/Tracker_releases/V3.5b/stand_alone_tracker_UG_v3.5b.pdf
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Furthermore, the tracker registers all cyclone candidates which form inside a prescribed

domain (see Sect. 3.5.1). Even if the storms leave the domain after first being registered

in that domain, the tracker will follow them until one of the tracking criteria is no longer

met. Pressure systems that formed before entering the designated tracking domain will

only be tracked from their point of entrance into the domain, given they meet the required

criteria.

Lastly, the tracker characterises each storm as either tropical or extratropical. Since

cores of TCs are relatively warmer than cores of extratropical cyclones, the tracker

discriminates between the two by checking the 400 hPa horizontal temperature profile

of the candidate low pressure systems. If the maximum temperature value found near

the centre of the storm decreases by a threshold parameter in the direction of all eight

neighbouring grid boxes within 8◦, the low is considered to be of tropical nature. If this

criterion is not met, the tracker will still continue to track the storm but it will not be

regarded as a TC in the further analyses.

3.5 Definitions and Statistical Tools

3.5.1 Tropical Storms

Following the description by NOAA, the most commonly used time period for the

definition of the TC season in the NH is between May/June and the end of Novem-

ber, so that the time period from 1 June to 30 November is adopted for this study

(https://www.nhc.noaa.gov/climo/). Further, a low pressure system is characterised

as a TC if the surface wind speed in the vicinity of the centre exceeds 18 m s−1 for

a consecutive period of 24 hours. According to these classifications, a potential storm

candidate in the model must surpass this wind speed threshold and fulfil the specified

warm-core criterion for five consecutive time steps at a 6-hour time resolution. For this

study, a potential candidate is not classified as a cyclone if these criteria are not met,

even if 20 single data points each overcome the threshold but without a single trace of

five connected data points. Conversely, single, non-connected data points will not be

omitted if at least one trace of five consecutive data points that all meet the require-

ments for a TC exists. Together with the outward temperature gradient, the wind speed

of each potential storm is evaluated at each time step during the post-processing and

the storms are selected according to the above criteria.

Each storm candidate that has been classified as a TC is then allocated to a basin. In

case a storm crosses the border between two basins, the storm will be counted in both

basins, provided at least one data point that fulfils the criteria is located within that

basin. Since this study focuses on TCs in the NH, the three basins considered are as

described in Tab. 4 and outlined in Fig. 6 below:

https://www.nhc.noaa.gov/climo/
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Basin Longitude Latitude

Western North Pacific
(WNP)

100◦E – 180◦ 0◦ – 40◦N

Eastern North Pacific
(ENP)

180◦ – 100◦W
100◦W – 90◦W
90◦W – 85◦W
85◦W – 70◦W

0◦ – 40◦N
0◦ – 17◦N
0◦ – 15◦N
0◦ – 10◦N

North Atlantic
(NA)

70◦W – 0◦

100◦W – 90◦W
90◦W – 85◦W
85◦W – 70◦W

0◦ – 40◦N
17◦N – 40◦N
15◦N – 40◦N
10◦N – 40◦N

Table 4: Description of the spatial extent of the three considered basins in the NH: Western
North Pacific (WNP), Eastern North Pacific (ENP) and North Atlantic (NA).

Figure 6: Outline of the three considered basins in the NH: Western North Pacific (WNP),
Eastern North Pacific (ENP) and North Atlantic (NA).

3.5.2 Integrated Kinetic Energy (IKE)

Integrated Kinetic Energy (IKE) is an integrated measure to assess a storm’s level of en-

ergy related to the motion of the air (Powell & Reinhold, 2007). Unlike other integrated

measures like the Accumulated Cyclone Energy index (ACE) (Bell et al., 2000) or the

Power Dissipation Index (PDI) (Emanuel, 2005) which only consider the maximum wind

speed associated with a storm, IKE also takes into account lower wind speeds and the size

of a storm at a given time step. The destructive potential of a storm can much more ac-

curately be assessed when the size of the damaging wind field is considered together with

the intensity as pointed out by Mahendran (1998). Kantha (2006) further highlighted

the need to account for storm size when assessing hurricane hazards and acknowledged

the relevance of the dynamic wind pressure associated with the wind field. Since IKE

is equivalent to the wind pressure it can be a good indicator for the wind loading on

structures and strongly influence the caused damage (Powell & Reinhold, 2007; ASCE,

2016). Furthermore, Zhai & Jiang (2014) indicated that using a combination of storm
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size and maximum wind speed explains a larger portion of the variance in losses caused

by a landfalling hurricane than using intensity or size alone. They suggest that economic

losses from the landfall of Hurricane Sandy (2012) would have been approximately 20

times smaller if its size were comparable to an average sized hurricane. Wang & Toumi

(2016) demonstrated that the wind structure at landfall is crucial to the destructive po-

tential of hurricanes and that the maximum wind speed is a relatively weaker measure of

the damage footprint than the spatially integrated measure, promoting the use of IKE.

Storm surge and waves generated by TCs, too, have been found to be closely connected

to IKE as the shear stress of the wind on the ocean surface also scales with kinetic en-

ergy (KE) (Powell et al., 2003; Donelan et al., 2004). Consequently, the combination

of storm size and intensity in the hours and days before landfall is likely to provide a

robust estimate of wave and surge destructive potential (Powell & Reinhold, 2007; Irish

et al., 2008). Thus, IKE provides a metric strongly connected to the physical forces that

contribute to damages associated with TCs. This favours the use of IKE over ACE and

PDI which both lack information on spatial extent of damaging winds. IKE is defined

as the volume integral of the KE per volume unit of the horizontal wind field of a storm:

KE = 0.5 · ρ · U2, (1)

with ρ the air density and U the surface wind speed at 10 m height with

U =
√
u2 + v2, (2)

with u and v the horizontal surface wind speeds in x and y direction. IKE is calculated

as the area over which the wind field exceeds a certain wind speed threshold, vertically

integrated over a uniform 1-metre layer centred around 10 m height:

IKE =

∫
V

KE dV =

∫
V

0.5 · ρ ·
√
u2 + v2

2
dV

=

∫
x

∫
y

∫
z

0.5 · ρ · (u2 + v2) dz dy dx =

∫
x

∫
y

0.5 · ρ · (u2 + v2) · 1 m dy dx. (3)

In a finite differences approach, the wind speed at each grid point is evaluated. If it

surpasses a specific threshold, then that wind speed and the area around that grid point

contribute to the estimation of IKE. The area is defined by the horizontal resolution of

the model ∆x and ∆y and corrected for the latitude of the grid point φ:∫
x

∫
y

0.5 m · ρ · (u2 + v2) dy dx→
∑
x

∑
y

0.5 m · ρ · (u2 + v2) · cos(φ) ·∆x ·∆y. (4)
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The locally dependent air density ρ will be considered spatially uniform in this study.

Furthermore, only grid points with wind speeds larger than 18 m s−1, which is the thresh-

old required for a storm to be classified as a TC, will contribute to IKETS (turbulent

wind fluctuations are ignored). Also, only grid points within a 2000 km square around

the centre of the storm, i.e., 1000 km in all four directions N, E, S and W from the storm

centre, are considered for the computation of the IKE. The final form of the equation is

given below (for simplicity, the value IKETS will be referred to as IKE ):

ρ(x, y, z) = ρ = 1 kg m−3, (5)

IKETS = IKE = 0.5 m · 1 kg m−3 ·
m∑
i=1

n∑
j=1

(u2i,j + v2i,j) · cos(φj) ·∆xi ·∆yj

= 0.5 kg m−2 ·
m∑
i=1

n∑
j=1

(u2i,j + v2i,j) · cos(φj) ·∆xi ·∆yj, (6)

where i and j are the grid points in the x and y directions within the 2000 km square

around the storm centre.

Fig. 7 below shows an example of a surface wind speed field associated with a TC in

the WNP. The green dot represents the centre of the storm as identified by the tracker.

The yellow isoline displays the 18 m s−1 isotach. Thus, all the grid points within this

isotach are considered for the computation of the IKE. The figure reveals two issues

related to the estimation of the IKE :

� Since the isotach is created via interpolation between the grid points, it does not

align with the rectangular areas around the grid points. This means that some

grid points contribute an area too large or too low to the IKE. This uncertainty

is rather low as these two effects should, to first order, cancel each other out.

� The wind fields of exceptionally large storms may be larger than the 2000 km

square, hence why for some storms the area contributing to the IKE could be

underestimated. Furthermore, extremely small and contracted storms may receive

contributions from nearby storm systems which are located within the same 2000

km square. Overall, these effects can be considered to occur with a very low

frequency and to be consistent over the entire set of experiments which justifies

this methodology.

One further measure of interest is the IKE of a storm, integrated over its entire lifetime.

This quantity was introduced by Misra et al. (2013) and is called Track Integrated Kinetic
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Figure 7: Example wind speed field of a TC in the WNP. Absolute wind speed U is given
according to the colour coding. The storm centre as detected by the tracker is represented by
the green dot. The 18 m s−1 isotach is highlighted in yellow. All the grid points located within
the isotach are taken into consideration when calculating IKE.

Energy (TIKE) which in a finite differences approach becomes the following (since IKE

is evaluated at 6-hour intervals, ∆t = 6 h is cancelled out):

TIKE =

∫
t

IKE dt→
o∑

k=1

(IKE)k ·∆tk =
o∑

k=1

(IKE)k, (7)

where t represents the points in time and k the observed time steps at which the storm

fulfils the tropical storm criteria. Summing up the TIKE of all storms of a season during

a given year yields the seasonal TIKE, which serves as a measure for comparison of

TC activity between different years:

seasonal TIKE =

p∑
l=1

(TIKE)l =

p∑
l=1

(
o∑

k=1

(IKE)k

)
l

, (8)

where l represents all the storms during a storm season from June through November

over which the summation is carried out.
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3.5.3 PDO and AMO Indices

The PDO is a decadal climate oscillation in the Pacific Ocean. It is often described as a

long-lived El Niño-like pattern of Pacific and North American climate variability, strongly

driven by fluctuations in SST (Zhang et al., 1997; Mantua et al., 1997). Extreme phases

of the PDO are classified as being warm or cool and they are defined by SST anomalies

in the northeast and tropical Pacific Ocean. Anomalously low SSTs in the interior North

Pacific and above-average SSTs along the Pacific coast characterise a positive PDO phase,

reversed patterns a negative phase (Mantua & Hare, 2002). The PDO index is a measure

to quantify the state of the PDO, using spatially averaged SST anomalies in the Pacific,

north of 20◦N (Mantua & Hare, 2002). This study uses the NCEI PDO index which is

based on NOAA’s extended reconstruction of SSTs (ERSST Version 4). It is constructed

by regressing the ERSST anomalies against the Mantua PDO index (Mantua & Hare,

2002) for their overlap period, to compute a PDO regression map for the North Pacific

ERSST anomalies. The ERSST anomalies are then projected onto that map to compute

the NCEI index (https://www.ncdc.noaa.gov/teleconnections/pdo/).

The AMO is a similar climate oscillation as the PDO but operating on multidecadal

timescales (60-80 years) in the Atlantic Ocean (Trenberth et al., 2019). It has been found

to impact Atlantic hurricane activity, North American and European summer climate,

mean surface temperature in the NH and Arctic sea-ice anomalies (Trenberth et al.,

2019). Analogous to the PDO index, the AMO index is typically defined as the spatial

average of SST anomalies in the NH between 0◦ and 80◦N (Trenberth et al., 2019). The

AMO index used in this study is the smoothed version provided by NOAA, derived from

the Kaplan SST dataset and is based on a spatial average of NA SST anomalies between

0◦ and 70◦N (https://psl.noaa.gov/data/timeseries/AMO/).

3.5.4 Linear Regression and Pearson’s Correlation Coefficient

The simple linear regression is a statistical method to model the linear relationship

between two data series x and y of n data points (xi, yi). It is a model in which one

variable x is used as a linear predictor for the second variable y by using two parameters

α and β, the intercept and slope (sometimes referred to as trend) of the regression line:

y◦i = α◦ + β◦ · xi. (9)

https://www.ncdc.noaa.gov/teleconnections/pdo/
https://psl.noaa.gov/data/timeseries/AMO/
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Figure 8: (a) Schematic of fitting a linear function to the available data points. Minimising
the errors between the modelled and the actual data yields the best-fit model (https://i.
ytimg.com/vi/zPG4NjIkCjc/maxresdefault.jpg). (b) Different linear relationships between
two variables and their respective correlation coefficients (https://commons.wikimedia.org/
wiki/File:Pearson_Correlation_Coefficient_and_associated_scatterplots.png.)

The estimators α◦ and β◦ for the best-fit linear model are calculated using a least-squares

approach where the sum of the squared differences between the actual data point yi and

the predicted data point y◦i is minimised (Fig. 8a):

minimise :
n∑
i=1

(yi − y◦i )2 =
n∑
i=1

(yi − (α◦ + β◦ · xi))2, (10)

β◦ =

n∑
i=1

(xi − x̄) · (yi − ȳ)

n∑
i=1

(xi − x̄)2
, (11)

α◦ = ȳ − β◦ · x̄, (12)

where x̄ and ȳ are the mean values of x and y:

x̄ =
1

n
·

n∑
i=1

xi, (13)

ȳ =
1

n
·

n∑
i=1

yi. (14)

The correlation coefficient ρx,y between the two data series x and y quantifies their

relationship to one another. The most commonly used coefficient for linear relationships

is Pearson’s correlation coefficient (referred to as correlation). It gives insight into how

adequate a linear model is in representing the link between the variables. It is a scaled

https://i.ytimg.com/vi/zPG4NjIkCjc/maxresdefault.jpg
https://i.ytimg.com/vi/zPG4NjIkCjc/maxresdefault.jpg
https://commons.wikimedia.org/wiki/File:Pearson_Correlation_Coefficient_and_associated_scatterplots.png
https://commons.wikimedia.org/wiki/File:Pearson_Correlation_Coefficient_and_associated_scatterplots.png
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Figure 9: (a) Gamma distributions for various combinations of shape parameter k and scale pa-
rameter θ (https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg).
(b) Visualisation of the KS statistics Dn,m which is based on the maximum difference between
two CDFs (https://commons.wikimedia.org/wiki/File:KS2_Example.png).

measure bounded between 1 and -1. The closer the coefficient to 0, the weaker the linear

relationship is. Conversely, the closer it is to 1 or -1, the stronger the linear relationship

is. While values above 0 represent positive relationships between x and y, values less than

0 characterise negative relationships (compare Fig. 8b). Pearson’s correlation coefficient

is defined such as:

ρx,y =

n∑
i=1

(xi − x̄) · (yi − ȳ)√
n∑
i=1

(xi − x̄)2 · (yi − ȳ)2
. (15)

3.5.5 Gamma Distribution and Kolmogorov-Smirnov Test

The Gamma distribution is a statistical, continuous distribution and a useful tool to

model the distribution of atmospheric quantities as many of them are bounded at the

lower end and distinctly asymmetrical. For instance, wind speed and precipitation dis-

tributions are commonly described using the Gamma distribution (Morgan et al., 2011;

Liang et al., 2012). The Gamma distribution is defined over the interval [0, ∞) and pa-

rameterised by a shape parameter k and a scale parameter θ (examples given in Fig. 9a).

Its probability density function f (PDF) is as follows:

f(x; k, θ) =
xk−1 · e−x/θ

Γ(k) · θk
, (16)

https://commons.wikimedia.org/wiki/File:Gamma_distribution_pdf.svg
https://commons.wikimedia.org/wiki/File:KS2_Example.png
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where Γ(k) is the Gamma function

Γ(k) = (k − 1)!. (17)

It is possible to account for the lower bound of the modelled process by shifting it along

the x-axis with a location parameter µ which, eventually, influences the interval over

which the distribution is defined as [µ, ∞):

f(x; k, θ, µ) =
(x− µ)k−1 · e−(x−µ)/θ

Γ(k) · θk
. (18)

The Kolmogorov-Smirnov (KS) test is a non-parametric test that can be used as a

goodness-of-fit test to compare two samples to evaluate whether or not these originate

from a common distribution (Lopes et al., 2007). It assumes a null hypothesis under

which both samples come from the same, continuous distribution. The KS statistics

Dn,m evaluates the local difference between both cumulative density functions F1 and F2

(CDFs) and calculates the maximum difference (Fig. 9b):

Dn,m = supx|F1,n(x)− F2,m(x)|, (19)

where supx is the supremum function and n and m are the sizes of the respective samples.

If, at any point, a certain critical value is exceeded, the null hypothesis is rejected and

the samples are considered to originate from different distributions. The critical value

to be exceeded in order to reject the null hypothesis depends on the size of the samples

and the desired significance level α. For a two-sided KS test with a significance level of

α = 5%, the criterion becomes:

Dn,m > 1.36 ·
√
n+m

n ·m
(20)
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4 Tuning the Tracker

Before tracking the storms, a reasonable set of tracking parameters needs to be estab-

lished that will be used uniformly for the experiments. This preliminary step will also

provide an opportunity to estimate the sensitivity of the results to these parameters and

also detect potential errors that can occur and which could impact the results.

First, it has to be noted that it is possible to set the domain and the time period over

which to track the storms. This allows to speed up the tracking procedure by removing

areas and seasons either for which TCs are not expected to form in or which are outside

the scope of this study. Similarly, it is a useful feature to exploit performing small tests:

By limiting the domain to a single month and to only a part of a basin, one can speed

up the tracking considerably. Besides the domain size and the time period, a set of five

different parameters can be adjusted prior to the tracking. Modifying these parameters

will impact, to various degrees, the cyclones detected by the tracker. These parameters

are:

� The minimum MSLP a low has to reach in order to be registered as a potential

storm candidate;

� The threshold value of the 400 hPa horizontal temperature decrease in order to

be classified as a tropical or extratropical cylone;

� The outward surface pressure gradient that needs to be maintained in order to

be classified as a storm;

� The minimum azimuthally-averaged cyclonic tangential wind speed at 850 hPa

(or 500 hPa) that needs to be maintained in order to be classified as a storm;

� The surface pressure interval between the storm centre and the environment, i.e.,

the increase in surface pressure needed between the centre and each isobar the

tracker tries to close.

The tracker comes with a standard value for each parameter. Depending on the objec-

tive of the performed study, the user can choose to modify the parameters. For example,

it is useful to reduce the MSLP parameter when examining the Indian Ocean or West

Pacific where MSLPs are generally lower due to higher SSTs. To estimate the sensitivity

of the results to these parameters and to determine whether they should be modified,

a series of tests is performed. To illustrate the impact that these parameters can have

on the results, two extreme cases for each parameter are presented: one which is more

permissive and one which is more stringent. These assessments are carried out using test

cases that are assumed to be representative of the typical TCs simulated by the model.

After assessing the tracker’s performance, the final set of parameters is chosen.
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The first parameter that is tested is the minimum MSLP threshold, and the track-

ing response to three different values (1000 hPa, 1010 hPa (standard) and 1020 hPa) is

examined. A test case confirms the expected outcome that the lower threshold of 1000

hPa generates significantly fewer storms (-44%) than the standard value, while the more

relaxed condition generates slightly more storms (+7%). Giving further confidence in

the integrity of this tracker feature is the fact that all storms, that were recognised by

the lower threshold, were also recognised by the higher thresholds. Considering the large

difference in registered storms between the 1000 hPa and 1010 hPa threshold and the

increase in computational time needed to perform the experiment at a threshold of 1020

hPa, the standard parameter value of 1010 hPa is maintained for the following analyses.

Secondly, the parameter for the warm-core criterion is assessed. In contrast to the

minimum MSLP check, the warm-core check does not influence the number of storms

detected, it only serves as a classification tool. Three different values for the required

outward temperature decrease are evaluated: 0.5◦C, 1.0◦C (standard) and 2.0◦C. In gen-

eral, this tool works well for all three values. Fig. 10 shows the 400 hPa temperature

field associated with an example TC in the WNP. The local maximum temperature (see

colour coding) of the model output data is found close to the estimated vortex centre

by the tracker (green dot). The three isotherms represent the three different tempera-

ture decrease criteria (0.5◦C, 1.0◦C, 2.0◦C) relative to the maximum temperature. The

figure reveals that all three considered isolines are closed within 8◦ of the maximum

temperature, indicating that this storm should be classified as warm-core, regardless of

the threshold chosen. The visual output is confirmed by the tracker which characterises

this storm as warm-core for each of the three cases. If one of the isotherms had not been

closed, the tracker would have classified this storm as cold-core (extratropical). Further

analyses showed that, overall, the classification tool is reliable, although there are cases

for which the visual output of the (closed) isolines and the tracker output do not match

each other (not shown). However, this issue mainly arises for storms of weaker magni-

tude and it is expected to have little impact on the final results since these weak storms

are filtered out due to the wind speed threshold for TCs in the post-processing. Due to

the successful testing of all three parameters, the recommended standard value of 1.0◦C

is maintained.

The standard outward surface pressure gradient value of 0.010 hPa km−1 is assessed

and compared to the results given by a reduction to 0.005 hPa km−1 and by increas-

ing it to 0.020 hPa km−1. For all test cases the total storm count remained constant.

The lack of change in storm counts appears surprising but coincides with the finding

of the tracker’s developer who, too, found that changing this parameter does not have

an impact on the ending of the tracking. In all examined cases, the tracking was never

terminated because of the pressure gradient. Similar to the outward surface pressure

gradient, the 850 hPa wind speed is evaluated at its standard value of 5 m s−1, at a
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Figure 10: 400 hPa temperature field associated with an example TC in the WNP. The storm
centre as recognised by the tracker is shown by the green dot. The isotherms associated with
the three different tested temperature decrease thresholds of 0.5◦C, 1.0◦C and 2.0◦C relative
to the maximum temperature are highlighted in blue, yellow and white, respectively.

reduced value of 2 m s−1 and at an increased value of 7 m s−1. All things being equal, it

would be expected that a higher wind speed threshold leads to a lower storm count. In

general, this is what has been observed, although there were exceptional cases in which a

storm would be identified with the higher but not the lower threshold. A possible reason

for this might be the interpolation scheme used in the tracker code that could possibly

cause the tracker problems closing isolines. This could result in wind speed conditions

which lead to the difference in storm registrations. As for the warm-core check, the

issue of storms being detected by higher thresholds but not by lower thresholds arises

relatively rarely and thus the standard value of 5 m s−1 for the 850 hPa wind speed is

maintained to exclude the weakest storms.

The last parameter requiring evaluation is the surface pressure interval between the

pressure of the centre of the storm and the first closed isobar. If one isobar has suc-

cessfully been closed, this value determines the pressure interval between this isobar and

the next potentially closed isobar. At the same time, a higher interval value should

exclude storms with a lower pressure difference between the centre and the environment.
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Figure 11: MSLP field and related isobars associated with an example TC in the WNP. The
storm centre as recognised by the tracker is shown by the green dot. The last closed isobar
as detected by the tracker (for all three different tested surface pressure interval values of 0.5
hPa, 1.0 hPa and 2.0 hPa) is highlighted in green.

In general, this result can be seen in test cases where changing the standard parameter

value from 1.0 hPa to 0.5 hPa and 2.0 hPa results in higher and lower storm counts, re-

spectively. Unfortunately, in almost all cases, the tracker output of the last closed isobar

does not coincide with the model data. For example, in Fig. 11, the last closed isobar

with respect to the 0.5 hPa, 1.0 hPa and 2.0 hPa interval as identified by the tracker is

highlighted in green. It is evident that this 980 hPa isobar is not the last closed isobar

around the storm centre. It is suspected that this issue arises due to the interpolation

scheme inherent to the tracking procedure and despite many attempts, identifying the

exact cause of the issue was unsuccessful, let alone solving it. This could potentially

have an impact on the final output, but the nature of that impact is difficult to evaluate.

Accordingly, the default value for this parameter, i.e., 1 hPa, is chosen.

Besides the five parameters which can be adjusted, it is informative to investigate

whether the tracker performs as expected at different model resolutions. Comparing the

HR integration against LR in a test case, yields an increase in storm counts of approxi-

mately 60% which matches the expectations. In addition, the minimum MSLP found in
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Figure 12: Average MSLP in September for a test case over Taiwan in the WNP for LR (a)
and HR (b). The increased resolution enables the representation of topographic features over
small land masses which leads to an interaction with the local MSLP.

Figure 13: MSLP field and isobars associated with an example TC in the WNP in a HR test
experiment. The positive MSLP anomaly over Taiwan distorts the pressure field of the nearby
cyclone.



34 4 Tuning the Tracker

all detected TCs decreased from 934 hPa in LR to 912 hPa in HR. The maximum wind

speed registered for TCs showed an increase from 30 m s−1 to 56 m s−1, also agreeing with

the notion of lower pressures and higher winds at finer resolutions. Despite these positive

findings, the tracker seemed to fail to continuously track some storms in HR relative to

LR. Although those storms were detected at each time step, these individual data points

were not connected and not considered as one continuous storm but registered as several

single storms so that they had to be pieced together in order to create a continuous storm

track. Especially strongly impacted areas include small islands of high topography like

Taiwan and Hawaii. The reason for this appears to be the increased horizontal resolu-

tion and representation of these small landmasses which are not properly resolved in LR.

Eventually, the topography creates a positive horizontal anomaly in MSLP over these

regions as can be seen in Fig. 12 (example for Taiwan in the WNP). The anomaly is

persistent over the entire storm season and interacts with approaching cyclones, leading

to high pressure anomalies within the storm systems. These anomalies arise from the

use of MSLP which in case of high orography is a virtual value which appears to inter-

fere with the tracking of nearby storms. An example is provided in Fig. 13 where the

high pressure anomaly over Taiwan distorts the pressure field of a nearby cyclone (see

interaction of 1003 hPa isobar with 1001 hPa isobar). It is suggested that this distortion

leads to problems with closing the isobars related to the cyclone (as mentioned above)

and finally ends the tracking of the storm. Regions of similar characteristics like Hawaii,

the Philippines and parts of the Caribbean also suffer from these topographical issues in

HR which can introduce uncertainties to the analyses.
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5 TCs in the CNRM Climate Model

In this section, the climate model’s TC activity is shown to first provide an overview

of the number of storms, their location, intensity and obviously, IKE. Subsequently, the

findings for the effects of model resolution and a changing climate on IKE characteristics

are presented, individually for the Western North Pacific (WNP), the Eastern North

Pacific (ENP), the North Atlantic (NA) and in combination (“NH”).

5.1 Storm Frequency, Intensity and Track Density

The frequency of TCs, their intensity and global distribution are key factors to take into

consideration when characterising a model’s ability to reproduce observed TC activity.

Fig. 14 shows the tracks of all the simulated TCs. Their maximum lifetime intensity,

based on the SSHWS, is given by the colour-coding. First, it is evident that in all exper-

iments the WNP is the most active basin, followed by the NA and the ENP. This differs

from the observed climatology presented in Fig. 4 in which the ENP is characterised by

higher TC activity than the NA. A possible reason for the underestimation of registered

TCs might be the North American topography: As pointed out by Zehnder (1991) and

Mozer & Zehnder (1996), the Sierra Madre plays an important role in providing vorticity

required to initiate TCs. These orographic features may not be well represented in the

model and result in a low number of TCs in the ENP.

Secondly, Fig. 14 reveals that experiments with a finer model resolution are able to

generate more TCs than their coarse resolution counterparts, but also, that TCs in all

basins remain biased low with respect to the observed climatology (WNP: 25 storms

per year, ENP: 15 storms per year, NA: 13 storms per year). This result is expected

and aligns with the findings of Chauvin et al. (2019) and Roberts et al. (2020) who also

found that a refinement of the CNRM model resolution positively impacts TC frequency

which, nevertheless, is still biased low with respect to observations. Particularly, the

ENP and the NA benefit from the increase in resolution where the storm counts per year

for the period 1950-2050 rise from 0.4 to 3.7 (ENP) and from 1.5 to 9.3 (NA). The WNP,

too, experiences an increase in storm numbers from 8.4 to 16.6, however, this increase is

relatively not as large as the increase seen in the other two basins.

Thirdly, an increase in storm intensity with resolution can also be noticed in all basins.

Whereas the highest storm intensity in the LR experiment is found to be category 1,

TCs of categories 2-5 could be generated in the HR experiment, as can be seen by the

orange, red, purple and black tracks (Fig. 14b, d). This finding is also consistent with

the previous studies of Chauvin et al. (2019) and Roberts et al. (2020) who pointed out

that the enhanced resolutions in the CNRM model were able to generate TCs of the

highest categories, producing more realistic results.
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Figure 14: Storm tracks for LR present (a), HR present (b), LR future (c) and HR future
(d). Every storm is colour-coded according to its maximum lifetime intensity with respect to
the SSHWS (tropical storms are counted as category 0). The total storm count for the entire
period for each basin is shown in the boxes.

Comparing the present period (1950-2014) and the future period (2015-2050) against

each other reveals that the global annual frequency slightly declines for both resolutions:

In LR, the value drops from 10.5 to 10.1 whereas it decreases more from 31.5 to 26.2

in the HR integration (not checked for statistical significance). The figure also displays

differences in the frequency response between the individual basins. Both basins in the

North Pacific are characterised by a decrease in storm activity as opposed to the NA

which shows increasing activity in the future. However, although a decrease in global

future TC activity has been found in other studies (Knutson et al., 2019), it has to be

kept in mind that this study is based on atmospheric-only simulations with prescribed

SSTs and one model simulation only which adds uncertainty to projections of future

changes so that interpreting the presented numbers must be done with caution.

Next, it is evaluated whether a change in intensity between the present and future

period can be detected. To provide two examples, the percentages of storms in SSHWS

categories 0 and 4 relative to the overall storm count are evaluated and reveal that there

is only little change between both periods: The LR integration yields values of 98%
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Figure 15: Track distribution per year in the NH per 2◦× 2◦ grid cells from 1950-2050 for (a)
LR and (b) HR, (c) difference between HR and LR. All storm transits in the respective grid
boxes were counted and averaged over time.

(present) and 99% (future) for category 0 and no storms of category 4 in both time pe-

riods. HR shows percentages of 59.3% versus 62.3% and 3.3% versus 3.9% for category

0 and 4, respectively. Considering all categories (not shown), the numbers indicate a

slight increase in storms of categories 0 and 3-5 at expense of category 1 and 2 storms.

Although no statistical test for significance has been applied, the low differences suggest

no clear trend toward more or less intense storms in the future unlike presented in the

study of Knutson et al. (2019).

A more precise picture about the global storm distribution can be obtained from

Fig. 15 which shows storm occurrences per 2◦× 2◦ grid box per year from 1950-2050. As

already anticipated from Fig. 14, the majority of storm tracks is registered in the WNP.

Since the signal in the ENP and NA is very weak compared to that in the WNP, Fig. 25-

Fig. 27 in the Appendix provide a close-up view of the individual basins. These confirm

the increase in storms from the LR experiment to HR for all three basins. This finding

disagrees with the result of Roberts et al. (2020), who - despite concluding an overall

increase in global TC frequency from LR to HR - found increases as well as decreases in

all individual basins using the CNRM model. A possible explanation for this could be

the use of two other tracking mechanisms (TRACK and Tempest Extremes) which might

lead to differences in storm recognition: While TRACK (Hodges et al., 2017) uses the

vorticity average over 850 hPa, 700 hPa and 600 hPa as tracking feature, Tempest Ex-

tremes (Ullrich & Zarzycki, 2017; Zarzycki & Ullrich, 2017) also uses minima in MSLP

as tracking feature but in addition, use differences in geopotential height between 500



38 5 TCs in the CNRM Climate Model

hPa and 250 hPa. Further consequences of the enhancement in resolution include:

� A shift in the WNP maximum storm frequency toward the South China Sea,

between Hong Kong, Taiwan and the Philippines.

� No detected storms around the north eastern coast of Taiwan in the HR experi-

ments, leading to negative signals in the figures for the difference. This behaviour

is due to a bug in the tracker and was linked to the topography, as discussed in

Sect. 4.

� An increase in ENP storm activity, with its maximum centred off the coast of

Mexico.

� An increase in storm activity throughout almost the entire NA basin, with its

maximum between 60◦W and 70◦W.

5.2 Impact of Model Resolution on Simulated IKE

After providing an overview of the TC activity, the IKE will be assessed. Here, IKE

is defined as the integration of the energy, i.e., intensity and size, of the wind field

above the 18 m s−1 wind speed threshold. With the demonstrated increase in maximum

storm intensity from LR to HR, the question arises whether a shift in probability toward

storms of higher maximum lifetime IKE can be expected as well. In order to address this

question, first the spatial distribution of maximum lifetime IKE values between the two

resolutions is evaluated. Due to the lack of sufficient storm numbers to perform robust

statistical methods in the ENP, this basin is not analysed in isolation but in combination

with the WNP and the NA.

Fig. 16 provides an overview of the basin wide maximum lifetime IKE per storm

per 2◦ × 2◦ grid cells for the period 1950-2050. This figure has to be considered in

combination with the track densities in Fig. 15, as every 2◦×2◦ box is characterised by a

different amount of storm transits which influences the IKE value per storm. A close-up

view of the individual WNP and NA basins can be found in Fig. 28 and Fig. 29 in the

Appendix. The difference in response in the WNP (Fig. 16c) is mixed throughout the

basin with an emerging tripole pattern with centres of action located in the South China

Sea, east of Japan and east of Taiwan/south of Japan. This finding suggests that an

increase in resolution shifts the maximum IKE content of storms toward the Chinese and

Japanese coasts whereas storms are less energetic off the east coast of Taiwan. Taking

into consideration the increased track density in the South China Sea (Fig. 15c), this

area is characterised by more frequent and more energetic storms when enhancing the

model resolution.

In the NA, the difference between the resolutions is positive north of 20◦N, with

its maximum increase just north of 30◦N and between 40◦W-60◦W. The signal is very
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Figure 16: Maximum lifetime IKE distribution per storm in the NH per 2◦ × 2◦ grid cells for
(a) LR and (b) HR from 1950-2050, (c) difference between HR and LR. The IKE associated
with all storm transits in the respective grid boxes was summed up and then averaged over all
those storm transits.

similar to the change in track density as seen in Fig. 15, so that more frequent and

energetic storms are to be expected in the entire NA in HR. This basin wide increase in

maximum IKE may be caused by the overall better representation of storms in the NA

compared to LR, as was already emphasised by the difference in total storm occurrences

in Fig. 14. Overall, the results suggest differences in the basin wide spatial distribution

of the IKE response to increased resolution: positive throughout the NA and a tripole

pattern in WNP.

Next, the probability density (PD) of storms to reach specific maximum lifetime IKE

ranges in both resolutions from 1950 through 2050 is evaluated. To get a hemispheric

and a regional insight, the NH as a whole and the WNP and the NA are analysed

individually. The PDs between LR and HR in the NH (Fig. 17a) are similar, particularly

in the IKE range above 200 TJ. Differences are present in the low-energy range with HR

producing proportionally more of the weakest storms (0-25 TJ) and LR generating more

storms in the band from 25-150 TJ. To receive a more clear and quantitative assessment,

best-fit Gamma distributions have been added to the PDs of both resolutions (orange

and grey). These reveal that there is a pronounced difference in probability for low-

energetic storms, especially in the range between 0 and 150 TJ, verifying an increase in

the weakest storms from LR to HR and a decrease in the band from 25-150 TJ. A KS test

confirms that the two fitted distributions are significantly different from each other at

the 5% significance level. With the decrease in low-energy storms (except for the weakest
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Figure 17: Comparison of PDs for all storms from 1950-2050 in the respective ocean basins
to reach specific lifetime maximum IKE. Bin sizes are 25 TJ, starting at 0 TJ. Red and black
bars are for LR and HR, respectively. (a) represents the entire NH, (b) the WNP and (c) the
NA. Best-fit Gamma distributions for the PDs are added in orange for LR and in grey for HR.

storms), an increase in more energetic storms would be anticipated. However, the change

in probability from LR to HR above IKE values of 150 TJ is minor, suggesting no clear

increase in probability of high-energetic storms. A possible reason for this could be the

impact of storm size on IKE which - besides intensity - is the other factor determining
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Figure 18: (a) Scatter plot of storm area above the 18 m s−1 wind speed threshold (IKE
area) against wind speed associated with maximum lifetime IKE of all the storms in the entire
NH from 1950-2050. IKE values are colour-coded for both resolutions, LR (circles) and HR
(triangles). Regression lines (relative to wind speed threshold) are drawn in solid for LR and
in dashed for HR. The regressions for the storms attributed to the WNP and NA are shown in
blue and red, respectively. The dashed ellipses show an approximation of constant IKE values
across the scatter plot. Hurricanes Camille, Ivan and Katrina are added using the data given
in Powell & Reinhold (2007). (b) Difference between HR and LR in joint PD for IKE area
and wind speed associated with maximum lifetime IKE of all the storms in the entire NH from
1950-2050. The bins are 1 m s−1 for the wind speed and 0.05 · 106 km2 for the IKE area.

IKE. A decrease in TC size with resolution has been observed in previous studies as well

(Bengtsson et al., 2007; Caron et al., 2011), thus this result is not entirely unexpected

and motivates investigating the contribution of storm size to IKE.

Analysing the WNP and NA separately provides a similar picture. In the WNP

(Fig. 17b), the difference between LR and HR in the range of 25-150 TJ is even more
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pronounced than for the entire NH, resulting in a stronger compensation by storms in the

medium-energy range (200-500 TJ). Here, too, the KS-test confirms a significant change

in probabilities. The NA shows a similar behaviour as the WNP, but additionally, is

characterised by a decrease in probability for the weakest storms (0-25 TJ). This leads

to an intersection between the two resolutions which is shifted more toward lower values

(about 100 TJ) relative to the WNP where the curves intersect at about 200 TJ. It

should be noted that the most extreme IKE values in the NA are lower than those in the

WNP, which is consistent with typhoons being larger than NA hurricanes, on average

(Chavas & Emanuel, 2010).

In order to gain insights into the IKE and to understand why LR and HR simulations

produce storms with similar maximum IKE (on average), the relationship between wind

speed and storm area with surface winds above tropical storm strength, i.e., the area of

the storm that contributes to the IKE (IKE area), is evaluated. (Fig. 18a) depicts the

relationship for both variables, as detected by the tracker at the time of maximum lifetime

IKE for all storms in the entire NH from 1950 through 2050 and for both resolutions.

First, the figure provides additional proof that there is a higher number of storms in

the HR integration (triangles) and that these are more intense than the storms in the LR

integration (circles): The maximum wind speed associated with maximum lifetime IKE

almost doubles from roughly 38 m s−1 to about 76 m s−1. Secondly, it shows that the

largest storm area above tropical storm strength between both experiments is similar,

with about 2.6 · 106 km2 for LR and approximately 2.4 · 106 km2 for HR. However, a

clear difference between LR and HR is the distribution of the data points with storms in

HR being shifted toward higher wind speeds. The linear regressions (solid and dashed

black lines) confirm this difference and reveal that TCs in HR are characterised by

a smaller IKE area relative to TCs in LR (at constant wind speed). The blue and red

lines, depicting the regressions for storms in the WNP and NA, show a similar behaviour,

stating a uniform response for the individual basins. Furthermore, it is visible that storms

in the NA are smaller than in the WNP as indicated by the red lines relative to the blue

lines, consistent with the findings of Chavas & Emanuel (2010) who found typhoons

being larger than NA hurricanes. (Fig. 18b) quantifies the difference in occurrence of

storms of specific size and intensity at maximum lifetime IKE in the entire NH between

HR and LR and clearly shows that for a given wind speed, storms tend to be larger in

LR than in HR.

In Fig. 18a the wind speed, the storm area above tropical storm strength and the

IKE at landfall of Hurricanes Camille (1969), Ivan (2004) and Katrina (2005) are added

using the data given in Powell & Reinhold (2007). Since Powell & Reinhold (2007)

do not provide direct data for IKE area, it was computed using the provided values

(see Eq. 21 in the Appendix). The three storms clearly show that the wind speeds

produced by the HR experiment are reasonable compared to major hurricanes but that
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Correlation between
maximum IKE and

NH (LR, HR) WNP (LR, HR) NA (LR, HR)

wind speed 0.87, 0.82 0.86, 0.81 0.90, 081

IKE area 0.99, 0.96 0.99, 0.96 0.99, 0.96

minimum MSLP -0.78, -0.85 -0.76, -0.84 -0.88, -0.88

Table 5: Overview of correlations of maximum lifetime IKE of all storms for the period 1950-
2050 with associated wind speed, IKE area and minimum MSLP for NH, WNP and NA. The
first value is the correlation for LR, the second for HR.

the simulated IKE values are biased high with respect to these observations (compare

colour-coding along the ellipses). This is mainly due to storm sizes too large in the CNRM

model, especially compared to Hurricane Camille, whose size is considerably lower than

simulated storms of similar intensity in the model. This indicates that a further increase

in model resolution would be needed to realistically simulate very intense storms.

To determine whether storm intensity or size is the controlling factor on maximum

IKE, the correlation coefficients (time period 1950-2050) are computed and displayed in

Tab. 5. Additionally, the correlation between IKE and the minimum MSLP of the storm

associated with the lifetime maximum IKE is shown. As expected, the correlations show

that there is a strong relationship between the quantities: Correlation values of 0.99 in

the LR integration in all basins show that IKE almost completely follows variations in

storm size. The wind speed is correlated with slightly lower values of 0.87, 0.86 and 0.90

in NH, WNP and NA, still providing an excellent predictor for maximum IKE. Minimum

MSLP, too, exhibits high correlation values, which is not surprising given that maximum

surface wind and minimum MSLP are closely connected. Interestingly, the relationship

between IKE and MSLP is stronger in the NA (-0.88) relative to the WNP (-0.76)

indicating an enhanced predictive potential in that particular basin. The correlations in

the HR experiment for wind speed and storm size are lower than in the LR experiment.

Values in all basins drop from 0.99 to 0.96 for storm size and to 0.82 (NH) and 0.81

(WNP and NA) for wind speed, suggesting that the increase in resolution decreases the

amount of explained variance in IKE by these particular quantities. Interestingly, MSLP

seems to be more correlated to IKE than maximum wind speed at HR, but this is not

the case in LR. The reason for this is not clear at this stage. However, the correlations

show that storm size remains the dominant factor in driving IKE, even at HR.
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5.3 IKE Variability and Impacts of a Changing Climate

In the previous section, it was shown that LR and HR simulations generate storms of

similar maximum lifetime IKE, despite the enhanced resolution and the resulting increase

in wind speed in HR. However, it has also been shown that HR produces more storms

relative to LR (Fig. 14) which means that the seasonally accumulated IKE, i.e., the

Track Integrated Kinetic Energy (TIKE) summed up over all storms per season (seasonal

TIKE), is expected to be higher in HR. Indeed, Fig. 19 confirms that the seasonal TIKE

(5-year running mean applied to smooth out strong interannual variabilities like ENSO)

for the NH (a), the WNP (b) and the NA (c) is considerably higher in HR than in LR,

owing to the higher storm frequency. Moreover, it reveals that most of the IKE generated

in the NH is produced in the WNP, also owing to the largest portion of storms being

generated in that basin. Although the number of storms generated in the NA is lower

than in the WNP, the increase in resolution and thus the increase in storm frequency

result in a relatively higher increase in TIKE relative to LR. The order of magnitude

of the range of the NA seasonal TIKE in HR compares well to the study of Misra et

al. (2013) who, too, calculated NA seasonal TIKE using the Colorado State University

Extended Best Track dataset from 1990-2011 (Demuth et al., 2006): Their estimate

roughly ranged between 1 and 22 TJ whereas the seasonal TIKE presented in this study

ranges from 6 to 12 TJ, yielding less extreme values. Taken into consideration the low

bias in TC frequency and intensity relative to observations and the fact that Misra et al.

(2013) considered all TCs in the NA rather than up to 40◦N, the value presented here

appears reasonable.

The linear trend over the 100-year time period has been calculated and is shown with

a dashed line. In LR, the trend is slightly negative for the NH and the WNP, whereas

it shows a steady behaviour in the NA over the entire period. In HR, the WNP is

characterised by a decreasing trend whereas the NA is characterised by an increasing

trend. This difference might be due to the contributions of the future period which

has been found to have a relatively lower storm frequency in the WNP and a higher

frequency in the NA (Fig. 14). As mentioned above, the WNP contributes most of the

IKE output in the NH, hence why the trend in the NH is also negative.

As pointed out, a trend in the seasonal TIKE can strongly be related to the number

of storms in a given time period and is not necessarily connected to the maximum IKE

of storms. A more detailed insight into the temporal evolution of the maximum energy

content of the storms is given in Fig. 20. It shows the 5-year aggregated maximum

lifetime IKE in terms of the the 5-year median (black horizontal line), the 25th and 75th

percentiles (upper and lower corners of the boxes), the 5th and 95th percentiles (whiskers)

and the outliers above the 95th percentiles (crosses) for storms in the NH. The figure

gives further evidence for the similarity in maximum IKE between LR and HR as it
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Figure 19: Seasonally accumulated maximum TIKE for all storms (seasonal TIKE) in the NH
(a), the WNP (b) and the NA (c). LR is shown red, HR in black. A 5-year running mean has
been applied. The respective regression lines for the entire period are shown in dashed.

reveals that the median maximum IKE remains relatively constant between a range of

80-100 TJ for both resolutions. Furthermore, the individual 5-year medians always stay

within the 25th and 75th percentiles of all the other years.

The 95th percentiles indicate that HR can produce storms with larger IKE than LR.

The upper whiskers in HR reach values of around 400 TJ more frequently than in LR,

where they mostly reach values around 300 TJ. A comparable median between the two

resolutions is achieved by the fact that HR also generates more weak storms relative

to LR as can be seen by the 5th percentiles which include smaller values in HR. This

behaviour can be seen throughout the entire time period with no indication for a trend
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Figure 20: Boxplot of all storms in the NH from 1950-2050 for LR (a) and HR (b). The
storms are aggregated in 5-year intervals (e.g., from 1950-1954, 1955-1959 etc.) with the box
being centred in the middle of the respective interval. The black bar within the boxes depicts
the median (50th percentile), while the lower and upper boundaries of the boxes represent the
25th and 75th percentiles, respectively. The lower and upper whiskers represent the 5th and
95th percentiles. The crosses mark all the storms which lie outside of the 95th percentile. The
green line represents the transition from present to future time period.

in median maximum IKE in any of the resolutions, suggesting there is little impact of

the altered climate. The figures for the WNP and NA are shown in Fig. 30 and Fig. 31

in the Appendix and offer similar pictures and further confidence in the results presented

here.

Fig. 21 is presented to investigate whether there are notable differences in wind speed

and storm size between the present and the future period. It shows all the storms in

the NH for the period 1950-2050 but separated for 1950-2014 (circles) and 2015-2050

(triangles) and for both resolutions (Fig. 21a, b). Only the NH is shown here since it

is representative of the individual basins as demonstrated in Fig. 18 where the WNP

and NA are in close agreement with the results of the NH. The differences between the

regression lines for present (dashed) and future (solid) in both resolutions are of different



5 TCs in the CNRM Climate Model 47

Figure 21: (a) Scatter plot of storm area above 18 m s−1 wind speed threshold (IKE area)
against wind speed associated with maximum lifetime IKE of all the storms in the entire NH
from 1950-2050 for LR (a) and HR (b). IKE values are colour-coded for both periods, present
(circles) and future (triangles). NH regression lines (relative to wind speed threshold) are drawn
in dashed for present and in solid for future. The dashed ellipses show an approximation of
constant IKE values across the scatter plot. Differences between future and present in joint
PD for IKE area and wind speed associated with maximum lifetime IKE of all the storms in
the entire NH are shown for LR (c) and HR (d). The bins are 1 m s−1 for the wind speed and
0.05 · 106 km2 for the IKE area.

signs, but overall, they are minor, indicating that there is no significant change in storm

intensity or size. The small change, especially relative to the impact of resolution,

explains the similar IKE characteristics for present and future. Additional evidence is

given by Fig. 21c, d which show the differences in joint PDs between future and present.

As anticipated, they do not reveal considerable changes or patterns between the time

periods.

Given similar storm intensity and size conditions between present and future, no or only

very little change in maximum IKE PDs is expected. This expectation is confirmed by

Fig. 22 which separates the PD analysis for the individual basins and resolutions: The

PDs and fitted Gamma distributions for the NH and the WNP reveal almost identical
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Figure 22: Comparison of PDs for all storms in the respective ocean basins in LR and HR to
reach specific lifetime maximum IKE. Bin sizes are 25 TJ, starting at 0 TJ. Red and black bars
are for present and future time period, respectively. Left panels represent the LR experiment,
right panels the HR experiment. The top row represents the entire NH, the middle row the
WNP and the bottom row the NA. Best-fit Gamma distributions for the PDs are added in
orange for the present and in grey for the future.

characteristics at both resolutions. Consequently, the KS test fails to detect a significant

difference between the time periods. The same outcome is given for the NA, concluding

a uniform response of the individual basins and the NH to the altered climate. However,
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a slight but not sufficiently large decrease in PD in the NA can be seen below maximum

IKE values of 150 TJ in both resolutions and an accompanying slight increase above

values of 200 TJ. For the LR integration this might be a consequence of the above-

mentioned low number of storms which is also reflected in some of the bis in Fig. 22e.

The HR integration, which is more robust in terms of TC sample size, could be impacted

by the influence of a multidecadal natural variability like the AMO. For instance, a

positive phase of the AMO would enhance NA SSTs (Vimont & Kossin, 2007; Patricola

et al., 2014) and provide more energy to intensify TCs. That increase in intensity could

be responsible for the observed slight shift in IKE toward higher values.

Considering that previous studies have found indications for an increase in global

maximum lifetime storm intensity (Knutson et al., 2019) and an increase in storm size

(Sun et al., 2017) with climate change, the above findings are surprising. The lack of

intensity change between present and future in this formulation of the CNRM model is

also unexpected as Chauvin et al. (2019) were able to detect an increase in the intensity

of major hurricanes in the CNRM model. However, their model formulation did not

follow the HighResMIP protocol and included a horizontal resolution of 15 km which is

about three times as fine as the resolution used for the HR experiment in this study.

A further refinement from 50 km down to 15 km might lead to the representation of

unresolved processes and eventually to the representation of a signal in storm intensity

between present and future. It should also be noted that - due to its capability to resolve

wind speeds close to observations - the CNRM model is not representative of the majority

of models used to assess TC characteristics in a changing climate (Roberts et al., 2020):

According to Davis (2018), the CNRM model should not be capable of producing such

high wind speeds at the used resolutions and presently it is being investigated how the

CNRM model is able to do so. It is suggested that a newly implemented turbulence

scheme might be the cause for this (Chauvin et al., 2019).

Now that no significant change between present and future maximum IKE time series

has been found, it is assessed whether a different response at the basin wide scale can

be found. Fig. 23 presents the maximum IKE per storm per 2◦ × 2◦ grid boxes for the

present and future for both resolutions. Close-up views of the WNP and the NA basin

are shown in Fig. 32 and Fig. 33 in the Appendix. The changes in track density and

their close-up views are shown in Fig. 34-Fig. 36. In the WNP, a mixed response of

positive and negative signals, similar to that in Fig. 16, can be seen in both resolutions

(Fig. 23e, f). However, the pattern is characterised by a bipolar structure rather than

a tripolar structure. In LR, there is a pronounced negative signal east of Taiwan and

a weaker positive signal southwest of Japan. In HR, the response is weaker in general,

but also with a negative signal east of Taiwan. In addition, the area southwest of Japan

is also characterised by a negative response. The centre of positive response is shifted

toward the region east of Japan. Overall, although both resolutions show some different
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Figure 23: Maximum IKE distribution per storm in the NH per 2◦× 2◦ grid cells for LR and
HR from 1950-2014 and 2015-2050 (a-d), (e) and (f) differences between future and present.
The IKE associated with all storm transits in the respective grid boxes was summed up and
then averaged over all those storm transits.

features, they agree on a decrease in maximum IKE east of Taiwan, with LR showing

the stronger signal.

In the NA, the LR shows a weak and mixed response throughout the entire basin. The

weak signal detected may be a consequence of the low total number of storms detected

in this integration. In HR, a positive change relative to the present period is notable

north of 20◦N with its maximum between 60◦W-70◦W, suggesting that storms in the NA
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Figure 24: Comparison of the seasonal TIKE in the WNP (a) and the NA (b) with the
normalised PDO and AMO indices described in Sect. 3.5.3. A 5-year running mean has been
applied to the TIKE time series and an 11-year running mean to PDO and AMO indices.

may become slightly more energetic. The magnitude of the changes in the NA is slightly

weaker than the response in the WNP basin. This finding could be related to the minor

and non-significant shift in PDs toward more energetic storms as seen in Fig. 22f which

could be driven by natural variability or by anthropogenic climate change.

To reveal if the PDO and AMO - which have been demonstrated to influence TC

behaviour in the WNP and NA (Vimont & Kossin, 2007; Chan, 2008; Patricola et al.,

2014) - exhibit an impact on the seasonal TIKE, Fig. 24 displays the seasonal TIKE for

the WNP (a) and the NA (b) together with the normalised PDO and AMO indices (11-

year running mean applied). Especially, the phases of the PDO and the seasonal TIKE

in the WNP appear to be related. The seasonal TIKE in the WNP follows the phase

of the PDO with some delay. This can be seen by the peak of the PDO around 1982

and a subsequent decline which can also be observed in the WNP TIKE, roughly ten

years later. As pointed out by Chan (2008), positive phases of the PDO steer TCs in the

WNP such that these experience an increased energy input from large SSTs. Correlation

values of 0.28 and 0.24 for LR and HR are not large (not tested for significance) but

suggest some potential for predictability of TIKE through the PDO which might even

be enhanced at a given time lag. The correlations between the AMO and seasonal TIKE

in the Atlantic are 0.24 and -0.03 for LR and HR, respectively. Based on the correlation

with the HR experiment, the AMO is an unlikely candidate for being the driver of the

changes in NA maximum IKE, but Mei et al. (2019) and Roberts et al. (2020) have

shown that in climate studies many ensemble members are needed to extract robust

relationships with interannual variabilities. However, on shorter time scales the MJO,
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ENSO and the AWP are known to influence TC activity in the NA (Pielke & Landsea,

1999; Vimont & Kossin, 2007; Wang et al., 2011; Misra et al., 2013; Klotzbach, 2014),

but the applied smoothing to the TIKE should have eliminated those signals. Solely the

AMM has been found to impact TC activity in the NA on time scales longer than the

applied smoothing of five years (Vimont & Kossin, 2007), thus it could be the driver for

the variability associated with NA TIKE.
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6 Conclusions

As no other study before, this study addressed the impact of a refinement in horizontal

model resolution and a changing climate on the Integrated Kinetic Energy of tropical

cyclones, a recent measure to address the lack of information on storm size in damage

estimates. This has been done by assessing the capability of the CNRM climate model

to produce TCs and by evaluating their characteristics and statistics with respect to

their frequency, intensity and IKE. Two uncoupled atmosphere-only experiments for a

historical forced simulation (1950-2014) and a future projection (2015-2050), following

the CMIP6 HighResMIP protocol, have each been run at a standard resolution (LR:

1.4◦ × 1.4◦) and an increased resolution (HR: 0.5◦ × 0.5◦) to attribute the simulated

changes to either the resolution or the time period. The study has focused on TCs in the

NH and investigated changes in three ocean basins (WNP, ENP, NA), individually and

in combination. The findings and their interpretation are presented in the following:

� Using the BSC Cyclone Tracker to detect TCs in the CNRM model output re-

quired the choice of a set of tracking parameters. Testing the tracker in various

test cases showed that the standard values suggested by the developers were able

to produce reasonable results in terms of TC detection and tracking hence why

those values were adopted for this study. The tests also revealed issues with track-

ing TCs close to areas of high orography in HR, e.g like Taiwan: An increase in

resolution leads to a better representation of the topography which results in vir-

tual MSLP values above those regions. Those anomalies appear to interfere with

the tracking of nearby storms by distorting their pressure field (Fig. 13) which

is suggested to be responsible for the unexpected ending of the tracking of many

TCs in those areas.

� TC climatology in all experiments performed in this study (Fig. 14) shows that the

WNP is the most active basin in terms of TC frequency, followed by the NA and

the ENP. According to the observed climatology derived from the IBTrACS data

base (Knapp et al., 2010; Ramsay, 2017), the ENP is more active than the NA,

in contradiction with the results presented here. A possible reason for that could

be too coarse a resolution of the CNRM model to sufficiently resolve orography

on the American continent (e.g., Sierra Madre) which plays an important role

for generating TCs in the ENP by providing vorticity (Zehnder, 1991; Mozer &

Zehnder, 1996). The detected low number of storm events in the ENP hindered

statistical analyses due to a small sample size so that the ENP was only considered

in combination with the other two basins.

� The increase in resolution leads to an enhanced capability to generate TCs in all

basins (Fig. 14 and Fig. 15). The largest increase in storm frequency was observed
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in the South China Sea, close to the Chinese coast, increasing the hazard of land-

falling TCs. However, despite the increase in storm frequency, which relatively is

more pronounced in the ENP and NA than it is in the WNP, TCs remain biased

low in all basins with respect to the observed climatology. Furthermore, a basin

wide increase in storm intensity with resolution could be found in all individual

basins. The highest observed SSHWS category in LR was 1 which could be en-

hanced to category 5 in HR. Both findings are consistent with previous studies

of Chauvin et al. (2019) and Roberts et al. (2020) who also concluded increasing

global TC frequency and intensity with resolution using the CNRM model. How-

ever, Roberts et al. (2020) showed positive and negative signals in all basins in

response to the increase in resolution. This result might be a consequence of the

chosen trackers which differ from the one used in this study.

� Comparing the present and the future period against each other (Fig. 14) does not

reveal considerable changes in global TC activity (in terms of storm numbers per

year). However, different responses between the Pacific and the Atlantic could be

found where the signal was negative and positive, respectively. This is in line with

the findings from Chauvin et al. (2019), Roberts et al. (2020) and Roberts et al.

(subm.) who also found mixed responses in the NH and were unable to detect

a significant trend in storm frequency between present and future. Moreover,

no robust change toward storms of higher intensity was found between the time

periods, not supporting the finding by Knutson et al. (2019).

� Increasing the resolution has a significant impact on the PDs (Fig. 17) associated

with the maximum lifetime IKE of TCs in the entire NH, the WNP and the NA

in the time period from 1950 through 2050. A performed KS test significantly

distinguishes Gamma distributions (at the 5% significance level) fitted to the data

of the LR and HR experiment. Particularly, the low-energy range below 200 TJ

(100 TJ for the NA) shows a pronounced decrease in PDs with resolution, whereas

the energy-range above this value is characterised by only a small increase. With

the increase in TC intensity with resolution, a strong increase in maximum IKE

had been expected, but analyses of the wind speeds and storm sizes above tropical

strength showed that the increase in intensity is accompanied by decreasing storm

sizes (Fig. 18). This result is in agreement with the study of Bengtsson et al.

(2007) and Caron et al. (2011) who, too, were able to establish a decrease in

TC size with a refinement in horizontal resolution. The opposing effects of higher

wind speed and reduced storm size with resolution somewhat balance one another

and result in similar IKE values between LR and HR. Furthermore, correlation

analyses showed that the observed storm sizes have a bigger impact on the IKE

relative to the wind speed in all basins. The result is consistent across both
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resolutions, suggesting that wind speeds have to change relatively more than

storm sizes in order to balance the IKE contributions.

� Basin wide analyses of the maximum IKE content per storm in the time period

from 1950-2050 (Fig. 16) reveal a mixed signal throughout the WNP basin in

response to the increase in resolution: A tripole pattern emerges with centres

of increased IKE per storm located in the South China Sea as well as east of

Japan and decreased IKE per storm east of Taiwan/south of Japan. Taking into

consideration the enhanced storm frequency in the South China Sea, a refinement

in model resolution increases the risk associated with TCs near the Chinese coast.

In the NA, a positive response north of 20◦N with a lower magnitude than in the

WNP could be observed, resembling the change in track density caused by the

enhanced resolution. This suggests an increase in storm frequency and storm IKE

throughout the entire basin. However, due to the low frequency of storms in the

NA in LR, this result may be related to the increase of the sample size and should

be interpreted with caution.

� Seasonally accumulated TIKE over all storms is considerably higher in HR than

in LR for all basins (Fig. 19), owing to the higher storm frequency. The increase

in seasonal TIKE from LR to HR is most pronounced in the NA basin due to

the relatively larger increase in storm frequency. The simulated range of the

seasonal TIKE in the NA in the HR experiment yields reasonable values (6-12

TJ) compared to the observations of Misra et al. (2013) (1-22 TJ). Correlations

with the PDO and AMO indices (Fig. 24) show that the PDO has some influence

on the evolution of the seasonal TIKE in the WNP, whereas the AMO exhibits

almost no influence on NA seasonal TIKE (in HR). However, as shown by Mei

et al. (2019) and Roberts et al. (2020), multiple ensemble members are needed to

detect robust relationships with climate variabilities in climate models. While no

clear trend in seasonal TIKE could be found over the 100-year period in the LR

experiment, the HR integration showed a negative trend in the WNP which - due

to a higher storm frequency relative to the other basins - also drives a similar trend

in the entire NH. In the NA, a positive trend could be found which is suggested

to be a consequence of the different responses in storm frequency toward the end

of the time series (future period). In addition, it has been shown that the median

maximum IKE remains relatively constant between a range of 80-100 TJ for both

resolutions (Fig. 20). Although HR produces storms of larger maximum IKE than

LR, their contribution is balanced by an increase of the weakest storms, as shown

by the PD analysis (0-25 TJ in the NH and WNP).

� For all basins, it has been shown that for both resolutions there are no pronounced

differences in the relationship of storm intensity and size between the present
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and the future, especially relative to the changes caused by the refinement in

resolution (Fig. 21). These small changes explain why the PDs of maximum

lifetime IKE are not significantly distinguishable from one another (Fig. 22) and

why the median seasonal TIKE remains stable around values of 80-100 TJ across

both time periods. These results suggest there is no clear impact of the change

in forcings on storm size and intensity which is in contrast to previous studies

that have found an increase in global maximum lifetime storm intensity (Knutson

et al., 2019) and an increase in storm size (Sun et al., 2017) with anthropogenic

climate change. It also disagrees with the study of Chauvin et al. (2019) who

detected an increase in the intensity of major hurricanes in the CNRM model,

although that study used a resolution of 15 km. It has to be kept in mind that the

presented study only includes one model with one ensemble member from which it

is difficult to obtain robust conclusions. Furthermore, the current formulation of

the CNRM model has been shown to not be representative of other climate models

as it produces wind speeds too high relative to its resolution (Davis, 2018; Roberts

et al., 2020), possibly related to the implementation of a new turbulence scheme

(Chauvin et al., 2019). Future studies with more ensemble members, coupled

model configurations and multiple models could help bridge the gap between the

demonstrated differences. In particular, it will be interesting to see whether a

changed forcing has little impact on the storm IKE, as in the CNRM model.

� Lastly, the changes in maximum lifetime IKE per storm on a basin wide scale be-

tween the present and the future were assessed (Fig. 23). Across both resolutions,

the model suggests a slight decrease in IKE in the western end of the WNP. The

response in the LR experiment in the NA is more mixed and of lower magnitude

than in the WNP. It is likely that the results for this particular basin suffer from

the poor representation of TCs in the Atlantic in LR. In HR, a slight positive

change - although weaker than in the WNP - relative to the present period is

notable north of 20◦N, suggesting that storms in the NA may become slightly

more energetic. PDs have shown that this increase is non-significant and it is

suggested that this signal might be caused by a climate variability longer than

five years, such as the AMM which has been shown to impact TC activity in the

NA on longer time scales (Vimont & Kossin, 2007).

As mentioned above, the use of only one model and one ensemble member is not

sufficient to draw robust conclusions. In order to obtain reliable results about the devel-

opment of IKE in a future climate, further analyses need to be performed. Ideally, an

extension of this study to more ensemble members and other models could prove to be

beneficial. Further studies should also address the use of a coupled atmosphere-ocean

model to allow for adjustments in the state of the ocean to the future forcing. As pointed
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out by Emanuel (2001) and Cione & Uhlhorn (2003), atmosphere-only simulations suffer

from the lack of atmospheric feedback to the ocean and cannot represent the reduced

exchange of heat between the two, which eventually leads to a weakening of the TC.

Thus, although still biased low relative to observations, TC intensities in uncoupled sim-

ulations tend to be overestimated.

A further increase in model resolution toward the proposed threshold of 2 km (Gentry

& Lackmann, 2010) to completely resolve features relevant to TC formation such as con-

vection, mixing or local orography will positively impact the representation of TCs and

their characteristics. To enable simulations of these resolutions at climate time scales,

locally refined grids or adaptive grids could prove to be useful until advances in compu-

tational technology allow for further enhancements of the global resolution. Also, the

use and comparison of different trackers will be crucial to comparing results. Roberts et

al. (2020) used two trackers (TRACK and TempestExtremes) in their study, both using

different criteria for storm recognition than the tracker used in this study, and were able

to produce different signals in track density changes between HR and LR, whereas this

study only found changes of positive sign.

Particularly, insurance companies would benefit from these improvements to simulat-

ing TC IKE. The use of the ACE index or PDI, which are based on maximum sustained

wind speed, might turn out to be an inaccurate practice when calculating damages, es-

pecially under a future climate change scenario: Projected increases in maximum storm

intensity would be accounted for using those indices, but changes in storm size and their

impact on potential losses would not be represented. As this study has shown that storm

size is a more important driver of IKE than storm intensity, the importance of including

storm size for extrapolating future changes in damages is highlighted which favours the

use of IKE over ACE and PDI. However, further studies need to be performed in order

to provide additional evidence for the relationship of IKE and climate change.

Overall, the presented study emphasises the relevance of model resolution for the rep-

resentation of TC characteristics, especially with respect to the measure of IKE, storm

intensity and size. The impact of a changing climate on maximum lifetime IKE of the

simulated storms in this particular model and experiment configuration is unexpectedly

low, motivating further studies to understand the processes and mechanisms leading to

this result.
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Corti, S., Fučkar, N. S., Guemas, V. et al., (2016): High resolution model intercompar-

ison project (HighResMIP v1. 0) for CMIP6. Geoscientific Model Development, 9.11,

4185–4208.

Hagedorn, R., Doblas-Reyes, F. J. & Palmer, T. (2005): The rationale behind the success

of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A: Dynamic

Meteorology and Oceanography, 57.3, 219–233.

Held, I. M. & Zhao, M. (2011): The response of tropical cyclone statistics to an increase

in CO2 with fixed sea surface temperatures. Journal of Climate, 24.20, 5353–5364.

Hodges, K., Cobb, A. & Vidale, P. L. (2017): How Well Are Tropical Cyclones Repre-

sented in Reanalysis Datasets? Journal of Climate, 30.14, 5243–5264.

Hodges, R. E. & Elsner, J. B. (2012): The spatial pattern of the sun-hurricane connection

across the North Atlantic. ISRN Meteorology, 2012.

Hortal, M. & Simmons, A. (1991): Use of reduced Gaussian grids in spectral models.

Monthly Weather Review, 119.4, 1057–1074.

Irish, J. L., Resio, D. T. & Ratcliff, J. J. (2008): The influence of storm size on hurricane

surge. Journal of Physical Oceanography, 38.9, 2003–2013.

Jiang, X., Zhao, M. & Waliser, D. E. (2012): Modulation of tropical cyclones over the

eastern Pacific by the intraseasonal variability simulated in an AGCM. Journal of

Climate, 25.19, 6524–6538.

Kantha, L. (2006): Time to replace the Saffir-Simpson hurricane scale? Eos, Transactions

American Geophysical Union, 87.1, 3–6.

Kendon, E. J., Roberts, N. M., Senior, C. A. & Roberts, M. (2012): Realism of rainfall in

a very high-resolution regional climate model. Journal of Climate, 25.17, 5791–5806.



References 63

Klotzbach, P. J. (2014): The Madden–Julian oscillation’s impacts on worldwide tropical

cyclone activity. Journal of climate, 27.6, 2317–2330.

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J. & Neumann, C. J. (2010):

The international best track archive for climate stewardship (IBTrACS) unifying trop-

ical cyclone data. Bulletin of the American Meteorological Society, 91.3, 363–376.

Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra,

M., Satoh, M., Sugi, M., Walsh, K. et al., (2019): Tropical cyclones and climate change

assessment: Part II. Projected response to anthropogenic warming. Bulletin of the

American Meteorological Society, 2019.

Kossin, J. P., Camargo, S. J. & Sitkowski, M. (2010): Climate modulation of North

Atlantic hurricane tracks. Journal of Climate, 23.11, 3057–3076.

Kozar, M. E. & Misra, V. (2019): “Integrated Kinetic Energy in North Atlantic Trop-

ical Cyclones: Climatology, Analysis, and Seasonal Applications”. Hurricane Risk.

Springer, pp. 43–69.

Krishnamurti, T., Oosterhof, D. & Dignon, N. (1989): Hurricane prediction with a high

resolution global model. Monthly weather review, 117.3, 631–669.

Lander, M. A. (1994): An exploratory analysis of the relationship between tropical storm

formation in the western North Pacific and ENSO. Monthly Weather Review, 122.4,

636–651.

Landsea, C. W. (2000): Seasonal Predictability of Tropical Cyclones. El Niño and the

Southern Oscillation: multiscale variability and global and regional impacts, 149.

Landsea, C. W., Bell, G. D., Gray, W. M. & Goldenberg, S. B. (1998): The extremely

active 1995 Atlantic hurricane season: Environmental conditions and verification of

seasonal forecasts. Monthly Weather Review, 126.5, 1174–1193.

Liang, L., Zhao, L., Gong, Y., Tian, F. & Wang, Z. (2012): Probability distribution of

summer daily precipitation in the Huaihe basin of China based on Gamma distribution.

Acta Meteorologica Sinica, 26.1, 72–84.

Liu, K. S. & Chan, J. C. (2008): Interdecadal variability of western North Pacific tropical

cyclone tracks. Journal of Climate, 21.17, 4464–4476.



64 References

Lopes, R. H., Reid, I. & Hobson, P. R. (2007): The two-dimensional Kolmogorov-Smirnov

test.

Madden, R. A. & Julian, P. R. (1972): Description of global-scale circulation cells in the

tropics with a 40–50 day period. Journal of the atmospheric sciences, 29.6, 1109–1123.

– (1994): Observations of the 40–50-day tropical oscillation—A review. Monthly weather

review, 122.5, 814–837.

Mahendran, M. (1998): Cyclone intensity categories. Weather and forecasting, 13.3, 878–

883.

Manabe, S., Holloway Jr, J. L. & Stone, H. M. (1970): Tropical circulation in a time-

integration of a global model of the atmosphere. Journal of the Atmospheric Sciences,

27.4, 580–613.

Mantua, N. J. & Hare, S. R. (2002): The Pacific decadal oscillation. Journal of oceanog-

raphy, 58.1, 35–44.

Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M. & Francis, R. C. (1997): A Pacific

interdecadal climate oscillation with impacts on salmon production. Bulletin of the

american Meteorological Society, 78.6, 1069–1080.

Mei, W., Kamae, Y., Xie, S.-P. & Yoshida, K. (2019): Variability and Predictability of

North Atlantic Hurricane Frequency in a Large Ensemble of High-Resolution Atmo-

spheric Simulations. Journal of Climate, 32.11, 3153–3167.

Minobe, S., Kuwano-Yoshida, A., Komori, N., Xie, S.-P. & Small, R. J. (2008): Influence

of the Gulf Stream on the troposphere. Nature, 452.7184, 206–209.

Misra, V., DiNapoli, S. & Powell, M. (2013): The track integrated kinetic energy of

Atlantic tropical cyclones. Monthly weather review, 141.7, 2383–2389.

Mizuta, R. (2008): Estimation of the future distribution of sea surface temperature and

sea ice using the CMIP3 multi-model ensemble mean. Meteorological Research Insti-

tute, Japan.



References 65

Molinari, J. & Vollaro, D. (1989): External influences on hurricane intensity. Part I:

Outflow layer eddy angular momentum fluxes. Journal of the Atmospheric Sciences,

46.8, 1093–1105.

Morgan, E. C., Lackner, M., Vogel, R. M. & Baise, L. G. (2011): Probability distributions

for offshore wind speeds. Energy Conversion and Management, 52.1, 15–26.

Mozer, J. & Zehnder, J. (1996): Lee vorticity Production by Large-Scale Tropical Moun-

tain Ranges. Part I: Eastern North Pacific Tropical Cyclogenesis. Journal of The At-

mospheric Sciences - J ATMOS SCI, 53, 521–538.

Munich Re (2018): The natural disasters of 2018 in figures. url: https : / / www .

munichre.com/topics-online/en/climate-change-and-natural-disasters/

natural-disasters/the-natural-disasters-of-2018-in-figures.html.

Nicholls, N. (1979): A possible method for predicting seasonal tropical cyclone activity

in the Australian region. Monthly Weather Review, 107.9, 1221–1224.

NOAA (2018): Costliest U.S. tropical cyclones tables updated. url: https://www.nhc.

noaa.gov/news/UpdatedCostliest.pdf.

– (2019): The Saffir-Simpson Hurricane Wind Scale. url: https://www.nhc.noaa.

gov/pdf/sshws.pdf.

O’Reilly, C. H., Minobe, S. & Kuwano-Yoshida, A. (2016): The influence of the Gulf

Stream on wintertime European blocking. Climate Dynamics, 47.5-6, 1545–1567.

Patricola, C. M., Saravanan, R. & Chang, P. (2014): The impact of the El Niño–Southern

Oscillation and Atlantic meridional mode on seasonal Atlantic tropical cyclone activ-

ity. Journal of Climate, 27.14, 5311–5328.

Pielke, R. A. & Landsea, C. N. (1999): La nina, el nino, and atlantic hurricane damages

in the united states. Bulletin of the American Meteorological Society, 80.10, 2027–2034.

Powell, M. D. & Reinhold, T. A. (2007): Tropical cyclone destructive potential by in-

tegrated kinetic energy. Bulletin of the American Meteorological Society, 88.4, 513–

526.

https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/the-natural-disasters-of-2018-in-figures.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/the-natural-disasters-of-2018-in-figures.html
https://www.munichre.com/topics-online/en/climate-change-and-natural-disasters/natural-disasters/the-natural-disasters-of-2018-in-figures.html
https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf
https://www.nhc.noaa.gov/news/UpdatedCostliest.pdf
https://www.nhc.noaa.gov/pdf/sshws.pdf
https://www.nhc.noaa.gov/pdf/sshws.pdf


66 References

Powell, M. D., Vickery, P. J. & Reinhold, T. A. (2003): Reduced drag coefficient for high

wind speeds in tropical cyclones. Nature, 422.6929, 279–283.

Ramsay, H. (2017): “The global climatology of tropical cyclones”. Oxford Research En-

cyclopedia of Natural Hazard Science.

Revell, C. G. & Goulter, S. W. (1986): South Pacific tropical cyclones and the Southern

Oscillation. Monthly Weather Review, 114.6, 1138–1145.

Roberts, M., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B., Mecking, J.,

Haarsma, R., Bellucci, A., Scoccimarro, E. et al., (subm.): Projected Future Changes

in Tropical Cyclones using the CMIP6 HighResMIP Multi-model Ensemble.

Roberts, M., Camp, J., Seddon, J., Vidale, P. L., Hodges, K., Vanniere, B., Mecking, J.,

Haarsma, R., Bellucci, A., Scoccimarro, E. et al., (2020): Impact of Model Resolution

on Tropical Cyclone Simulation Using the HighResMIP–PRIMAVERA Multimodel

Ensemble. Journal of Climate, 33.7, 2557–2583.

Rudeva, I. & Gulev, S. K. (2007): Climatology of cyclone size characteristics and their

changes during the cyclone life cycle. Monthly weather review, 135.7, 2568–2587.

Sakamoto, T. T., Komuro, Y., Nishimura, T., Ishii, M., Tatebe, H., Shiogama, H.,

Hasegawa, A., Toyoda, T., Mori, M., Suzuki, T. et al., (2012): MIROC4h—a new

high-resolution atmosphere-ocean coupled general circulation model. Journal of the

Meteorological Society of Japan. Ser. II, 90.3, 325–359.

Scoccimarro, E., Gualdi, S., Villarini, G., Vecchi, G. A., Zhao, M., Walsh, K. & Navarra,

A. (2014): Intense precipitation events associated with landfalling tropical cyclones in

response to a warmer climate and increased CO2. Journal of climate, 27.12, 4642–

4654.

Shaevitz, D. A., Camargo, S. J., Sobel, A. H., Jonas, J. A., Kim, D., Kumar, A., LaRow,

T. E., Lim, Y.-K., Murakami, H., Reed, K. A. et al., (2014): Characteristics of tropical

cyclones in high-resolution models in the present climate. Journal of Advances in

Modeling Earth Systems, 6.4, 1154–1172.

Shaffrey, L., Stevens, I., Norton, W., Roberts, M., Vidale, P.-L., Harle, J., Jrrar, A.,

Stevens, D., Woodage, M. J., Demory, M.-E. et al., (2009): UK HiGEM: The new UK



References 67

high-resolution global environment model—Model description and basic evaluation.

Journal of Climate, 22.8, 1861–1896.

Shapiro, L. J. (1989): The relationship of the quasi-biennial oscillation to Atlantic tropical

storm activity. Monthly weather review, 117.7, 1545–1552.

Simpson, R. (1971): “A proposed scale for ranking hurricanes by intensity”. Minutes of

the Eighth NOAA, NWS Hurricane Conference, Miami.

Skamarock, W. C. & Klemp, J. B. (1993): Adaptive grid refinement for two-dimensional

and three-dimensional nonhydrostatic atmospheric flow. Monthly Weather Review,

121.3, 788–804.

Stevens, B., Fiedler, S., Kinne, S., Peters, K., Rast, S., Müsse, J., Smith, S. J. & Mau-
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Appendix

This section provides additional material that has not been placed in the main body of

this report, but which has been referenced to. This includes equations, figures such as

close-up views for the individual basins for track and IKE density as well as boxplots.

The IKE area used for Hurricanes Camille, Ivan and Katrina in Fig. 18a in Sect. 5.2

is derived from Powell & Reinhold (2007) using the radius of the maximum wind speed

Rmax and the radius of the outer threshold of tropical storm strength R18, assuming a

circular storm and wind speeds below tropical storm strength at radii below Rmax:

IKE area = π · (R2
18 −R2

max). (21)

This equation slightly underestimates IKE area, because, in reality, the wind speeds at

radii below Rmax are not everywhere lower than tropical storm strength, especially close

to Rmax. Thus, they contribute to the IKE area, but this contribution is argued to be

small.
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Figure 25: Track distribution per year in the WNP per 2◦ × 2◦ grid cells from 1950-2050 for
(a) LR and (b) HR, (c) difference between HR and LR. All storm transits in the respective
grid boxes were counted and averaged over time.
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Figure 26: Track distribution per year in the ENP per 2◦ × 2◦ grid cells from 1950-2050 for
(a) LR and (b) HR, (c) difference between HR and LR. All storm transits in the respective
grid boxes were counted and averaged over time.
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Figure 27: Track distribution per year in the NA per 2◦× 2◦ grid cells from 1950-2050 for (a)
LR and (b) HR, (c) difference between HR and LR. All storm transits in the respective grid
boxes were counted and averaged over time.
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Figure 28: Maximum IKE distribution per storm in the WNP per 2◦ × 2◦ grid cells for (a)
LR and (b) HR from 1950-2050, (c) difference between HR and LR. The IKE associated with
all storm transits in the respective grid boxes was summed up and then averaged over all those
storm transits.
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Figure 29: Maximum IKE distribution per storm in the NA per 2◦ × 2◦ grid cells for (a) LR
and (b) HR from 1950-2050, (c) difference between HR and LR. The IKE associated with all
storm transits in the respective grid boxes was summed up and then averaged over all those
storm transits.
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Figure 30: Boxplot of all storms in the WNP from 1950-2050 for LR (a) and HR (b). The
storms are aggregated in 5-year intervals (e.g., from 1950-1954, 1955-1959 etc.) with the box
being centred in the middle of the respective interval. The black bar within the boxes depicts
the median (50th percentile), while the lower and upper boundaries of the boxes represent the
25th and 75th percentiles, respectively. The lower and upper whiskers represent the 5th and
95th percentiles. The crosses mark all the storms which lie outside of the 95th percentile. The
green line represents the transition from present to future time period.
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Figure 31: Boxplot of all storms in the NA from 1950-2050 for LR (a) and HR (b). The
storms are aggregated in 5-year intervals (e.g., from 1950-1954, 1955-1959 etc.) with the box
being centred in the middle of the respective interval. The black bar within the boxes depicts
the median (50th percentile), while the lower and upper boundaries of the boxes represent the
25th and 75th percentiles, respectively. The lower and upper whiskers represent the 5th and
95th percentiles. The crosses mark all the storms which lie outside of the 95th percentile. The
green line represents the transition from present to future time period.
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Figure 32: Maximum IKE distribution per storm in the WNP per 2◦×2◦ grid cells for LR and
HR from 1950-2014 and 2015-2050 (a-d), (e) and (f) differences between future and present.
The IKE associated with all storm transits in the respective grid boxes was summed up and
then averaged over all those storm transits.
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Figure 33: Maximum IKE distribution per storm in the NA per 2◦× 2◦ grid cells for LR and
HR from 1950-2014 and 2015-2050 (a-d), (e) and (f) differences between future and present.
The IKE associated with all storm transits in the respective grid boxes was summed up and
then averaged over all those storm transits.
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Figure 34: Track distribution per year in the NH per 2◦ × 2◦ grid cells from 1950-2014 and
2015-2050 for LR and HR (a-d), (e) and (f) differences between future and present. All storm
transits in the respective grid boxes were counted and averaged over time.
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Figure 35: Track distribution per year in the WNP per 2◦× 2◦ grid cells from 1950-2014 and
2015-2050 for LR and HR (a-d), (e) and (f) differences between future and present. All storm
transits in the respective grid boxes were counted and averaged over time.
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Figure 36: Track distribution per year in the NA per 2◦ × 2◦ grid cells from 1950-2014 and
2015-2050 for LR and HR (a-d), (e) and (f) differences between future and present. All storm
transits in the respective grid boxes were counted and averaged over time.
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