
id179793

EVALUATING THE IMPACT OF TASK
AGGREGATION IN WORKFLOWS WITH SHARED

RESOURCES ENVIRONMENTS

MANUEL GIMÉNEZ DE CASTRO MARCIANI

Thesis supervisor: MIGUEL CASTRILLO (Barcelona Supercomputing Center)

Thesis co-supervisor: MARIO CESAR ACOSTA COBOS (Department of Computer Architecture)

Tutor: GLADYS MIRIAM UTRERA IGLESIAS (Department of Computer Architecture)

Degree: Master Degree in Innovation and Research in Informatics (Advanced Computing)

Master's thesis

Facultat d'Informàtica de Barcelona (FIB)

Universitat Politècnica de Catalunya (UPC) - BarcelonaTech

A Papá,

que me inspiró a cruzar el charco.

Abstract

We study the relative impact of task aggregation, or wrapping, which is a technique
meant for computational workflows that bundles jobs into a single submission to be sent
to remote schedulers. Experiments inside the Earth Science community can be lengthy
and compriseseveral steps with many dependencies. The community has traditionally
focused in increasing the performance of the models, but the overall execution of the
workflow, including the queue time, has received little interest. Aiming to reduce the
time spent in queue, the developers of Autosubmit, a workflow manager developed for
climate simulations, weather forecast simulations, and air quality simulations, came up
with task aggregating, or wrapping. Our objective is to assess if this technique does
indeed reduce the total queue time of the workflow. The complex interplay between the
dynamic nature of the usage of the machine and the scheduler policy plays a central role
in our analysis, which poses the main challenge of this work. Hence, we do an intricate
study of the scheduling policy of the popular Slurm Workload Manager and a statistical
characterization of the usage of both simulated machines: LUMI and CEA-Curie. With
that, we perform a twofold experimentation: a simulation using dynamic workloads –
where job arrival time plays a role – with a workflow composed of multiple jobs and
a static workload – where all jobs in the workload are submitted at the same time –
varying job and user factors that play a role into the scheduling. Results show that
aggregation is beneficial in the majority of cases for the workflows that are vertically
organized – that is, a chain of submissions where each job is dependent on the previous
–, whilst for the horizontal arranged workflows – where jobs do not have dependencies –
it might undermine the queue time depending on the user’s past usage and the machine’s
current state.

i

Contents

Glossary vii

Acronyms viii

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 3
1.3 Contribution . 4

2 Background 6
2.1 Related Work . 6
2.2 Slurm Scheduler . 7

2.2.1 Scheduling Loop of Slurm . 8
2.3 Job Priority . 9
2.4 Fair share factor . 10
2.5 Workloads . 12

2.5.1 Static Workloads . 13
2.5.2 Dynamic Workloads . 13

2.6 Computational Workflows . 13
2.7 Autosubmit . 14
2.8 Wrappers . 15

3 Methods 18
3.1 Software Stack . 18

3.1.1 Slurm simulator . 18
3.1.2 Standard Workload Format tool 19

3.2 Slurm configuration . 20
3.3 Workloads . 21

3.3.1 Static . 21
3.3.2 Dynamic . 29

4 Results 36
4.1 Job’s and User’s Attributes Impact . 36
4.2 Dynamic Workload . 41

5 Discussion 43

6 Conclusions 45
6.1 Future Work . 45

A Full Static Workloads Tables 53

ii

List of Figures

1.1 Evolution of the available and used CPUs and running and pending jobs
at MareNostrum 4. The data was taken on the 24th of August 2023 from
the BSC operation’s HPC portal. 3

1.2 Description of the basic mechanism of the task aggregation, or wrapping,
for the vertical case. Jobs inside the black box are those that are submit-
ted at the same time to the the HPC platform. 3

1.3 Description of the basic mechanism of the task aggregation, or wrapping,
for the horizontal case. Jobs inside the black box are those that are
submitted at the same time to the the HPC platform. 4

1.4 Description of the basic mechanism of the task aggregation, or wrapping,
for the horizontal-vertical case. Jobs inside the black box are those that
are submitted at the same time to the the HPC platform. 4

2.1 Diagram depicting the organization of Slurm and its daemons. Taken
from [29]. 7

2.2 Graphical description of the loop logic behind Slurm scheduling. Taken
from [24]. 9

2.3 Image taken from [15] depicting the basic mechanism behind fair share. . 11
2.4 Week variation of total CPUs used and number of jobs submitted in CEA-

Curie. Plot taken from Feitelson’s Workloads Archive [21]. 13
2.5 Diagram of the components of Autosubmit and its interfaces. 15
2.6 Vertical wrapper workflow example. Here the three SIM jobs will be

submitted to platform at the same time, and run sequentially. 16
2.7 Horizontal wrapper workflow example. Here both SIM type jobs will be

submitted at the same time and run concurrently. 16
2.8 Horizontal-vertical or vertical-horizontal wrapper workflow example. . . 17

3.1 Diagram of the Slurm simulator. Taken from [23]. 18
3.2 Diagram of the user structure we consider for the synthetic and dynamic

workloads in this work. 21
3.3 Cumulative distribution function of the fitted distributions for the allo-

cated CPUs at LUMI. The orange line is the log allocated CPUs observed
cumulative distribution and the blue line is a random sample generated
with the parameters as found in table 3.10. 24

3.4 Cumulative distribution function of fitted distributions for the runtime
at LUMI. The orange line is the cumulative log runtime of jobs with
runtime different than 0 and the blue line is the cumulative distribution
of a random sample generated with the parameters as found in table 3.11. 25

iii

LIST OF FIGURES iv

3.5 Log runtime per log allocated CPUs. Jobs with runtime 0 were discarded.
Each pixel represents a job. This plot was zoomed to the area of highest
concentration of jobs. 26

3.6 Example of the fair share control. In orange and dashed line border we
see the workflow executing user and account, respectively the circle and
the box. The left image is the traversing of the Fair Tree 2.4 as it was
generated after executing the workload in the simulator. As we include
the workflow executing user, we set the runtime of his dummy job so that
it has a fair share of 0.6 prior to the execution of the generated workload. 29

3.7 Description of the setup of the vertical workflow. The green box with a
plus sign indicates the queue time if the job was launched after the end of
the execution of its dependency, whilst the yellow box with a minus sign
indicates the queue time as in our experiment setup. 33

3.8 Description of the setup of the launch of the horizontal workflow. The
green box with a plus sign indicates each individual job queue time. . . . 34

3.9 In usage and queuing resources CEA-Curie. The vertical line indicate the
instant of submissions as per table 3.24. 35

3.10 Sample with three tasks, or jobs, of the two workflows we included in the
workload of CEA-Curie. 35

4.1 Average of the waiting time across all experiments with respect to the fair
share value. Each line style is a number of CPUs allocated. Each color
represents a different runtime. 38

4.2 Average of the priority time across all experiments with respect to the fair
share value. Each line style is a number of CPUs allocated. Each color
represents a different runtime. 38

4.3 Box plot of the wait time per fair share factor. Each box plot is a com-
bination of CPU and runtime. Green triangle indicates the arithmetic
average. 39

4.4 Box plot of the priority per fair share factor for values 0.01, 0.1, 0.2, 0.25,
0.3, and 0.5. Each box plot is a combination of CPU and runtime. Green
triangle indicates the arithmetic average. 40

4.5 Box plot of the priority per fair share for factors 0.7, 0.75, 0.8, and 0.9.
Each box plot is a combination of CPU and runtime. Green triangle
indicates the arithmetic average. 41

6.1 Scatter plot of the log allocated CPUs and log runtime of the static work-
loads used here. 47

List of Tables

2.1 Average number of submissions per minute in LUMI during the period
February 2023 and June 2023. 9

2.2 Average number of submissions per minute in CEA-Curie during the pe-
riod 1/2/2011 - 17/10/2012. 9

3.2 Weights of the MareNostrum 4 for the multifactor priority computation,
as seen in equation 2.4. 20

3.3 Main and secondary scheduler configuration, as seen in figure 2.2. These
are used in MareNostrum 4 and we use them in all of our experiments. . 20

3.1 Description of the Slurm configuration file we use in this work. 20
3.4 Characteristics of the LUMI supercomputer as of June 2023 and also the

dataset that we have collected. 22
3.5 Number of allocated CPUs statistics on LUMI. 25% refers to the first

quartile, 50%, the median, and 75%, the third quartile. 23
3.6 Job runtime statistics in seconds on LUMI. 25% refers to the first quartile,

50%, the median, and 75%, the third quartile. 23
3.7 Job core runtime in CPU · s statistics on LUMI. 25% refers to the first

quartile, 50%, the median, and 75%, the third quartile. 23
3.8 Distribution fitness for the allocated CPUs. AIC is computed as 3.5. ∆

fields are with respect to the best SSE or AIC, which is the minimum. . 24
3.9 Distribution fitness of the runtime for the runtime of jobs in LUMI. AIC

is computed as in equation 3.5. ∆ fields are with respect to the best SSE
or AIC, which is the minimum. 24

3.10 Fitted parameters of the distributions for allocated CPUs. Loc and scale
reference Scipy’s [57] standardization of the distribution. s, a, b, and c are
as in equations 3.1, 3.2, 3.3, and 3.4. 25

3.11 Fitted parameters of the distributions for runtime. Loc and scale reference
Scipy’s [57] standardization of the distribution. s, a, b, and c are as in
equations 3.1, 3.2, 3.3, and 3.4. 25

3.12 Job allocated CPUs statistics on a synthetic static workload generated
from LUMI. 25% refers to the first quartile, 50% the median, and 75%
the third quartile. Aggregated across all 10 generated files. 27

3.13 Job runtime statistics on a synthetic static workload generated from
LUMI. 25% refers to the first quartile, 50% the median, and 75% the
third quartile. Aggregated across all 10 generated files. 27

3.14 Job core runtime (CPU · s) statistics on a synthetic static workload gen-
erated from LUMI. 25% refers to the first quartile, 50% the median, and
75% the third quartile. Aggregated across all 10 generated files. 27

v

LIST OF TABLES vi

3.15 Job core runtime proportion in percentage per user in one of the synthetic
workload generated based on LUMI. Users with less than 1% of the total
runtime, 46060155.26 CPU · s, of the workload were omitted. 28

3.16 Total number of jobs per user in the seventh synthetic workload based
on LUMI. Users with less than 1.4% of the number of jobs, 14, of the
workload were omitted. 28

3.17 Specification of the workload of CEA-Curie clean version 2 from Feitel-
son’s repository [21]. 30

3.18 Wait time statistics summary of CEA-Curie cluster in seconds. 25% refers
to the first quartile, 50%, the median, and 75%, the third quartile. . . . 30

3.19 Allocated CPUs statistics summary of CEA-Curie cluster. 25% refers to
the first quartile, 50%, the median, and 75%, the third quartile. -1 value
is of either the job was not scheduled or incomplete data. 30

3.22 Top consuming users in terms of core runtime with usage larger than 0.01
of the total core runtime of the machine (which is 1.2839628e+10 CPU ·s)
on CEA-Curie. 31

3.20 Runtime statistics summary of CEA-Curie cluster in seconds. 25% refers
to the first quartile, 50%, the median, and 75%, the third quartile. . . . 31

3.21 Core runtime (CPU · s) statistics summary of CEA-Curie cluster. 25%
refers to the first quartile, 50%, the median, and 75%, the third quartile. 31

3.23 Top consuming users in total jobs with more than 0.01 of the total jobs
submitted to the machine (which is 3128.26) on CEA-Curie. 32

3.24 Submission instants of the workflow and their label. 33

4.1 Correlation table of the job and user attributes with wait time and pri-
ority. Tq is the time in queue and P is the priority upon start of the job.
An overline indicates the average across the 10 experiments and max and
min are the maximum and minimum observed of the particular quantity. 37

4.2 Vertical workflow queue time results. Tq is the total time in queue of
workflow. 42

4.3 Horizontal workflow queue time results for dynamic workloads. Tq is the
total time in queue of workflow. 42

A.1 LUMI static experiment results with 1800 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top
of the symbol indicates average over the 10 different workloads generated. 54

A.2 LUMI static experiment results with 3600 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top
of the symbol indicates average over the 10 different workloads generated. 55

A.3 LUMI static experiment results with 7200 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top
of the symbol indicates average over the 10 different workloads generated. 56

A.4 LUMI static experiment results with 12600 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top
of the symbol indicates average over the 10 different workloads generated. 57

Glossary

climate multidecadal simulations are climate simulations with a time horizon of a
few decades

climate simulations are NWP simulations to predict the future state of the climate
system for time horizons ranging several weeks, months, or years using information
from the past and current state of the system. They bridge the gap between
weather forecast simulations for the coming days and climate projections up to
the end of the 21st century

Curie was a cluster operated by TGCC by CEA from 2011 to 2017

data assimilation is the science of combining different sources of information to esti-
mate the state of a system

operational toolchains are predictions made on using the output from climate simu-
lations to make application specific predictions

reanalysis is the combination past short-range weather forecast simulations with ob-
servations through data assimilation

weather forecast simulations are NWP simulations to predict the future state of the
system up to a few days based on past and present data

vii

Acronyms

AEMET Agencia Estatal de Meteorología

AIC Akaike Information Criterion

ALCF Argonne Leadership Computing Facility

BSC Barcelona Supercomputing Center

CAMS Copernicus Atmosphere Monitoring Service

CEA Commissariat à l’énergie atomique et aux énergies alternatives

CMIP Coupled Model Intercomparison Project

CPMIP Computational Performance Model Intercomparison Project

EC-Earth European Consortium for Earth System Model

ECMWF European Centre for Medium-Range Weather Forecasts

ICON Icosahedral Nonhydrostatic Weather and Climate Model

IFS Integrated Forecasting System

LLNL Lawrence Livermore National Laboratory

MONARCH Multiscale Online Nonhydrostatic Atmosphere Chemistry Model

NEMO Nucleus for European Modelling of the Ocean

NWP Numerical Weather Prediction

SSE Sum of Squared Errors

SWF Standard Workflow Format

TGCC Très Grand Centre de Calcul du CEA

UBCCR University of Buffalo’s Center for Computational Research

viii

Chapter 1

Introduction

1.1 Motivation

Since the dawn of the massively parallel supercomputers, by the end of the 20th century,
we witnessed a considerable increase of the demand for computational resources in all
sorts of areas. To name a few: climate sciences [1], Numerical Weather Prediction,
engineering [2], and bioinformatics [3]. These large cluster systems composed of – ever
so increasing number of – independent machines working in parallel, sometimes made
of consumer grade CPUs, got popular starting with Intel’s iPSC in 1985. Some notable
examples are the MareNostrum family at the Barcelona Supercomputing Center which
its first version was set up in March of 2004 [4]; Blue Gene [5], introduced in 2005; or
Riken’s K supercomputer [6], introduced in 2012.

To manage the usage of these parallel resources by multiple users, a special software
was created. This software, called batch scheduler, is responsible for queuing, allocating,
and dealing with fault tolerance. Users need only to define their task, or job, which is, the
executable, the input data, and the resources to run it. The batch scheduler handles the
allocation and, afterwards, the execution. With enough users aspiring for the resources
of the system, we have a competitive resource environment.

At the beginning, when the requested resources exceeds the available, schedulers
applied a simple first-in-first-out policy. But in the last few years, in order to address
the increase of the demand for parallel resources and looking to increase the efficiency –
in various different ways, like throughput [7], energetic efficiency [8], or IO [9] – of the
machine, scheduler developers came up with more intricate queuing algorithms. For ex-
ample, Slurm Workload Manager [10] – a popular batch scheduler used in MareNostrum
4 [11], LUMI [12], Levante [13], Meluxina [14], and many others HPC centers – allows
system administrators to manage the queuing of jobs by taking into account multiple
factors, where the most important are: allocated CPUs, age, partition, QoS, and fair
share.

The fair share factor, in fact, is one of the solutions that have been explored since
the 80s from the landmark paper by Kay and Lauder [15], which aimed to balance the
usage of the mainframe computer shared amongst students of the university of Sydney
for learning purposes. That paper implemented fairness in the context of the scheduling
of processes within the operating system. Once students did not need to share resources
anymore because each of them got their own computer, this technique was deemed
unnecessary. However, with the new supercomputer access given to more people, Kay
and Lauder’s solution reemerged to balance the system resources among all the users.
Slurm implements it in the same way as proposed by them, called Classic, or another
more sophisticated way, called Fair Tree.

1

CHAPTER 1. INTRODUCTION 2

Moreover, the necessity of more accurate queue time predictions increased with the
number of users in such platforms [16]. From the user’s point of view this necessity is
obvious: a job could be appropriately tailored to execute and meet with deadlines. From
the scheduler’s point of view, queue time prediction is useful, for example, for backfill
algorithms [7] in order to increase the throughput of the machine. These algorithms
execute queuing jobs with the premise of not interfering with the execution of the jobs
in ahead in the queue. Usually, such scenarios occur when a machine is emptying itself
to allow a large job to be run, which creates spaces that smaller jobs can utilize.

But queue prediction, even for the simplest queuing algorithm, is by no means trivial
since the time spent in queue is dependent on which jobs are in that queue, and that is
governed by the HPC’s users behavior. For example, in figure 1.1 we see the evolution
of the available and used CPUs on MareNostrum 4 and jobs in queue and running. The
plot with the running jobs – which is the one to the right – is highly variable, with peaks
of jobs in the queue reaching from a bit less than 500 to up to 2000 jobs. As for the
machine utilization – which is the left plot – we see how the total number of available
and used resources also vary quite a lot but the machine is always used in almost
its entirety. Additionally, administrative decisions profoundly impact the scheduling,
because the scheduler can invert its behavior by changing a single flag in the scheduler
configuration.

Since the policies impact so much the scheduling, it became a necessity to create
faithful representations of the workload, which is the log of execution of the machine.
Such logs could be used on simulators by system administrators and researchers to test
configurations before going to the operational environment. Many authors [17] [18] [19]
have proposed probability distributions to model certain aspects of the workload, like
allocated CPUs, runtime, and inter-arrival time. With appropriate parameters for these
distributions, they could generate workloads, which are called synthetic workloads, that
behave similarly to the observed data.

With modelling in mind, Chapin, Cirne, and Feitelson [20] have proposed a format
to describe workloads in an standard anonymized way. These workloads, or traces, are
available at Feitelson’s repository [21] so that researchers and system administrators
can use them as testing bench. But unfortunately, managing institutions are in general
reluctant to give data even in this anonymized way which makes modelling workloads
de facto impossible. It would be beneficial, for the both the scheduling community as
to anyone interested in modelling HPC environments, to have more raw data published
or – at the very least – more papers on the characterization of the workloads of newer
large HPC systems.

As for the user’s side, in the Earth Science community there is a growing interest in
increasing the computational performance of the whole simulation, accounting not only
for the runtime of each of the tasks, but also their queue time. An example of such
works is Acosta et al. [22] where the authors investigated the performance of CMIP6
experiments under the CPMIP project, which aims for an unified set of measurements
for Earth System models accounting for more factors than traditionally it has been done:
such as energy, queue time, interruptions, etc. Authors found performance degradation
of up to 50% on these simulations due to time spent on queue and/or interruptions.

Operationally, optimizing the queuing times makes a lot of sense, since scientists and
technicians have to deliver their simulation results with strict deadlines. AEMET, the
Spanish meteorological agency, has its own resources to run their forecasts, but research
centers like the Barcelona Supercomputing Center share their computing resources –
even though in the Earth Science department there are also operational simulations
running –. And, even for climate multidecadal simulations runs, scientists need to meet

CHAPTER 1. INTRODUCTION 3

project deadlines and a certain amount of simulated years. Hence, the community is
exploring ways of optimizing not only the execution per se of the model, by choosing
the optimal number of CPUs, but also the interaction that those choices have with the
scheduler. And, in this work, we aim for the latter.

Figure 1.1: Evolution of the available and used CPUs and running and pending jobs
at MareNostrum 4. The data was taken on the 24th of August 2023 from the BSC
operation’s HPC portal.

1.2 Objective

We aim to reduce the total time of the execution of the Earth modelling workflows, that
is the runtime included the time in queue. For that, we are going to assess the relative
impact of the task aggregation, or wrapping, under different scenarios. Our thesis is that
aggregating tasks when the user has a low share factor is beneficial, since it would save
submitting multiple individual jobs onto a bad scenario. We just take the burden of a
“bad” fair share a single time. All of these will be considered under the scheduling policies
of the platform we most use and have access to its scheduling policies, MareNostrum 4.

Aggregation – in its elemental types – is depicted in images 1.2 and 1.3, where we
have a black box indicating the jobs that are submitted in tandem. Jobs from inside
the aggregated package have their dependencies respected. We also have the mix-and-
match, in image 1.4, where jobs within the wrapper can run one row per time or two
columns concurrently.

Figure 1.2: Description of the basic mechanism of the task aggregation, or wrapping,
for the vertical case. Jobs inside the black box are those that are submitted at the same
time to the the HPC platform.

CHAPTER 1. INTRODUCTION 4

Figure 1.3: Description of the basic mechanism of the task aggregation, or wrapping,
for the horizontal case. Jobs inside the black box are those that are submitted at the
same time to the the HPC platform.

Figure 1.4: Description of the basic mechanism of the task aggregation, or wrapping,
for the horizontal-vertical case. Jobs inside the black box are those that are submitted
at the same time to the the HPC platform.

1.3 Contribution

In this work, we contribute in the simulator with

• merging of both BSC’s [23] and UBCCR’s [24] Slurm simulator to provide support
for user accounting, and, consequently, priority computation via multifactor,

• adapting the source code of the simulator to expose the priority, so we can keep
track of it,

• implementing the simulator’s builtin scheduler1, which is the name of the scheduler
option without backfill. Although it still lacks validation, hence its results were
ruled out.

As for the workload file, which is fundamental for simulating an HPC machine, we
cover all steps for characterizing it for the LUMI supercomputer:

• we gather and make a statistical analysis,

• we generate synthetic workloads following distributions that were fitted to the
data.

1Available at https://earth.bsc.es/gitlab/mgimenez/ces_slurm_simulator.

https://earth.bsc.es/gitlab/mgimenez/ces_slurm_simulator

CHAPTER 1. INTRODUCTION 5

The analysis is composed of a first phase of a descriptive analysis and then we followed
Feitelson’s workload modelling book [18]. Using this static synthetic workloads, we

• create the software stack to allow us to reproduce and automatize the simulation
process. This meant a novel Docker2 [25] image for the Slurm simulator,

• conduct 2000 experiments varying parameters to quantify their relative impact in
waiting time and priority upon start of the execution,

• propose a model to describe the relation of fair share and wait time.

We also conduct longer simulations. For that, we analyze the workload from CEA-
Curie machine to check its adequacy as a general purpose, resource sharing, and scientific
platform like MareNostrum 4. We include two typical workflows on it: one vertical and
another horizontal. Hence, we develop a methodology to control the fair share upon
submission of the tracked workflow.

Finally, we theorize the relation between the fair share and the average waiting time.
We confirm the importance of the fair share in the priority as per using the weights
in MareNostrum 4. We propose strategies for task aggregation, or wrapping, to gain
performance in the overall execution of the workflow. We find that we need to delve
deeper in the interplay between backfill and low fair share factor value.

2Available at https://earth.bsc.es/gitlab/mgimenez/docker-ubuntu-ces-slurm-sim.

https://earth.bsc.es/gitlab/mgimenez/docker-ubuntu-ces-slurm-sim

Chapter 2

Background

In this chapter, we will lay down the main concepts needed for this work. We will start
by an overview on the very last that was published, either in peer-reviewed journals
or pre-print sharing platforms. After, we will cover the scheduler that we have our
simulator built on top of, what is a workload and its types, what is a workflow and how
we execute them on HPC platforms, and – finally – the technique we apply to reduce
the queue time.

2.1 Related Work

In the literature, most of the papers related with this work are focused in waiting
time prediction, mainly for scheduler decisions. These usually devote a small part of
their work to the workload modelling that is necessary to test their hypothesis. As for
optimizing the workflow execution, most of the work has been done when running it on
clouds providers.

Workload modelling is its own discipline in terms of challenges. Many authors [17]
[18] [19] have proposed the probability distribution in which a particular job attribute
might follow based from empirical data. But for the very last in this area, we have
the characterization of jobs done by Patel et al. [26] for the Intrepid and Mira super-
computers from Argonne Leadership Computing Facility. They have showed that in
the “past decade resource utilization of leadership class systems at ALCF has increased
significantly – almost nearing full utilization most of the time.” Moreover, they have
shown that the job sizes has increased both in runtime and CPUs allocated.

There were also efforts to build synthetic workloads – that is, generated –. Out the
latest, Walfredo Cirne proposed one in 2001 [19]. His work comprises a methodology to
generate jobs that follow the distribution of arrival time seen in three different super-
computers. Moreover, he also included the empirically observed distribution of cancelled
jobs. For the job size, he used Downey’s [17] result and made jobs sizes according to the
log uniform distribution.

Out of the newest in queue prediction, Park et al. [16] propose a model to predict
congestion of the queue using “features” of the jobs, that is, number of processes, allo-
cated CPUs, etc. They used a hidden Markov to model the queue state. They found that
it was very hard to predict queuing time because there are many unknown factors such
as the scheduling algorithm and “characteristics of the executed job”. For the workload
modelling, they have used their institution’s managed supercomputer, Nurion, logs.

Machine learning for prediction is extremely popular nowadays, hence there is also
a paper by Brown et al. [27] which aim to have accurate starting time using ML for

6

CHAPTER 2. BACKGROUND 7

urgent workflows. They apply K nearest neighbors and boosted trees to predict queue
time for 3 HPC machines in the UK under different configurations. Their methodology
was able to predict within 1 minute the actual start time about 65% to 76% of the job
start times across all the three machines.

As for optimization in queue time, normally the works are carried out to optimize
resources in the popular cloud providers. In the work by Kok Konjaang and Xu [28]
provide an algorithm to split tasks to reduce their runtime. This is done to optimize
both cost and the execution of the whole workflow. Their work reduced the cost by
8%, the total execution by 10% , and improved the resource utilization by 53% of the
workflow.

2.2 Slurm Scheduler

Slurm is a free, open-source, fault-tolerant, and highly scalable cluster management
and job scheduling system that was developed in a collaborative way between, primar-
ily, Lawrence Livermore National Laboratory, Linux NetworX, Hewlett-Packard and
Groupe Bull in 2001. In 2010, two members of LLNL created a company to manage
the development and marketing of Slurm. Since then, it has been used in many flagship
machines.

Slurm is written in C and it was designed with modularity in mind. One example of
its modular design is its support for plugins, which are added when the tool is compiled.
Over 100 plugins are available, besides ample support for customization. As seen in figure
2.1, Slurm is composed of multiple daemons: slurmctld, slurmd, slurmdbd. The first one
is the centralized manager and is responsible for keeping track and orchestrating each
node’s slurmd daemon. In order to configure users, it is necessary to have configured the
slurmdbd daemon, which is the interface between the manager and the SQL database.
Users are configured in tuples of (user, account, partition, cluster) which are stored
in a SQL database. slurmd is the deamon that runs on each node of the cluster and
communicates with the main controller the state of the node.

Normally, users are allowed to login only to a few nodes, where they set up their
work. Once the data and executables are configured, users prepare their scripts to be
run in the machine using special directives in the header: either sbatch or salloc or
launch them with srun via command line. In the bare minimum, users are required
to specify the number of CPUs, wallclock, and which QoS they choose. Additionally,
usually needed for debug, there are some nodes which can be used interactively, which
will grant the requested resources as if they were login nodes.

Figure 2.1: Diagram depicting the organization of Slurm and its daemons. Taken from
[29].

CHAPTER 2. BACKGROUND 8

2.2.1 Scheduling Loop of Slurm

Under default configuration, once a task is submitted, Slurm will try to execute it
immediately. If the resources are not available, it is queued. The order in this queue
is governed by the priority integer. The queue is decreasingly ordered according to it
and updated periodically. Hence, normally, larger priority means earlier scheduling. In
section 2.3 we cover how Slurm computes this value.

Slurm’s scheduling design is made of two independent algorithms that periodically
traverse the queued jobs and try to execute them as seen in figure 2.2. A lock system is
implemented to avoid race conditions among these two, which could run concurrently.
The main algorithm works by iterating over the ordered queued jobs and tries to schedule
them by looking for available nodes to meet the request. Upon the first failure to
schedule, it breaks and sleeps. As for the second algorithm, there are two options by
default: builtin or backfill. The first works identically to the main algorithm. The
backfill algorithm is a more comprehensive [7], and consequently expensive, technique
that allows jobs with less priority, i.e. lower in the queue, to be scheduled before as long
as it does not interfere with the start time of the higher positioned job. In figure 2.2 we
can see how the execution of the backfill algorithm takes longer. The main goal of this
algorithm is to increase the throughput of the system, by exploiting the fragmentation
that might occur as Slurm is preparing the machine to schedule large jobs. backfill in
Slurm always reserve full nodes, regardless of the size of the job.

System administrators can tailor the timings which the main scheduler and the sec-
ondary run. Most notably for us [30]:

• default_queue_depth: configures how many jobs are going to be tested before the
either scheduler forfeits

• defer tells Slurm to not try to schedule jobs upon submission. As we can see in
tables 2.1 and 2.2, respectively in both CEA-Curie and LUMI we see moments of
bursts of submissions that would yield too much time the lock of scheduling to the
initial try. That would prevent the other algorithms of executing

• sched_interval which specifies how frequently the main algorithm will execute

As for the secondary scheduler, we have the following options:

• bf_resolution is the time unit that the backfill algorithm will take into account
(i.e. if set to 30 seconds, every runtime of the jobs will be rounded to the closest
largest multiple of 30 seconds)

• bf_window is how far ahead in minutes the algorithm will see when trying to find
a spot to backfill. Clearly, this only applies to the backfill scheduler

• bf_continue tells the secondary scheduler to continue execution after the lock
release, that is the lock to race conditions, and ignore newly submitted jobs

CHAPTER 2. BACKGROUND 9

Figure 2.2: Graphical description of the loop logic behind Slurm scheduling. Taken from
[24].

Mean 4.50
Std 15.94
Min 0
25 % 0
50 % 1
75 % 4
Max 1414

Table 2.1: Average number of submissions per minute in LUMI during the period Febru-
ary 2023 and June 2023.

Mean 0.86
Std 3.13
Min 0
25 % 0
50 % 0
75 % 1
Max 275

Table 2.2: Average number of submissions per minute in CEA-Curie during the period
1/2/2011 - 17/10/2012.

2.3 Job Priority

Jobs are grouped in decreasing order according to the priority integer. On Slurm it can
be computed in two ways: first-in-first-out and multifactor. In FIFO jobs will be given a
larger priority the longer they are in queue, while multifactor allows for considering more
attributes when deciding which jobs to run. Some of them are: age, size, association,
fair share, and quality of service factors. Factors in Slurm terminology are always floats,
stored in double precision, between 0 and 1. For each of these values, a 32-bit encoded
integer weight is associated. The priority is then computed by taking the weighted sum
of all factors with their respective weights.

The age factor, which is the one related to the time in queue, starts at 0 and linearly
grows until reaching the maximum, which is configured setting the flag PriorityMaxAge
in the Slurm configuration file. The default is 7 days. Then this factor is computed as

ai =
t

T
, (2.1)

where t is the time elapsed ever since the job submission, discounted the time volun-
tarily held by user, and T is the total amount of seconds set by administrator with flag

CHAPTER 2. BACKGROUND 10

PriorityMaxAge.
By default, the size factor is the proportion of CPUs used by the job with respect

to the total available. Therefore, when requesting the whole machine, it reaches the
maximum. System administrators can invert this by setting the flag PriorityFavorSmall
to True, which would make a single CPU job have the maximum values of 1.0. Hence,
the size factor is computed as:

si =
ri
S

or si =
S − ri + 1

S
, (2.2)

where ri is the total of CPUs requested by job i and S is the total number of CPUs of
the machine.

QoS stands for Quality of Service, normally called queues although they are not
separate queues. It allows users to choose from different options – e.g. standard, debug,
xlarge, xlong – depending on their computing needs. Normally they are set up in such
a way of awarding the smaller jobs, since by default Slurm gives more priority to larger
jobs. From the user side, this means larger priority upon submission, hence less waiting
time, at the cost of a more constrained job submission.

Each QoS is configured with an associated priority, which is another integer value.
Then the factor is computed as the proportion with respect to the largest priority of all
QoSs. Then, if the job i was submitted indicating QoS qu, its QoS factor is computed
as

qi =
qu

maxq∈Qq
, (2.3)

where Q is the set of all QoSs set by the system administrator.
The fair share factor is the one that aims to balance the resources among users. It

is computed in two different ways, which will be addressed in its separate section 2.4.
Finally, we have the following equation for the priority of a job with respect to the

time:

Pi(t) = ai · wa + si · ws + fi(t,Ω(t)) · wf + qiwq, (2.4)

where this is the priority at time t of job i. ai is the age factor, wa the age factor weight,
si is the size factor, ws the weight factor associated with size, fi is the fair share of the
user that launched job i at instant t with machine utilization Ω(t), wf is the weight,
and finally qi and wq are the factor and weight associated to QoS.

2.4 Fair share factor

Fair share factor is a quantification of a user’s right to the machine. Its objective is
twofold: to seem fair and to ensure utilization of the machine. The classic implementa-
tion, and the original motivation for it, is in paper by Kay and Lauder [15]. But in the
following years, there were several proposals with different notions of what seems fair
and, subsequently, how to implement [31] [8] [32].

Slurm offers two ways of computing the fair share factor: Classic and Fair Tree. By
default, Fair Tree is the algorithm used. To prioritize the newer usage of users, Slurm
also allows to update the historical usage with a decay factor which is defined by the
flag PriorityDecayHalfLife, which means the usage will halve every that set amount of
time.

CHAPTER 2. BACKGROUND 11

In both algorithms, users are assigned an integer value called RawShares – their
entitlement for the machine – and their usage is tracked, which is called RawUsage.
This is depicted n figure 2.3, taken from [15].

Figure 2.3: Image taken from [15] depicting the basic mechanism behind fair share.

Fair share: Classic Algorithm

Under the Classic algorithm, in order to compute the factor, Slurm normalizes both
RawUsage and RawShare with respect to the total system usage and shares. Then the
fair share factor for the user is computed as

fi = 2
− ruu/tu

rsu/ts , (2.5)

where ruu and tu =
∑

j∈U ruj are the user’s RawUsage and the system’s sum of
RawUsage and rsu and ts =

∑
j∈U rsj are the user’s RawShare and system’s sum of

of RawShares.
When RawUsage is 0, this factor is 1. If the user has exactly the same amount of

usage ratio with respect to the share assigned to him, it will be 0.5. Afterwards, it will
exponentially decay to 0. This is a major drawback which could cause underflow if a
large enough total usage is reached and the user has no usage.

Fair share: Fair Tree Algorithm

The main concept in which Fair Tree is built around is to allow the sharing of the
responsiveness among users in the same account. As the developers put it [33], “users
such that if accounts A and B are siblings and A has a higher fair share factor than B,
all children of A will have higher fair share factors than all children of B”.

When users are added to the Slurm account database, they are included as a tuple
which contains: user, account, partition, and cluster, where the account is the group
that the user is associated with – normally projects that the user is part of –. Users and
accounts can be associated to accounts, but accounts can never be associated to users.
Plus, slurm does not allow for cycles in the association – e.g. accounts associated with
themselves –. Consequently, this structure defines a tree where its root is the special
root account, which is the only one not child of any account, and every user is a leaf.

CHAPTER 2. BACKGROUND 12

The algorithm starts traversing the tree via the root account. Every time it stumbles
upon an account, it orders decreasingly its children – can be both users and accounts –
by their Level Fair Share, which is computed by

L =
rsu
ruu

or L =
rsa
rua

, (2.6)

where rsu and ruu are the user’s RawShare and RawUsage. It is done likewise if it is an
account, where rsa and rua are the account’s RawShare and RawUsage. This value may
be infinite if the user or account has no usage. The algorithm traverses this children
ordered array. If it finds a user, it assigns a fair factor to it, which is the order in which
the algorithm visited the user; if it finds an account, the algorithm recursively continues
on it.

We could see this algorithm as assigning fair share factor to users according to an
ordering that respects a single rule recursively: no user from an underserved account is
higher positioned of another account. Once we have the users ordered, we will assign
them the fair share factor according to their position in this array: the first receives a
fair share factor of 1.0, the next 1.0− 1

n and so on and so forth, where n is the number
of users with different Level Fair Share. This is because, in case of draw in the Level
Fair Share, the algorithm merges accounts or it assigns the same fair share value to the
users.

Besides allowing for sharing of the fair share among users of the same account, it
also deals with the underflow issue that the Classic approach has if the user has a very
tiny usage compared with the total system usage.

2.5 Workloads

In the literature, there is an ambiguity with the concept of workload. Sometimes, authors
refer to an application’s workload. In this work, we are interested in the whole machine
use. Hence, will define workload as the full description of jobs that are run on a machine.
In its bare minimum, they include how many CPUs were requested, when they were
submitted, started running, and ended. They can be real, those that were recorded
on machines, or synthetic, which were generated. When testing the scheduler, a good
representation of the usage of the HPC platforms – the workload – is essential to have
meaningful conclusions [34].

Under this definition of workloads, they are a mandatory part so that we can control
the experimentation. With a deterministic description of the usage of an HPC platform,
we can vary single factors to see their relative impact. With this in mind, we can further
classify them in two groups: static and dynamic. Their difference is that the first are
workloads in which every job is submitted at the same time, abstracting away from
dealing with inter-arrival time. This type of workloads is always synthetic. Meanwhile,
in the former, the submitted time is also recorded. Feitelson on his web page [21] provides
both real and synthetic workloads.

Workload modelling is important because it allows us to reproduce the same execu-
tion and just make single changes to measure the impact. But, it can grow considerably
in its intricacy. There are many possible scenarios that can happen: like power out-
ages, user cancelling, nodes going offline, weekends, or holidays which impact how users
submit jobs, and – consequently – how the machine is used.

CHAPTER 2. BACKGROUND 13

2.5.1 Static Workloads

The main idea of static workloads is to take a snapshot, instantaneous, moment of
a particular state of the machine. Thus, in this case, it is only necessary to have a
description of the resources requested for each job and the user who launched it. This
technique is employed, for example, in the work by Jeannot et al. [9] to abstract away
from the inter-arrival times and provide a distressed scenario for their technique.

The drawback of using static workloads, is that, compared with the dynamic work-
load, they have a shorter span under which the simulated scenario resembles reality. At
some point in the simulation, we have that it will monotonically decrease the usage of
the machine.

2.5.2 Dynamic Workloads

A dynamic workload is one in which the inter-arrival time of jobs plays a role. This is the
natural type of workloads. Besides the job resources requested information, we require
the submission instant. As mentioned, dynamic workloads can be real of synthetic.

Modelling accurate synthetic dynamic workloads is tricky since there are various
patterns of self correlation, positive and negative feedbacks, cyclic patterns, and many
other behaviors to account for. For example, in image 2.4 taken from [21] we see how
the submission, or arrival, of jobs or total CPUs requested vary considerably between
day of the week and time of the day. In the book by Feitelson [18] there is an in depth
analysis of the behaviors.

Figure 2.4: Week variation of total CPUs used and number of jobs submitted in CEA-
Curie. Plot taken from Feitelson’s Workloads Archive [21].

2.6 Computational Workflows

A computational workflow is a description of a process with dependencies, i.e. a job or
a task has to wait until all of its predecessors finish, under which data flows in between
them. This adds a layer of abstraction that separates the domain specialists of the
computing specialist. The former is charge of what is computed, while the latter on how
to run it. Conceptually, a workflow is a set of tasks with an associated partial ordering.
This abstraction is the building block for the organization of workflows applied in many
different domains. To name examples in each domain: engineering [2], biology [3], Earth
sciences [1], and business [35].

CHAPTER 2. BACKGROUND 14

Complex Earth Science simulations are a subset of Computational Workflows. Exam-
ples in Earth Science simulations, are workflows of the climated models such as EC-Earth
[36], ICON [37], IFS-NEMO [38], both in weather forecast simulations and climate sim-
ulations. Within the Earth Science department of the BSC, the associated workflow of
a model is usually the model name prepended of “auto”. Then, for the EC-Earth model,
the workflow is auto-EC-Earth, for example.

Additionally, under resource sharing platforms, workflows are necessary to allow
the execution of lengthy simulations. Because of the resource sharing, resources are
hard bounded both in runtime and allocated CPUs. This obliges the users to split the
simulation in chunks, which are the simulated time segments of the simulation to make
the execution time be lower than the wallclock of the machine. Moreover, depending
on how the simulation is set, there are multiple steps that need to be orchestrated to
receive the data generated by the models – e.g. post processing tasks such as data
standardization or statistics –.

In order to manage and execute workflows, workflow managers or meta schedulers
were developed [39] [40] [41] [42] [43]. These tools automate every step of the workflow
which composed of: submission for execution, syncing of data, and retrieval of data. The
workflow itself is described in human-readable form, which is then parsed and turned
into tasks in the workflow engine.

Normally, computational experts develop and maintain these descriptions for each
application, known internally in the Earth Science department as auto modellers. They
are tasked with understanding the data flow of the workflow and the necessary software
and hardware dependencies of each one of the tasks to run in each platform.

With the auto model built, this is handed to the final users, which are scientists and
operationals, who are those in charge of understanding the myriad of parameters which
control the physical behavior of the simulation and interpret the output.

In this work we have used one of the auto models developed in the Earth Science
department as a reference: auto-MONARCH [44], which is build on top of MONARCH
[1]. We use the configuration that was used in the validated reanalysis of 2023 for the
CAMS project. This step is to rerun the model with the observed data from last year,
2022, so that the physical parameters can be corrected so that the model agrees with
the observational data. Its most demanding task is the dynamical core which running
in 96 CPUs, or 2 nodes, it lasts about 30 minutes.

2.7 Autosubmit

Out of all workflow managers or meta schedulers, Autosubmit [39] differentiates itself as
being tailored for running climate simulations and weather forecast simulations. Modern
weather forecast simulations, climate simulations, and air quality simulations are made
up of multiple models and could be required to run in multiple HPC platforms, with
various configuration steps and data management. This is a far cry from just 10 years ago
when most scientists had only to work on a single,unrestricted, platform and a couple
of models. This motivated the creation of the Autosubmit tool, which automatically
deals with the submission of jobs, respecting the dependencies, to the various platforms
whilst keeping track of the data provenance.

Autosubmit is a Python tool to create, submit, and monitor experiments. With
just a few changes on the configuration file, it is able to change the HPC platform, the
scheduling configuration, and the workflow. It also abstracts away from the scheduler,
allowing it to support various: Slurm [10], LSF [45], PBS [46], SGE [47], and in the
future, PJM [48]. As HPC platforms might fail, and often do, Autosubmit also provides

CHAPTER 2. BACKGROUND 15

Figure 2.5: Diagram of the components of Autosubmit and its interfaces.

robust fault tolerance. In figure 2.5 we observe the different interactions that Autosubmit
has: starting with the users that execute it, the two way communication it has with the
remote scheduler, and the web graphical interface.

This software is currently used at the BSC to run state-of-the-art models – like EC-
Earth [36], MONARCH [1], and NEMO-IFS [38] –, operational toolchains – S2S4E [49]
–, data-download workflows – ECMWF’s MARS [50] –, audio processing pipe line –
Language Technologies group at the BSC –. These workflows are run using Autosubmit
in many different supercomputers: MareNostrum 4 [11], LUMI, Levante [13], Melux-
ina [14], Cirrus [51]. Moreover, Autosubmit will be used in leading flagship European
research projects: Earth Digital Twins [52], Digital Twin Oceans [53], and Eddy Rich
Earth System Models [54].

2.8 Wrappers

To tailor the task submission in order to optimize queue time, Autosubmit developers
came up with a technique called wrappers. This tackles the two way interaction be-
tween Autosubmit and the remote scheduler, seen on figure 2.5. The idea is to create a
single larger job which comprises several tasks respecting restrictions as defined by the
workflow.

There are two elemental types of wrappers: vertical and horizontal. The first creates
a script where jobs are sequentially executed, the latter runs in parallel the tasks. In
both cases, this script is submitted a single time to the HPC platform. In figure 2.6,
we see inside the red box the jobs that are submitted in a single package to the HPC
platform. Their dependencies are indicated by an arrow connecting two boxes, which
are different jobs. As for the horizontal wrapper, we see in figure 2.7 – again inside a red

CHAPTER 2. BACKGROUND 16

box – the jobs that are packaged into a single larger one. Here there are no dependencies
among them, so it is possible to run them concurrently.

Additionally, there is also a mix-and-match of elemental types: vertical-horizontal
and horizontal-vertical. The first one is made up of multiple vertical wrappers joined in
a single horizontal. Analogously, the latter is build from various horizontal jobs that run
sequentially in lock-step. So, for example in figure 2.8, inside the red box, jobs could
either be executed one row at each time or each list runs concurrently respecting the
dependency of the jobs.

Figure 2.6: Vertical wrapper workflow example. Here the three SIM jobs will be sub-
mitted to platform at the same time, and run sequentially.

Figure 2.7: Horizontal wrapper workflow example. Here both SIM type jobs will be
submitted at the same time and run concurrently.

CHAPTER 2. BACKGROUND 17

Figure 2.8: Horizontal-vertical or vertical-horizontal wrapper workflow example.

Chapter 3

Methods

In this chapter we will address the software that we used, developed, and adapted to
carry out the simulation. Moreover, we also describe how we gathered and analyzed
data to build a synthetic static workload that follows LUMI’s supercomputer job size
and runtime distribution.

3.1 Software Stack

In this section, we will give an overview of the software tools that we used to carry out
simulations and the tools that were developed.

3.1.1 Slurm simulator

We used BSC’s Slurm simulator [23], which is an open source software for simulating
the popular Slurm scheduler. It is an enhanced version of UBCCR’s simulator [24]. The
original authors aimed to have a simulator that ran mostly the code of Slurm but it is
able to read from a workload description file, like the Standard Workflow Format [20],
and obviously run faster than real life execution – e.g. 1 month of simulated time in 1
day –. Since it runs on Slurm code it allows us to configure the scheduler as in real life
platforms for the purpose of this work.

Figure 3.1: Diagram of the Slurm simulator. Taken from [23].

The Slurm simulator, as is Slurm, is composed of several executables – as explained in

18

CHAPTER 3. METHODS 19

section 2.2 – that have to be properly configured and orderly launched. For this purpose
the developers of the simulator provided a launch script. We translate to Python this
script and extended it1 to also launch an additional daemon: the slurmdbd, which is in
charge of the user and system accounting done with SQL databases. On top of tracking
usage, it is the only way of configuring users under accounts.

In order to describe the workload to be simulated on an artificial machine, we use
the Standard Workflow Format, which was proposed by Chapin et al. [20]. With it,
we can determine the users and the accounts under which they execute the tasks. We
will make a simplifying hypothesis and only consider 1 partition and 1 cluster, then
the tuple of the association only changes for the user and the account. Upon including
every association, using the sacctmgr utility, which is the Slurm account manager tool,
we need to add a RawShare value for each user. We assign every association – i.e. user
and account tuple – the same RawShare, 100.

Once the users are set, we proceed to convert the workload file from SWF to a format
accepted by the simulator, which is binary. The developers of the BSC’s simulator
provided a conversion tool from SWF to binary. With that set, we can launch the
simulator manager, which is the algorithm in charge of actually reading the jobs and
submitting them to the slurmctld controller via sbatch.

Since user usage impacts the fair share value, as seen in equation 2.4, it is important
for us to ensure that the simulation runs on a sanitized environment. Docker [25] provides
such capability, on top of being light weight compared with using a virtual machine.
Hence, we developed a Docker image2 for the Slurm simulator. We design the image
so that the simulator only needs two binded files – that is, synced files between the
host system and the container – an input SWF and an output file. Optionally, we can
bind different configuration files and the logs that are produced by the simulator. This
made changing configuration files easier and also allowed for debugging the simulator.
Upon converting the SWF file to binary, the allocated resources are rounded up to next
number of CPUs as multiple of the total number of CPUs in a node – e.g. in a system
where nodes have 64 CPUs, a job requesting 129 CPUs would be converted to a job
requesting 192 CPUs –. This is due to a limitation that the simulator has that it can
only run jobs as if they were requesting exclusive nodes. As a corollary of this property,
it is not possible to allocate less than 1 node for a job using the Slurm simulator.

3.1.2 Standard Workload Format tool

All the manipulation of SWF [20] files is done via a tool developed within this work in
Python, called PySWF 3. This tool is used to build the workload files, with the workflow,
and then to compute the associations to be sent to the sacctmgr utility. Besides that, we
can read from multiple file type outputs: from SWF, sacct output with parseable flag,
and from the Slurm simulator output format. And, afterwards, it can write in SWF file.

The job list is read and stored in a Pandas [55] Data Frame [56] object, which is a
highly versatile, easy to manipulate, feature-full data structure with ample statistical
analysis capabilities. Moreover, it also provides plenty of ways of outputting the data:
CSV, FWF, etc.

Additionally, since we also support reading from real-life logs, we provided an anonymiza-
tion feature, using Panda’s factorize method, which maps all the different values to in-
tegers. Then to anonymize, we forget this map. This was used for the UID, account,

1Available at https://earth.bsc.es/gitlab/mgimenez/ces_slurm_simulator_tools.
2Available at https://earth.bsc.es/gitlab/mgimenez/docker-ubuntu-ces-slurm-sim.
3Available at https://earth.bsc.es/gitlab/mgimenez/pyswf.

https://earth.bsc.es/gitlab/mgimenez/ces_slurm_simulator_tools
https://earth.bsc.es/gitlab/mgimenez/docker-ubuntu-ces-slurm-sim
https://earth.bsc.es/gitlab/mgimenez/pyswf

CHAPTER 3. METHODS 20

Factor Weight
Fair share 100000

Age 100000
Job size 10000

Table 3.2: Weights of the MareNostrum 4 for the multifactor priority computation, as
seen in equation 2.4.

Option Value
default_queue_depth 10000

defer True
sched_interval 60 s

bf_interval 60 s
bf_max_time 30 s
bf_resolution 1800 s

bf_window 10080 min
bf_continue True

PriorityMaxAge 10 days

Table 3.3: Main and secondary scheduler configuration, as seen in figure 2.2. These are
used in MareNostrum 4 and we use them in all of our experiments.

partition, and QoS.

3.2 Slurm configuration

In table 3.1 we break down the differences among the two Slurm configuration files
that we use in this work. On both of them we set the priority to be computed using
multifactors, covered in section 2.4, and compute the fair share with the Fair Tree
algorithm, seen in subsection 2.4. On tables 3.2 and 3.3 we have the weights for the
priority and the scheduler options used in MareNostrum 4’s configuration – as of June
2023.

MareNostrum 4’s scheduling policy is used because it is a shared resource platform,
which is highly used as seen in image 1.1, and it is a modern system – although it is
at the end of its life cycle. Moreover, is a machine which we had access to its Slurm
configuration file.

Simulated Machine Physical cores Secondary Scheduler
Configuration file 1 LUMI 360448 Backfill
Configuration file 2 CEA-Curie 93312 Backfill

Table 3.1: Description of the Slurm configuration file we use in this work.

For the user distribution, we did another simplifying assumption and consider only a
1 level tree, as seen in figure 3.2. This is done to make it more convenient the computation
of the fair share factor, which we will need in order to control the fair share of the user
that launches the workflow. Below the root account, we have a full row of accounts.
Every account has at least 1 user, while the user that we track his job is in a separate
account. The associations are taken from the SWF file. We also consider that every
user could have at most 1 account associated with it.

CHAPTER 3. METHODS 21

Figure 3.2: Diagram of the user structure we consider for the synthetic and dynamic
workloads in this work.

3.3 Workloads

We use two types of workloads: static and dynamic. For the first, we generate the
workload from the analysis of data from the LUMI supercomputer, while the second
was taken from Feitelson’s repository of workloads [21]. Hence the first is a synthetic
workload whilst the second is a real one.

3.3.1 Static

With static workloads, we aim to study the relative impact of individual job attributes
and user attributes with the wait time in queue. We model the static workloads by
fitting appropriate distributions to the runtime and to the allocated CPUs as we have
observed in jobs from the LUMI supercomputer. This computer’s data is used because
it is a new system [12], its resources are highly sought after, and it is meant for scientific
purposes.

Static workloads gives us a short-sighted view of the evolution of the system. But
it allows us to abstract away from the inter-arrival time and reduce somehow the “what
if”s that this area has.

Job Gathering

The historical data in LUMI was captured by performing sacct, Slurm account, com-
mands which retrieve job log information from Slurm’s databases. We are interested in
the total allocated CPUs, submit, start, UID, QoS, and partition. Also we fetched the
User id of the user that launched the job. With this information we have more than
700000 jobs from LUMI, which can be seen in table 3.4. An important note is that
LUMI’s CPUs support hyperthreading and jobs take advantage of that feature by de-
fault. This means that some jobs are reporting their usage in logical cores, whilst others
are reporting it in physical cores – if the user has explicitly removed hyperthreading.

Job Analysis

In this section we build a description jobs run on the LUMI supercomputer. We followed
closely Feitelson’s book on modelling [18]. Since we are interested in building a static
workload, i.e. we do not care about the relative arrival time in between jobs, we focus
only in two attributes of the job: runtime and allocated CPUs. To read the data, we used
PySWF module 3.1.2 that reads the data as outputted by the sacct Slurm function, with

CHAPTER 3. METHODS 22

Cluster LUMI
Num of jobs ≥ 700000
Num of users ≈ 800

Start date Feb 2023
End date Jun 2023

Total CPU nodes 1536
Total GPU nodes 2460

Total Physical CPUs 354048
Total Logical CPUs 720896

Table 3.4: Characteristics of the LUMI supercomputer as of June 2023 and also the
dataset that we have collected.

parseable flag. With the data read, we used Scipy’s [57] statistical module for analysis
features to represent data and to fit distributions by maximizing log likelihood.

We start by analysing the data by computing its mean, standard deviation, and
quartiles. In table 3.5, there is a large difference between the median and the mean,
indicating a skewed distribution. This has been noticed by other authors [18] [17] for
the allocated CPUs, where a vast majority of jobs are small but there are some super
large jobs, which causes the mean to increase. For example, in our data we saw a single
job request of 325120 CPUs, while half of them require less than 256 CPUs.

As for the job runtime, in table 3.6, we observe the same large difference between
the mean and the median as in the allocated CPUs table 3.5.

Consequently, if both runtime and allocated CPUs, tables 3.5 and 3.6, have this
skewed property, the multiplication of both is also expected to have the same behavior.
In table 3.7 we compute the core runtime in CPU ·s, and indeed observe what we expect.

Additionally, we plot a log allocated CPU per log runtime scatter plot of the jobs,
in figure 3.5. We observe equidistant lines, which are the power of 2 jobs. In terms of
runtime we don’t see much structure except for the 217 horizontal line, about 172800
seconds or 2 days, which is the maximum wallclock allowed in the partitions which all
users have access, standard and standard-g.

We fit a skewed distribution onto the runtime and the allocated CPUs. Hence, we
choose 4 distributions to fit which have appropriate characteristics: positive support,
long tailed distributions because we know that the behavior on HPC platforms follow
this trend [18] [19] [17]. Moreover, as we can see in the summarized statistics tables 3.5,
3.6, and 3.7 the difference between the mean and the median, 50%, is considerable. This
indicates us the long tail behavior. The distributions’ probability function we fit are:

1. Lognormal:

f(x; s) =
1

xs
√
2π

e−
ln2x
2s2 , x > 0 (3.1)

2. Log-uniform:

f(x; a, b) =
1

x · ln b
a

, a < x < b (3.2)

3. Weibull (or Weibull minimum, in Scipy’s nomenclature):

f(x; c) = cxc−1e−cx, x ≥ 0 (3.3)

4. Pareto:
f(x; b) =

b

xb+1
, x ≥ b (3.4)

CHAPTER 3. METHODS 23

Statistic Value
Mean 774.2
Std 4493.4
Min 1
25% 48
50% 256
75% 1024
Max 325120

Table 3.5: Number of allocated CPUs statistics on LUMI. 25% refers to the first quartile,
50%, the median, and 75%, the third quartile.

Statistic Value (s)
Mean 3952.7
Std 19617.9
Min 0
25% 23
50% 125
75% 902
Max 4604100

Table 3.6: Job runtime statistics in seconds on LUMI. 25% refers to the first quartile,
50%, the median, and 75%, the third quartile.

In order to provide a notion of fitting that takes into account over fitting, we also
computed the Akaike Information Criterion [58], besides the Sum of Squared Errors.
The AIC is computed with the following formula:

AIC = 2k − 2log(L̂), (3.5)

where k is the number of parameters in the model, and L̂ is the maximized log likelihood
value of the observed values with respect to the fitted distribution.

Scipy uses a standardized way of representing distributions, with two parameters:
loc and scale, which are always present in the description of the distribution. But
some distributions require additional parameters to describe them, which we include as
additional columns in tables 3.10 and 3.11. We also plot the cumulative distribution of
the log transform in plots 3.3 and 3.4. In the first, we observe that about 60% of the
jobs have less than e6 ≈ 403 CPUs allocated. Similarly, for the latter, we see that about
50% of the jobs with runtime different that 0 run for less than e5 ≈ 148s seconds.

Statistic Value (CPU · s)
Mean 3.420701e+06
Std 1.392048e+08
Min 0
25% 3.533000e+03
50% 3.942400e+04
75% 2.150400e+05
Max 9.505604e+10

Table 3.7: Job core runtime in CPU · s statistics on LUMI. 25% refers to the first
quartile, 50%, the median, and 75%, the third quartile.

CHAPTER 3. METHODS 24

model SSE AIC ∆ SSE ∆ AIC
lognorm 1.5212695e-07 -10982364.7 3.490224e-08 8.099168e+05

loguniform 2.4445086e-07 -11792281.5 1.272262e-07 0
weibull_min 1.1722471e-07 -10953333.3 0 8.389482e+05

pareto 1.242175e-07 -10972152.5 6.992826e-09 8.201290e+05

Table 3.8: Distribution fitness for the allocated CPUs. AIC is computed as 3.5. ∆ fields
are with respect to the best SSE or AIC, which is the minimum.

model SSE AIC ∆ SSE ∆ AIC
lognorm 1.4533082e-09 -10949897.1 1.582374e-10 5.908307e+05

loguniform 1.2950708e-09 -11540727.9 0 0
weibull_min 1.3592729e-09 -10750257.9 6.420204e-11 7.904700e+05

pareto 1.5197229e-09 -10990301.6 2.246521e-10 5.504263e+05

Table 3.9: Distribution fitness of the runtime for the runtime of jobs in LUMI. AIC is
computed as in equation 3.5. ∆ fields are with respect to the best SSE or AIC, which
is the minimum.

Figure 3.3: Cumulative distribution function of the fitted distributions for the allocated
CPUs at LUMI. The orange line is the log allocated CPUs observed cumulative distri-
bution and the blue line is a random sample generated with the parameters as found in
table 3.10.

CHAPTER 3. METHODS 25

model loc scale s a b c
lognorm -9.8930e-1 1.9930e+2 1.7195 - - -

loguniform -5.0045e-1 1.0000 - 1.5004 3.2512e+5 -
weibull_min 1.0 4.2983e+2 - - - 0.60622

pareto -4.4421e+2 4.4521e+2 - - 1.6045 -

Table 3.10: Fitted parameters of the distributions for allocated CPUs. Loc and scale
reference Scipy’s [57] standardization of the distribution. s, a, b, and c are as in equations
3.1, 3.2, 3.3, and 3.4.

model loc scale s a b c
lognorm 9.5007e-1 1.6506e+2 2.6766 - - -

loguniform -7.6965e-1 1.0000 - 1.7626 4.6041e+6 -
weibull_min 1.0 6.4232e+2 - - - 3.8084e-1

pareto -3.2248e+1 3.3248e+1 - - 4.4822e-1 -

Table 3.11: Fitted parameters of the distributions for runtime. Loc and scale reference
Scipy’s [57] standardization of the distribution. s, a, b, and c are as in equations 3.1, 3.2,
3.3, and 3.4.

Figure 3.4: Cumulative distribution function of fitted distributions for the runtime at
LUMI. The orange line is the cumulative log runtime of jobs with runtime different than
0 and the blue line is the cumulative distribution of a random sample generated with
the parameters as found in table 3.11.

CHAPTER 3. METHODS 26

Figure 3.5: Log runtime per log allocated CPUs. Jobs with runtime 0 were discarded.
Each pixel represents a job. This plot was zoomed to the area of highest concentration
of jobs.

Workload Generator

In this section we will detail how we generate a workload that follows the distribution
for both the runtime and allocated CPUs that we observe on the data we collected.

With the appropriate minimized parameters, we used Scipy’s methods to generate
values according to the fitted distribution. All the considered distributions were posi-
tive, but not necessarily bounded. Then, we need to take a step to bound them to the
maximum number of CPUs in the system, without losing the property of being a prob-
ability distribution. Following [18] we do the inverse transform method which ensures
us that we still have a probability distribution. Finally, the generated values are casted
to integer, since all the distributions that we consider in this work are continuous.

Upon analyzing tables 3.4 and 3.9 and visually inspecting 3.3 and 3.4 we choose to
use the lognormal distribution for both the runtime and allocated CPUs. And by the
log-log plots we observe that the log normal provides a better fit with respect to the
shape of the cumulative distribution that the log-normal, that is, smaller jobs are better
represented by the distribution.

Once we generate a job attribute characteristic: runtime and allocated CPUs, we
attribute it to a user chosen uniformly at random from a population of 100 users. Since
we also need to bundle users onto groups, if a task is attributed to a user without a
group, we uniformly at random assign this user to a group from a population of 100 as
well.

We generate workloads with 1000 jobs, which we choose because it provides a dis-
tressed enough scenario, under which we have queues forming. Also, this number of
queuing jobs is common, as seen in MareNostrum 4 plot of queuing and running jobs
1.1.

In tables 3.12, 3.13, and 3.14 we have the descriptive analysis of the aggregated
generated workload. Moreover, in tables 3.15 and 3.16 we have the proportion for both
number of jobs and usage distributed per users for the most relevant ones.

CHAPTER 3. METHODS 27

Statistic Value
Mean 959.9
Std 4599.1
Min 1
25% 63
50% 199
75% 650
Max 253375

Table 3.12: Job allocated CPUs statistics on a synthetic static workload generated from
LUMI. 25% refers to the first quartile, 50% the median, and 75% the third quartile.
Aggregated across all 10 generated files.

Statistic Value (s)
Mean 2735.8
Std 11194.4
Min 0.00
25% 25.00
50% 155.00
75% 940.25
Max 162234

Table 3.13: Job runtime statistics on a synthetic static workload generated from LUMI.
25% refers to the first quartile, 50% the median, and 75% the third quartile. Aggregated
across all 10 generated files.

Statistic Value (CPU · s)
Mean 2.234767e+06
Std 2.826463e+07
Min 0.000000e+00
25% 3.817500e+03
50% 2.990450e+04
75% 2.643082e+05
Max 2.337595e+09

Table 3.14: Job core runtime (CPU ·s) statistics on a synthetic static workload generated
from LUMI. 25% refers to the first quartile, 50% the median, and 75% the third quartile.
Aggregated across all 10 generated files.

CHAPTER 3. METHODS 28

uid Total Core runtime (%)
33 50.76
59 8.10
57 7.80
37 4.97
7 4.42
98 2.60
31 1.86
32 1.77
39 1.72
48 1.34
78 1.00

Table 3.15: Job core runtime proportion in percentage per user in one of the synthetic
workload generated based on LUMI. Users with less than 1% of the total runtime,
46060155.26 CPU · s, of the workload were omitted.

uid Total jobs (%)
31 1.90
64 1.80
30 1.70
82 1.70
78 1.60
72 1.50
4 1.50
86 1.50
76 1.50

Table 3.16: Total number of jobs per user in the seventh synthetic workload based on
LUMI. Users with less than 1.4% of the number of jobs, 14, of the workload were omitted.

Experimental Design

In this section, we specify how we set up the experiments: how we combine job config-
urations with different fair share factors and measure their impact.

As mentioned in section 3.3.1, we generate 10 synthetic static workloads. Into each of
these, we include a single job with every combination of 30, 60, 120, and 210 minutes of
runtime and 96, 192, 384, 672, and 1152 CPUs. We used the CAMS workflow dynamical
core job as a reference for this values, as we have mentioned in section 2.6. Usually, for
the CAMS use case in the Earth Science department this job takes 30 minutes when run
with 96 CPUs.

The rest of the cases are multiples of it, as if it was wrapped vertically, horizontally,
or both. For example, the 96 CPUs with runtime 120 minutes is if it was 3 vertical jobs,
or 384 CPUs and 210 minutes if it was a horizontal-vertical wrapper with 4 sequential
jobs and 3 parallel jobs. We will call the user that launches this controlled job the
workflow executing user.

Since there are no executing prior to the instant where all the jobs are launched,
every user would have fair share of 1.0. We want to resemble an instant of the typical
workload of a share platform machine, then we added to the generated workload a first
batch of jobs so that users have usage recorded by the Slurm simulator. This first dummy

CHAPTER 3. METHODS 29

batch of jobs, one for each user, only differ in runtime. The number of allocated CPUs
was chosen so that there were enough resources in the machine for all the jobs in this
first submission.

However, we still needed to actually decide which user would have more or less usage.
We set the runtime so that the relative usage after the execution of this dummy job in
between users is preserved with respect to the generated usage – that is, the user with
the highest usage will have the highest runtime of all the dummy jobs; the second highest
user will have the second highest runtime and so on and so forth – as seen in figure 3.6
–. Except the workflow executing user, which we change the runtime of his dummy job
to according to the fair share we want to set to him. We opted to preserve the relative
order - after traversing the Fair Tree algorithm seen in section 2.4 - of the rest of the
generated users because we know that users tend to have recurrent patterns of usage as
reported by [18] and [26].

So, on top of all the combinations of job attributes, we added one more dimension
which was a different fair share value for the workflow executing user : 0.1, 0.2, 0.25, 0.3,
0.5, 0.6, 0.7, 0.75, 0.8, and 0.9.

With this analysis, we hope to compute the relative impact of varying each job or
user attribute for just a single submission.

Figure 3.6: Example of the fair share control. In orange and dashed line border we
see the workflow executing user and account, respectively the circle and the box. The
left image is the traversing of the Fair Tree 2.4 as it was generated after executing the
workload in the simulator. As we include the workflow executing user, we set the runtime
of his dummy job so that it has a fair share of 0.6 prior to the execution of the generated
workload.

3.3.2 Dynamic

In this section we take CEA-Curie workload from Feitelson’s workload repository [21].
This machine, although decomissioned, was a scientific machine shared among many
groups. Afterwards, we exaplain how we inserted a representative workflow into it.

Workload Choice

Here we used the workload from CEA-Curie supercomputer taken from Feitelson’s repos-
itory [21]. This was a general purpose machine and fits the characteristics of MareNos-
trum 4 in terms of resource sharing and scientific usage. We used the clean version 2
from Feitelson, which only considered the second half of the log, after a big upgrade
in the machine, and removed some jobs which were most certainly badly logged (i.e.
running for far too long).

CHAPTER 3. METHODS 30

Like for the LUMI supercomputer, commented in section 3.3.1, we also computed
the statistics in runtime, allocated CPUs, and core runtime in tables 3.6, 3.19, and 3.20.
Additionally, we provided the wait time statistics as recorded by the log 3.18. We also
computed the largest consuming users in terms of core runtime and also total number
of jobs submitted in tables 3.22 and 3.23.

We have that two users make up for a quarter of the total usage of the machine in
terms of core runtime, anonymized uids 290 and 135. In terms of total jobs launched,
we don’t observe a concentration of the jobs launched by a handful of users. The largest
takes about 5% of the total jobs launched during the period tracked, 1st of February
2011 to 17th of October 2012.

Cluster CEA-Curie
Num of jobs 312826
Num of users 582

Num of groups 305
Start Date 1/2/2011
End Date 17/10/2012

Total Nodes 5544
Total CPUs 93312

Table 3.17: Specification of the workload of CEA-Curie clean version 2 from Feitelson’s
repository [21].

Statistic Value (s)
Mean 8001.0
Std 56053.1
Min 0
25% 0
50% 4
75% 69
Max 7610035

Table 3.18: Wait time statistics summary of CEA-Curie cluster in seconds. 25% refers
to the first quartile, 50%, the median, and 75%, the third quartile.

Statistic Value
Mean 688.3
Std 4044.5
Min -1
25% 2
50% 32
75% 256
Max 79808

Table 3.19: Allocated CPUs statistics summary of CEA-Curie cluster. 25% refers to the
first quartile, 50%, the median, and 75%, the third quartile. -1 value is of either the job
was not scheduled or incomplete data.

CHAPTER 3. METHODS 31

Uid Total core runtime (%)
290 14.37
135 12.43
366 06.68
387 06.56
235 06.10
62 05.91
295 02.06
287 02.02
61 02.01
52 01.89
288 01.50
575 01.42
39 01.40
341 01.23
459 01.14

Table 3.22: Top consuming users in terms of core runtime with usage larger than 0.01 of
the total core runtime of the machine (which is 1.2839628e+10 CPU · s) on CEA-Curie.

Statistic Value (s)
Mean 6157.62
Std 17531.51
Min 0
25% 8
50% 124
75% 1540
Max 124615

Table 3.20: Runtime statistics summary of CEA-Curie cluster in seconds. 25% refers to
the first quartile, 50%, the median, and 75%, the third quartile.

Statistic Value (CPU · s)
Mean 4.104399e+06
Std 4.502056e+07
Min 0
25% 83
50% 3081
75% 1.264280e+05
Max 7.987086e+09

Table 3.21: Core runtime (CPU ·s) statistics summary of CEA-Curie cluster. 25% refers
to the first quartile, 50%, the median, and 75%, the third quartile.

Experimental Design

Since dynamic workloads have a longer window of execution than static, it allows us to
consider more than just 1 job submission. Hence, we can simulate how real workflows
behave, which are made of various jobs. We want to test the two elemental types of

CHAPTER 3. METHODS 32

Uid Total of jobs (%)
327 5.27
305 3.43
691 3.19
387 3.16
350 2.94
487 2.23
33 2.21
270 2.07
47 1.84
24 1.62
636 1.59
584 1.50
426 1.48

Uid Total of jobs (%)
556 1.44
290 1.35
619 1.35
609 1.29
344 1.29
549 1.28
235 1.26
518 1.26
510 1.14
375 1.10
555 1.03
423 1.02

Table 3.23: Top consuming users in total jobs with more than 0.01 of the total jobs
submitted to the machine (which is 3128.26) on CEA-Curie.

wrappers in their simplest form: a vertical one with at most a single dependency and
a horizontal with no dependencies, such as in figure 3.10. For the vertical case, we
consider 7 sequential jobs with 96 CPUs and 30 minutes of runtime which we impose
that the next one could only run after the current finishes, as seen in figure 3.7. For
horizontal, we consider 12 jobs each with 96 CPUs and 30 minutes of runtime which are
submitted at the same time, as seen in figure 3.8. These values are chosen because of
the CAMS’ dynamical core execution for validated reanalysis configuration, that with
96 CPUs takes about 30 minutes to finish. Then, the number of 7 vertical tasks and
12 horizontal task is chosen because they are within the normally used configuration
of wrapped values in the department which gave us a scenario that differentiated the
wrapped case from the unwrapped.

The simulator has no support for dynamic submission times, that is, only submit
the next job once its dependency is finished. We have to specify the submission time
on the workload file. Then, to minimize the waiting time of a constrained job – that is,
still waiting for its dependency – of building too much queue time – and increasing its
age factor –, we decide to put the submission of the vertical workflow as if they have
ran in their ideal time – e.g. the second job is submitted 30 minutes after the first one,
the third 60 minutes after the first one, and so on and so forth –. In image 3.7, we
have in the green boxes with a plus sign inside them, the waiting time of that particular
job if it was submitted as in real life Autosubmit. In orange, we have the simulator’s
time in queue as we include in the workload with the workflow. This image is done
analogously for the horizontal workflow in figure 3.8, with the exception that we don’t
have dependencies among jobs, then there are all submitted at the same time.

With this experiment, we aim to test the performance of aggregation for each ele-
mental type of wrappers, as we have seen in section 2.8. We choose the two simplest
workflows to simplify the experiment, depicted in image 3.10. For each of the two types
of workflows, we consider the unaggregated – or unwrapped – case, in which all the jobs
are launched individually, and the aggregated – or wrapped –, where we create a single
job grouping them all: in the case of the vertical workflow, that means a job of size
210 minutes and 96 CPUs, and in the case of horizontal, 1152 CPUs and runtime of 30
minutes.

Since not all portions of the workload yield simulated distressed enough scenarios

CHAPTER 3. METHODS 33

– that is, there were not enough jobs to have queues forming –, we do a prior analysis
of the trace to find the most congested portions of the log. We finally set on the week
10/6/2012 to 17/6/2012. Then, on this week, we submit the workload on Thursday
14th and Friday 15th on 3 different times: 10, 15 and 20. We label these moments
of submission on table 3.24 and, on figure 3.9, we plot those moments with respect to
the evolution of in use and in queue resources. In orange we plot the total requested
resources and in blue we plot the resources utilized. We observe two clear orange peaks
in the daily usage cycle, indicating the daily cycle of usage, and the blue line with a
hard bound in the total available CPUs, as in table 3.1. We see how it both utilization
and requested resources fall down during night time. In black vertical dashed lines we
have the each of the instants where the workflow will be submit.

Label Submission Instant
A.1 14/6/2012 at 10
A.2 14/6/2012 at 15
A.3 14/6/2012 at 20
B.1 15/6/2012 at 10
B.2 15/6/2012 at 15
B.3 15/6/2012 at 20

Table 3.24: Submission instants of the workflow and their label.

Here we only test two cases for the fair share. Either the workflow execution user
did not launch anything prior to the moment we chose for the workflow to start, which
means that the user has the best possible fair share factor, 1.0, or we set a phony first
job, which runs prior to the rest of the workload without interfering with it, in order to
surpass the usage of the most consuming user until the moment the workflow executing
user submits the first job. This means that the workflow executing user will have the
worst possible fair share. In this case, it makes for a fair share factor of 6.9e− 03.

Figure 3.7: Description of the setup of the vertical workflow. The green box with a plus
sign indicates the queue time if the job was launched after the end of the execution of
its dependency, whilst the yellow box with a minus sign indicates the queue time as in
our experiment setup.

CHAPTER 3. METHODS 34

Figure 3.8: Description of the setup of the launch of the horizontal workflow. The green
box with a plus sign indicates each individual job queue time.

CHAPTER 3. METHODS 35

Figure 3.9: In usage and queuing resources CEA-Curie. The vertical line indicate the
instant of submissions as per table 3.24.

Figure 3.10: Sample with three tasks, or jobs, of the two workflows we included in the
workload of CEA-Curie.

Chapter 4

Results

In this chapter we will analyse the results of the runs of both types of experiments: the
static, for the impact of the job attribute, and the dynamic, to see the performance of
wrappers on a long time horizon.

4.1 Job’s and User’s Attributes Impact

Each of the tables A.1, A.2, A.3, and A.4 are the runs with 30, 60, 120 and 210 minutes
of runtime of the job launched by the workflow executing user. The first column is the
number of CPUs allocated to the job, the following columns are the average, maximum,
and minimum across the 10 experiments for both the queue waiting time and priority
upon start of the execution.

We compute the correlation of the runtime, allocated CPUs with the average –
indicated with a overline –, maximum, and minimum of both the queue time, Tq, and the
priority upon starting, P , in table 4.1. We observe that the fair share is the dominant
factor on the waiting time. Moreover, we see the clear inverse correlation, of -0.87,
between the average wait time and fair share.

Additionally, in image 4.1 we plot the average wait time across all 10 experiments
for every job configuration in function of the fair share factor. In that figure we can see
that the wait time reduces in an exponential matter as we increase the fair share. For
that reason, we fit an exponential model with the following expression

f(x; a, b) = b · e−ax. (4.1)

In figure 4.3 we have the box plot of each of the configurations for a particular fair
share value. This plot synthesizes the spread of the results. We see that it has about
the same spread in between all job attributes.

For the lowest fair share factor we test, which was 0.01, we see that the average across
the 10 experiments is 304 seconds with the largest time in queue of 794 and the lowest
131 seconds. With maximum queue time for the 96 CPUs and runtime 3600 seconds.
For the 0.1 case, we observe a similar trend in terms of spread of across the different
configurations. Although we have a 900 seconds waiting time for the second largest job
in terms of core runtime: the 672 CPUs with 12600 seconds of execution time, which
follows the pattern of independence of wait time with both runtime and allocated CPUs.
For the subsequent fair share factors we observe an ever so increasing homogeneity, seen
that every box plot looks about the same, among all the job configurations, and the span
of value in the left axis decreases. Finally, all of configurations collapse onto 0 queue
time from a fair share from 0.5 on wards.

36

CHAPTER 4. RESULTS 37

We observe that the fair share is negatively correlated to the average waiting time,
meaning that the larger the fair share the lower is the waiting time and vice versa. On
the priority it is even more correlated, but unsurprisingly so, since jobs start executing
relatively fast, hence their age factor did not grow as much, and the fair share then
dominates quickly its share of the priority. We can check that by noticing that for 75%
of the jobs the number of allocated CPUs are less than 650 in table 3.12, which adds
to the priority about 18, as computed by equation 2.4, after multiplying by the weights
shown in table 3.2, and the largest wait time we observe is of about 900s which adds
104 onto the priority. Meanwhile, a fair share of just 0.01 adds to the priority 1000.

As for the priority, we observe how the fair share is almost completely positively
correlated with the average, maximum, and minimum priority. The rest of the factors,
allocated CPUs and runtime show no correlation whatsoever for average, maximum, and
minimum for both priority and wait time. Analogous to the wait time, we plot in figure
4.2 the average across all 10 experiments of the priority in function of fair share, for each
and every combination of allocated CPUs and runtime. There, we see how the priority
grows linearly with respect to the fair share, with the largest deviations in the low fair
share spectrum.

Analogous to the wait time, we plot box plots for each fixed fair share value in images
4.4 and 4.5. We observe a decrease in variability as we increase the fair share. In the
lower end of the values, at 0.1 notably, we observe how there are some configurations
which differ its distribution from the rest: 96 CPUs and 3600 runtime and 1152 CPUs
and 3600 runtime.

Tq max Tq min Tq P max P min P
Runtime 0.0048274 0.0229246 0 -0.0010371 0.0018034 -0.0001557
CPUs 0.0005572 -0.0161035 0 0.0012817 0.0062171 0.0002494
Fair share -0.8719868 -0.8379077 -0.8572271 0.9951687 0.9911172 0.9928968

Table 4.1: Correlation table of the job and user attributes with wait time and priority.
Tq is the time in queue and P is the priority upon start of the job. An overline indicates
the average across the 10 experiments and max and min are the maximum and minimum
observed of the particular quantity.

CHAPTER 4. RESULTS 38

Figure 4.1: Average of the waiting time across all experiments with respect to the fair
share value. Each line style is a number of CPUs allocated. Each color represents a
different runtime.

Figure 4.2: Average of the priority time across all experiments with respect to the fair
share value. Each line style is a number of CPUs allocated. Each color represents a
different runtime.

CHAPTER 4. RESULTS 39

Figure 4.3: Box plot of the wait time per fair share factor. Each box plot is a combination
of CPU and runtime. Green triangle indicates the arithmetic average.

CHAPTER 4. RESULTS 40

Figure 4.4: Box plot of the priority per fair share factor for values 0.01, 0.1, 0.2, 0.25, 0.3,
and 0.5. Each box plot is a combination of CPU and runtime. Green triangle indicates
the arithmetic average.

CHAPTER 4. RESULTS 41

Figure 4.5: Box plot of the priority per fair share for factors 0.7, 0.75, 0.8, and 0.9. Each
box plot is a combination of CPU and runtime. Green triangle indicates the arithmetic
average.

4.2 Dynamic Workload

As explained in subsection 3.3.2, in this section we are tracking a full workflow example
for each wrapper type: vertical and horizontal.

In tables 4.2 and 4.3 we show the total waiting time of the workflow per fair share
value and submission time. We also compute the relative improvement of the aggrega-
tion.

We see that, for the best fair share factor, wrapping never increases the waiting time
in both workflows: vertical and horizontal. In relative terms, we observe improvement
of up to 100% in the queue time, in the vertical workflow submitted in the in instant
A.2 in table 4.2, according to the labelling from table 3.24. But the best performing
in absolute terms was the horizontal wrapper submitted at the instant B.2 in table 4.3,
with a reduction of 1520 seconds in the queue time.

Under the worst fair share factor configuration, we observe that the vertical wrappers
in table 4.2 reduce substantially the waiting time, from relative improvements of up to
98 % in all but two submission moments: at instants A.1 and B.1, where we observe an
increase of at most 1.5 times. As for the horizontal workflow, we see that the wrapping
improved with various degrees relatively: 7 %, 21 %, and 97 % for the submissions at
instants A.1, A.2, B.1, and B.2. While both A.3 and B.3 instants show an increase in
the wait time of up to 10304 seconds in absolute values.

CHAPTER 4. RESULTS 42

Fair share Label Unwrapped Tq (s) Wrapped Tq (s) ∆ (s) Improvement (%)
1.0 A.1 0 0 0 0.00
1.0 A.2 134 4 130 97.01
1.0 A.3 0 0 0 0.00
1.0 B.1 0 0 0 0.00
1.0 B.2 221 0 221 100.00
1.0 B.3 0 0 0 0.00

6.9e-03 A.1 1047 1294 -247 -23.59
6.9e-03 A.2 249 8 241 96.79
6.9e-03 A.3 183 3 180 98.36
6.9e-03 B.1 291 416 -125 -42.95
6.9e-03 B.2 1323 167 1156 87.38
6.9e-03 B.3 5710 1504 4206 73.66

Table 4.2: Vertical workflow queue time results. Tq is the total time in queue of workflow.

Fair share Label Unwrapped Tq (s) Wrapped Tq (s) ∆ (s) Improvement (%)
1.0 A.1 0 0 0 0.00
1.0 A.2 126 65 61 48.41
1.0 A.3 0 0 0 0.00
1.0 B.1 0 0 0 0.00
1.0 B.2 1927 407 1520 78.88
1.0 B.3 0 0 0 0.00

6.9e-03 A.1 2453 2270 183 7.46
6.9e-03 A.2 557 435 122 21.90
6.9e-03 A.3 3 857 -854 -28466.67
6.9e-03 B.1 50 50 0 0.00
6.9e-03 B.2 9800 289 9511 97.05
6.9e-03 B.3 1265 11569 -10304 -814.54

Table 4.3: Horizontal workflow queue time results for dynamic workloads. Tq is the total
time in queue of workflow.

Chapter 5

Discussion

Having new data from consolidated systems was a prerequisite for proving that our
technique could decrease the time in queue of the execution of the overall workflow.
Unfortunately, at Feitelson’s repository [21] the machines available were either too old
or too small, i.e. few CPUs and/or used only by a handful of users, to be comparable with
machines in the same context as MareNostrum 4. What we saw is that most machines
in Feitelson’s repository were not constantly occupied as we see in the platforms we are
interested in, like the usage observed in figure 1.1.

In such conditions we had only three options: alter the workload, reduce the re-
sources of the simulated machine, or to increase the required resources of the workflow
in order to introduce artificially a distressed enough scenario. All three of them could be
equally criticised for granting the means for the thesis we want to prove. The importance
of workloads and their design is commented thoroughly in [18], where the author talks
about how not resembling reality leads to irrelevant results. So, in this work, we par-
ticularly rigorous with dealing with the data. We settled with a minimally cleaned by
Feitelson workload, from the CEA-Curie machine; fit distributions to the data as seen
in the LUMI supercomputer without any cleansing whatsoever of the trace; and, from
the workflow side, we used a typical workflow as run in the Earth Science department
of the BSC.

We tried to get newer data. We asked authors of [16] for the raw data of the workload
of their machine, Nurion, only to be declined under “security concerns”. Moreover, our
institution’s supercomputer, MareNostrum 4, does not have its data publicly available.
Hence, we had to settle with an old system, CEA-Curie and its low number of congested
moments.

LUMI, in the other hand, has only just entered into production. The machine was
available for users in the beginning of 2023. And, as one might expect from any flagship
in the bleeding edge of the technology, it is still receiving plenty of updates which
might cause instabilities in the operation and, hence, some anomalies in the workload.
Consequently, we ruled out the usage of it for the dynamic case, since the burstiness of
the job submissions may very well be larger than on a matured system like MareNostrum
4. There are plenty of users testing the system and porting their work. And, as for the
static workload, we used it with extreme caution since applications might be unstable
in the newer hardware.

As for our results, we believe that those submissions where the overall waiting time
increased with respect to the unaggregated case in tables 4.2 and 4.3 is due to the
interaction with the backfill scheduler. The longer – more runtime – or the wider –
more allocated CPUs – the job is, the harder it is to find a free spot for it that will
not bother the execution of the other ones [7]. As a result, there is a high variability

43

CHAPTER 5. DISCUSSION 44

depending on the current machine status. It could be that the machine just happened
to have a new spot available that could be opportunistically used by the submitted job,
which the aggregated case was too big to fit. This could explain the up to 7 hours more
of wait time of wrapped jobs compared to their unwrapped counterpart, as seen in the
submission on the B.3 submission instant for the horizontal workflow in table 4.3.

Also, our experiments were held under the simplified scenario of only a single QoS
and single partition, where we have that backfill is responsible for more than 80% of
the scheduling. In the other hand, backfilling in static workloads has to be analyzed
carefully. Since they have one instant where the jobs are submitted, the simulator’s
window of utilization is short. That is, the machine will run out of jobs to execute and,
consequently, empty itself. This impacts backfilling since if a job sits long enough in the
queue, as this static workload simulation progresses, it will be ever so more likely to find
a free spot. And that is in spite of the size in either dimension: CPU or runtime.

Moreover, when comparing the static and dynamic workloads, we have to bear in
mind that both results provide hints to what are the jobs characteristics that have more
impact. Static workload put the system on a short distressed environment, whereas the
dynamic follow a real usage with cyclic stressed and calm periods. In the latter case,
breaking the wrapper into the atomic jobs increases the odds of being backfilled. Even
if the workflow executing user has a low fair share of O(10−3).

Nevertheless, it was surprising to see the static workload’s independence of the wait-
ing time with respect to the allocated CPUs and runtime in table 4.1. We believe this
could be due to the static workloads myopic property with respect to the evolution of
the system, since there is no enough sustained usage on the machine.

Chapter 6

Conclusions

We conclude that aggregation, under the best fair share, does reduce the overall execution
time of the workflow. As we see in the dynamic workloads results in tables 4.2 and 4.3.
This is also supported by the static workload experiments, where we see an exponential
reduction of the wait time with respect to the fair share from 0.1 onwards, clearly
seen in figure 4.1. Under the worst fair share, aggregation benefit exceeds the eventual
underperformance on the vertical workflow case, seen in table 4.2. Where we don’t
conclude a better performance is for the horizontal workflow case.

Then, with these conclusions, and bearing in mind the objective of reducing the total
time of execution of the workflow, accounting for both runtime and queue time, we can
draw strategies to be implemented in Autosubmit – seen in section 2.7 –. If the user
the highest fair share, it should submit tasks aggregated and, if the user has a vertical
wrapper, we also recommend to use task aggregation – regardless of the fair share.

Some of our results do not follow our thesis, namely submissions at instant A.3
and B.3 of the horizontal workflow under the very worst fair share seen in table 4.3.
We expected the task aggregation to excel under such conditions, since it would save
multiple submissions with very low priority. However, the interplay of the backfill and
the quick increase in the fair share of the workflow executing user could be playing
a bigger role on the waiting time and would need additional attention that could be
subject of another study.

6.1 Future Work

In this area, experimenting is challenging. We have many different scenarios and plenty
of “what if”s which grow considerably as we try to image situations under which the
submission of a workflow might fall on. In the future, we can reduce the number of
experimentation by building an analytical model, one using queue theory [59] which
would allow us to have theoretical results and funnel the number of experiments with
the simulator.

For the simulation, we have simplified the submission to just one QoS and one
partition. System administrators are aware that Slurm benefits larger jobs, so it is
common, and recommended by Slurm developers, to configure more QoSs restricted only
to the small jobs. For reference, the largest weight factor for the priority in MareNostrum
4 is given to the QoS, 1e6. This was not taken into account in our analysis, small jobs
were submitted along side with the larger counterparts to the same QoS.

Different partitions are also growing in popularity among HPC centers. The era
of a single homogeneous partition with CPUs is over. The current flagship machines

45

CHAPTER 6. CONCLUSIONS 46

have different partitions for each technologies which users can take advantage of. As an
example, LUMI has a partition of GPUs that is composed of more nodes than the one
of pure CPUs. MareNostrum 5 [60] will have a similar setup, and also include other
accelerators. These added features will have an impact on the scheduler, since it will
have to account if the jobs require such features.

Aiming for better representations of the static workload, we could use a different
approach to model it. Instead of doing a job-centric, that is, first generating the job
allocated CPUs and runtime to then assign it to a user, we could invert this. Users in
HPC centers tend to have a discrete set of configurations that they use [26]. Hence, we
could first generate users and their usage pattern, and then draw for each of them the
jobs for the workload.

But still in the job-centric approach, in this work we just fitted a probability distri-
bution onto the allocated CPUs, without taking into account there are clusterings on
jobs that are power of 2 [26] [18]. In our data, when we compare the log-log plots from
the original job data, in figure 3.5, with the synthetic one, in figure 6.1, we notice how
the methodology is short of capturing this structure, that appears as clear vertical lines
with very few dots in between them. Besides improving the allocated CPUs, we could
extend our analysis and create dynamic synthetic workloads following the methodology
exposed in [19] to account for the inter-arrival time of jobs.

Additionally, Patel et al. [26] reported many trends on Mira and Intrepid. In the fu-
ture, we could collect data from LUMI again, certainly maturer and with less variability
to see if the user trends that they have reported still hold in the newer systems.

During the development of this work, we developed the builtin scheduler to be used
by the simulator. This would allow us to disable the backfill by having the second thread
2.2 try to schedule jobs with respect to the order in priority only, as seen in subsection
2.2.1. Unfortunately, our implementation behaved in unpredictable ways. Hence we
could validate our implementation in the same model as the BSC Slurm Simulator [23].

As for the workflow side, we could increase the number of tasks for longer workflows.
It is not uncommon to scientists in the Earth Science department of the BSC to run
workflows with more than 1000 tasks.

Finally, no analysis can be made without proper data. To address HPC center’s
reluctance to provide it, we could build a tool within Slurm that anonymizes in a rigorous
way called Differential Privacy [61]. These techniques are used to make private data
public in such a way that the aggregated is still useful, but without exposing a user’s
data. This concept is utilized by big technology companies [62] [63] [64] to process user
data.

CHAPTER 6. CONCLUSIONS 47

Figure 6.1: Scatter plot of the log allocated CPUs and log runtime of the static workloads
used here.

References

[1] Martina Klose et al. “Mineral dust cycle in the Multiscale Online Nonhydrostatic
AtmospheRe CHemistry model (MONARCH) version 2.0”. In: Geoscientific Model
Development 14.10 (2021), pp. 6403–6444.

[2] Benjamin P Abbott et al. “Full band all-sky search for periodic gravitational waves
in the O1 LIGO data”. In: Physical Review D 97.10 (2018), p. 102003.

[3] Mitchell R Vollger et al. “Increased mutation and gene conversion within human
segmental duplications”. In: Nature 617.7960 (2023), pp. 325–334.

[4] MareNostrum. url: https : / / www . bsc . es / marenostrum / marenostrum / mn1
(visited on 09/30/2023).

[5] The IBM100 - Blue Gene. url: https://www.ibm.com/ibm/history/ibm100/
us/en/icons/bluegene/ (visited on 09/30/2023).

[6] The K computer. url: https://www.riken.jp/en/collab/resources/kcomputer/
(visited on 09/30/2023).

[7] Srividya Srinivasan et al. “Selective reservation strategies for backfill job schedul-
ing”. In: Job Scheduling Strategies for Parallel Processing: 8th International Work-
shop, JSSPP 2002 Edinburgh, Scotland, UK, July 24, 2002 Revised Papers 8.
Springer. 2002, pp. 55–71.

[8] David Glesser, Yiannis Georgiou, and Denis Trystram. “Introducing Energy based
fair-share scheduling”. In: Slurm User Group Meeting 2014. Lugano, Switzerland,
2014. url: https://hal.science/hal-01102291.

[9] Emmanuel Jeannot, Guillaume Pallez, and Nicolas Vidal. “IO-aware Job-Scheduling:
Exploiting the Impacts of Workload Characterizations to select the Mapping Strat-
egy”. In: The International Journal of High Performance Computing Applications
(2023).

[10] Andy B Yoo, Morris A Jette, and Mark Grondona. “Slurm: Simple linux utility for
resource management”. In: Job Scheduling Strategies for Parallel Processing: 9th
International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003. Revised
Paper 9. Springer. 2003, pp. 44–60.

[11] url: https://www.bsc.es/marenostrum/marenostrum (visited on 09/29/2023).

[12] url: https://docs.lumi-supercomputer.eu/ (visited on 09/29/2023).

[13] url: https://www.dkrz.de/en/systems/hpc (visited on 09/29/2023).

[14] url: https://luxembourg.public.lu/en/invest/innovation/meluxina-
supercomputer.html (visited on 09/29/2023).

[15] Judy Kay and Piers Lauder. “A fair share scheduler”. In: Communications of the
ACM 31.1 (1988), pp. 44–55.

48

https://www.bsc.es/marenostrum/marenostrum/mn1
https://www.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/
https://www.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/
https://www.riken.jp/en/collab/resources/kcomputer/
https://hal.science/hal-01102291
https://www.bsc.es/marenostrum/marenostrum
https://docs.lumi-supercomputer.eu/
https://www.dkrz.de/en/systems/hpc
https://luxembourg.public.lu/en/invest/innovation/meluxina-supercomputer.html
https://luxembourg.public.lu/en/invest/innovation/meluxina-supercomputer.html

REFERENCES 49

[16] Ju-Won Park, Min-Woo Kwon, and Taeyoung Hong. “Queue congestion prediction
for large-scale high performance computing systems using a hidden Markov model”.
In: The Journal of Supercomputing 78.10 (2022), pp. 12202–12223.

[17] Allen B Downey. “Using queue time predictions for processor allocation”. In:
Job Scheduling Strategies for Parallel Processing: IPPS’97 Processing Workshop
Geneva, Switzerland, April 5, 1997 Proceedings 3. Springer. 1997, pp. 35–57.

[18] DG Feitelson. “Workload characterization and modeling book. Version 0.36”. In:
School of Computer Science and Engineering, The Hebrew University of Jerusalem
(2012).

[19] Walfredo Cirne and Francine Berman. “Adaptive selection of partition size for
supercomputer requests”. In: Job Scheduling Strategies for Parallel Processing:
IPDPS 2000 Workshop, JSSPP 2000 Cancun, Mexico, May 1, 2000 Proceedings
6. Springer. 2000, pp. 187–207.

[20] Steve J Chapin et al. “Benchmarks and standards for the evaluation of paral-
lel job schedulers”. In: Job Scheduling Strategies for Parallel Processing: IPP-
S/SPDP’99Workshop, JSSPP’99 San Juan, Puerto Rico, April 16, 1999 Proceed-
ings 5. Springer. 1999, pp. 67–90.

[21] D. G. Feitelson and D. Tsafrir. Logs of real parallel workloads from production
systems. Sept. 2019. url: https : / / www . cs . huji . ac . il / labs / parallel /
workload/logs.html (visited on 09/29/2023).

[22] Mario Acosta, Sergi Palomas, and Stella Paronuzzi. IS-ENES3 D4.3 - CPMIP
performance metrics and community advice. Dec. 2021. doi: 10.5281/zenodo.
6394049. url: https://doi.org/10.5281/zenodo.6394049.

[23] Marco D’Amico Ana Jokanovic and Julita Corbalan. “Evaluating SLURM Sim-
ulator with Real-Machine SLURM and Vice Versa”. In: Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS18)
At: ACM/IEEE Supercomputing 2018 (2018).

[24] Nikolay A Simakov et al. “A slurm simulator: Implementation and parametric anal-
ysis”. In: High Performance Computing Systems. Performance Modeling, Bench-
marking, and Simulation: 8th International Workshop, PMBS 2017, Denver, CO,
USA, November 13, 2017, Proceedings 8. Springer. 2018, pp. 197–217.

[25] Dirk Merkel. “Docker: lightweight linux containers for consistent development and
deployment”. In: Linux journal 2014.239 (2014), p. 2.

[26] Tirthak Patel et al. “Job characteristics on large-scale systems: long-term analy-
sis, quantification, and implications”. In: SC20: International conference for high
performance computing, networking, storage and analysis. IEEE. 2020, pp. 1–17.

[27] Nick Brown et al. “Predicting batch queue job wait times for informed scheduling
of urgent HPC workloads”. In: arXiv preprint arXiv:2204.13543 (2022).

[28] J. Kok Konjaang and Lina Xu. “Multi-objective workflow optimization strategy
(MOWOS) for cloud computing”. In: Journal of Cloud Computing 10.1 (Jan. 2021),
p. 11. issn: 2192-113X. doi: 10.1186/s13677-020-00219-1. url: https://doi.
org/10.1186/s13677-020-00219-1.

[29] SchedMD. Network Configuration Guide. Blog post. Nov. 2020. url: https://
slurm.schedmd.com/network.html (visited on 09/29/2023).

[30] Scheduling Configuration Guide. Jan. 2022. url: https://slurm.schedmd.com/
sched_config.html (visited on 09/29/2023).

https://www.cs.huji.ac.il/labs/parallel/workload/logs.html
https://www.cs.huji.ac.il/labs/parallel/workload/logs.html
https://doi.org/10.5281/zenodo.6394049
https://doi.org/10.5281/zenodo.6394049
https://doi.org/10.5281/zenodo.6394049
https://doi.org/10.1186/s13677-020-00219-1
https://doi.org/10.1186/s13677-020-00219-1
https://doi.org/10.1186/s13677-020-00219-1
https://slurm.schedmd.com/network.html
https://slurm.schedmd.com/network.html
https://slurm.schedmd.com/sched_config.html
https://slurm.schedmd.com/sched_config.html

REFERENCES 50

[31] Danny Dolev et al. “No Justified Complaints: On Fair Sharing of Multiple Re-
sources”. In: Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference. ITCS ’12. Cambridge, Massachusetts: Association for Computing Ma-
chinery, 2012, pp. 68–75. isbn: 9781450311151. doi: 10.1145/2090236.2090243.
url: https://doi.org/10.1145/2090236.2090243.

[32] Art Sedighi, Yuefan Deng, and Peng Zhang. “Fairness of task scheduling in high
performance computing environments”. In: Scalable Computing: Practice and Ex-
perience 15.3 (2014), pp. 271–288.

[33] SchedMD. Fair Tree Fairshare Algorithm. Blog post. Jan. 2019. url: https://
slurm.schedmd.com/fair_tree.html (visited on 09/29/2023).

[34] Dan Tsafrir, Yoav Etsion, and Dror G Feitelson. “Modeling user runtime esti-
mates”. In: Job Scheduling Strategies for Parallel Processing: 11th International
Workshop, JSSPP 2005, Cambridge, MA, USA, June 19, 2005, Revised Selected
Papers 11. Springer. 2005, pp. 1–35.

[35] Karim Baïna and Salah Baïna. “User experience-based evaluation of open source
workflow systems: The cases of Bonita, Activiti, jBPM, and Intalio”. In: 2013 3rd
International Symposium ISKO-Maghreb. 2013, pp. 1–8. doi: 10.1109/ISKO-
Maghreb.2013.6728122.

[36] R. Döscher et al. “The EC-Earth3 Earth system model for the Coupled Model In-
tercomparison Project 6”. In: Geoscientific Model Development 15.7 (2022), pp. 2973–
3020. doi: 10.5194/gmd-15-2973-2022. url: https://gmd.copernicus.org/
articles/15/2973/2022/.

[37] Günther Zängl et al. “The ICON (ICOsahedral Non-hydrostatic) modelling frame-
work of DWD and MPI-M: Description of the non-hydrostatic dynamical core”. In:
Quarterly Journal of the Royal Meteorological Society 141.687 (2015), pp. 563–579.

[38] Kristian Mogensen, Sarah Keeley, and Peter Towers. Coupling of the NEMO and
IFS models in a single executable. Vol. 10. ECMWF Reading, United Kingdom,
2012.

[39] Domingo Manubens-Gil et al. “Seamless management of ensemble climate pre-
diction experiments on HPC platforms”. In: 2016 International Conference on
High Performance Computing and Simulation (HPCS). 2016, pp. 895–900. doi:
10.1109/HPCSim.2016.7568429.

[40] Hilary J. Oliver, Matthew Shin, and Oliver Sanders. “Cylc: A Workflow Engine for
Cycling Systems”. In: Journal of Open Source Software 3.27 (2018), p. 737. doi:
10.21105/joss.00737. url: https://doi.org/10.21105/joss.00737.

[41] Ewa Deelman et al. “The Evolution of the Pegasus Workflow Management Soft-
ware”. In: Computing in Science & Engineering 21.4 (2019), pp. 22–36. doi: 10.
1109/MCSE.2019.2919690.

[42] Francesc Lordan et al. “Servicess: An interoperable programming framework for
the cloud”. In: Journal of grid computing 12 (2014), pp. 67–91.

[43] Felix Mölder et al. “Sustainable data analysis with Snakemake”. In: F1000Research
10 (2021).

[44] C. Pérez et al. “Atmospheric dust modeling from meso to global scales with the
online NMMB/BSC-Dust model”. In: Atmospheric Chemistry and Physics 11.24
(2011), pp. 13001–13027. doi: 10.5194/acp-11-13001-2011. url: https://acp.
copernicus.org/articles/11/13001/2011/.

https://doi.org/10.1145/2090236.2090243
https://doi.org/10.1145/2090236.2090243
https://slurm.schedmd.com/fair_tree.html
https://slurm.schedmd.com/fair_tree.html
https://doi.org/10.1109/ISKO-Maghreb.2013.6728122
https://doi.org/10.1109/ISKO-Maghreb.2013.6728122
https://doi.org/10.5194/gmd-15-2973-2022
https://gmd.copernicus.org/articles/15/2973/2022/
https://gmd.copernicus.org/articles/15/2973/2022/
https://doi.org/10.1109/HPCSim.2016.7568429
https://doi.org/10.21105/joss.00737
https://doi.org/10.21105/joss.00737
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.1109/MCSE.2019.2919690
https://doi.org/10.5194/acp-11-13001-2011
https://acp.copernicus.org/articles/11/13001/2011/
https://acp.copernicus.org/articles/11/13001/2011/

REFERENCES 51

[45] url: https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-
session-scheduler (visited on 09/29/2023).

[46] url: https://altair.com/pbs-professional (visited on 09/29/2023).

[47] url: https://gridscheduler.sourceforge.net/ (visited on 09/29/2023).

[48] url: https://software.fujitsu.com/jp/manual/manualfiles/m220008/
j2ul2452/02enz007/j2ul-2452-02enz0.pdf (visited on 09/29/2023).

[49] Andrea Manrique-Suñén et al. “Subseasonal predictions for climate services, a
recipe for operational implementation”. In: Climate Services 30 (2023), p. 100359.
issn: 2405-8807. doi: https://doi.org/10.1016/j.cliser.2023.100359. url:
https://www.sciencedirect.com/science/article/pii/S2405880723000201.

[50] Meteorological Archival and Retrieval System. url: https://www.ecmwf.int/
en / forecasts / access - forecasts / access - archive - datasets (visited on
10/04/2023).

[51] Raul Corredor Asenjo. Cirrus: el nuevo sistema de supercomputación de AEMET.
url: https://aemetblog.es/2021/04/27/cirrus-el-nuevo-sistema-de-
supercomputacion-de-aemet/ (visited on 09/29/2023).

[52] Destination Earth. url: https://destination-earth.eu/ (visited on 09/30/2023).

[53] Digital Twin Oceans. url: https://digitaltwinocean.mercator-ocean.eu/
(visited on 09/30/2023).

[54] European Eddy RIch Earth System Models. url: https://eerie-project.eu/
(visited on 09/30/2023).

[55] The pandas development team. pandas-dev/pandas: Pandas. Version latest. Feb.
2020. doi: 10.5281/zenodo.3509134. url: https://doi.org/10.5281/zenodo.
3509134.

[56] Wes McKinney. “Data Structures for Statistical Computing in Python”. In: Pro-
ceedings of the 9th Python in Science Conference. Ed. by Stéfan van der Walt and
Jarrod Millman. 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[57] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-
019-0686-2.

[58] P. Stoica and Y. Selen. “Model-order selection: a review of information criterion
rules”. In: IEEE Signal Processing Magazine 21.4 (2004), pp. 36–47. doi: 10.1109/
MSP.2004.1311138.

[59] Mor Harchol-Balter. Performance modeling and design of computer systems: queue-
ing theory in action. Cambridge University Press, 2013.

[60] Jordi Pérez Colomé. Llega El Supercomputador marenostrum 5, la mayor In-
versión Europea en una infraestructura científica en España. Sept. 2023. url:
https://elpais.com/tecnologia/2023-09-12/llega-el-supercomputador-
marenostrum- 5- la- mayor- inversion- europea- en- una- infraestructura-
cientifica-en-espana.html.

[61] Cynthia Dwork. “Differential Privacy: A Survey of Results”. In: Theory and Ap-
plications of Models of Computation. Ed. by Manindra Agrawal et al. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2008, pp. 1–19. isbn: 978-3-540-79228-4.

https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler
https://www.ibm.com/docs/en/spectrum-lsf/10.1.0?topic=lsf-session-scheduler
https://altair.com/pbs-professional
https://gridscheduler.sourceforge.net/
https://software.fujitsu.com/jp/manual/manualfiles/m220008/j2ul2452/02enz007/j2ul-2452-02enz0.pdf
https://software.fujitsu.com/jp/manual/manualfiles/m220008/j2ul2452/02enz007/j2ul-2452-02enz0.pdf
https://doi.org/https://doi.org/10.1016/j.cliser.2023.100359
https://www.sciencedirect.com/science/article/pii/S2405880723000201
https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets
https://www.ecmwf.int/en/forecasts/access-forecasts/access-archive-datasets
https://aemetblog.es/2021/04/27/cirrus-el-nuevo-sistema-de-supercomputacion-de-aemet/
https://aemetblog.es/2021/04/27/cirrus-el-nuevo-sistema-de-supercomputacion-de-aemet/
https://destination-earth.eu/
https://digitaltwinocean.mercator-ocean.eu/
https://eerie-project.eu/
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MSP.2004.1311138
https://doi.org/10.1109/MSP.2004.1311138
https://elpais.com/tecnologia/2023-09-12/llega-el-supercomputador-marenostrum-5-la-mayor-inversion-europea-en-una-infraestructura-cientifica-en-espana.html
https://elpais.com/tecnologia/2023-09-12/llega-el-supercomputador-marenostrum-5-la-mayor-inversion-europea-en-una-infraestructura-cientifica-en-espana.html
https://elpais.com/tecnologia/2023-09-12/llega-el-supercomputador-marenostrum-5-la-mayor-inversion-europea-en-una-infraestructura-cientifica-en-espana.html

REFERENCES 52

[62] Sarah Bird. Putting differential privacy into practice to use data responsibly. Blog
post. url: https://blogs.microsoft.com/ai-for-business/differential-
privacy/ (visited on 09/29/2023).

[63] Apple Inc. Differential Privacy. Tech. rep. Apple Inc., Feb. 2017. url: https://
www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf (visited
on 09/29/2023).

[64] Meta Platforms Inc. The value of differential privacy. Blog post. url: https:
//privacytech.fb.com/differential-privacy/ (visited on 09/29/2023).

https://blogs.microsoft.com/ai-for-business/differential-privacy/
https://blogs.microsoft.com/ai-for-business/differential-privacy/
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf
https://privacytech.fb.com/differential-privacy/
https://privacytech.fb.com/differential-privacy/

Appendix A

Full Static Workloads Tables

CPUs Fair share Tq (s) max Tq (s) min Tq (s) P max P min P

96 0.01 304.3 507 131 22315.0 33725 13886
96 0.1 310.4 568 131 28769.5 31751 25788
96 0.2 157.9 306 70 30318.3 34678 24771
96 0.25 103.0 141 60 35460.3 41601 31700
96 0.3 66.4 123 9 40406.6 45555 34665
96 0.5 0.0 0 0 60729.0 61389 60399
96 0.7 0.0 0 0 77891.0 79211 77231
96 0.75 0.0 0 0 81521.0 82181 80201
96 0.8 0.0 0 0 86142.0 87132 85152
96 0.9 0.0 0 0 92742.0 93072 92082
192 0.01 304.3 507 131 22020.1 31746 13888
192 0.1 292.1 507 131 28767.5 31747 25788
192 0.2 157.9 306 70 30319.9 34679 24773
192 0.25 109.1 184 60 35165.8 41603 29723
192 0.3 66.4 123 9 40210.5 45557 34667
192 0.5 0.0 0 0 60896.0 61391 60401
192 0.7 0.0 0 0 77893.0 79213 77233
192 0.75 0.0 0 0 81523.0 82183 80203
192 0.8 0.0 0 0 86143.3 87134 85153
192 0.9 0.0 0 0 92744.0 93074 92084
384 0.01 298.2 568 131 20935.2 28787 13893
384 0.1 304.3 507 131 28773.5 31752 25795
384 0.2 145.7 202 70 30125.8 34685 24778
384 0.25 109.1 184 60 35170.9 41608 29728
384 0.3 66.4 123 9 39819.5 47542 34672
384 0.5 0.0 0 0 60901.0 61396 60406
384 0.7 0.0 0 0 77898.0 79218 77238
384 0.75 0.0 0 0 81528.0 82188 80208
384 0.8 0.0 0 0 86149.0 87139 85159
384 0.9 0.0 0 0 92749.0 93079 92089
672 0.01 304.3 507 131 22232.1 31760 13902
672 0.1 292.1 507 131 28782.5 31761 25804
672 0.2 145.7 202 70 30035.7 34694 24787
672 0.25 109.1 184 60 35575.9 44587 29737
672 0.3 66.4 123 9 40323.5 47551 34681

53

APPENDIX A. FULL STATIC WORKLOADS TABLES 54

672 0.5 0.0 0 0 60910.0 61405 60415
672 0.7 0.0 0 0 77907.0 79227 77247
672 0.75 0.0 0 0 81537.0 82197 80217
672 0.8 0.0 0 0 86158.0 87148 85168
672 0.9 0.0 0 0 92758.0 93088 92098
1152 0.01 304.3 507 131 22244.6 31773 13915
1152 0.1 292.1 507 131 28794.5 31773 25816
1152 0.2 145.7 202 70 29751.3 34706 24799
1152 0.25 109.1 184 60 35687.3 45590 29749
1152 0.3 66.4 123 9 40038.8 47563 34693
1152 0.5 0.0 0 0 60922.5 61418 60427
1152 0.7 0.0 0 0 77919.0 79239 77259
1152 0.75 0.0 0 0 81549.7 82210 80229
1152 0.8 0.0 0 0 86170.0 87160 85180
1152 0.9 0.0 0 0 92771.0 93101 92111

Table A.1: LUMI static experiment results with 1800 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top of the symbol
indicates average over the 10 different workloads generated.

CPUs Fair share Tq (s) max Tq (s) min Tq (s) P max P min P

96 0.01 328.7 794 131 23010.7 36726 13886
96 0.1 286.0 568 131 29760.0 33732 25788
96 0.2 151.8 245 70 31109.6 44586 24771
96 0.25 109.1 184 60 35460.9 44571 29721
96 0.3 66.4 123 9 40208.5 45555 34665
96 0.5 0.0 0 0 61059.0 62379 60399
96 0.7 0.0 0 0 77891.0 79211 77231
96 0.75 0.0 0 0 81521.0 82181 80201
96 0.8 0.0 0 0 86142.0 87132 85152
96 0.9 0.0 0 0 92742.0 93072 92082
192 0.01 316.5 672 131 22219.2 32754 13888
192 0.1 298.2 568 131 28771.0 31753 25789
192 0.2 145.7 202 70 30021.6 34679 24773
192 0.25 109.1 184 60 35859.1 44574 29723
192 0.3 66.4 123 9 40507.4 47537 34666
192 0.5 0.0 0 0 60896.0 61391 60401
192 0.7 0.0 0 0 77893.0 79213 77233
192 0.75 0.0 0 0 81523.0 82183 80203
192 0.8 0.0 0 0 86143.3 87134 85153
192 0.9 0.0 0 0 92744.0 93074 92084
384 0.01 310.4 507 131 22223.8 32739 13893
384 0.1 304.3 568 131 28776.5 31758 25795
384 0.2 157.9 306 70 30325.4 34685 24778
384 0.25 109.1 184 60 35567.0 44578 29728
384 0.3 66.4 123 9 39819.5 45562 34672
384 0.5 0.0 0 0 60901.0 61396 60406
384 0.7 0.0 0 0 77898.0 79218 77238
384 0.75 0.0 0 0 81528.0 82188 80208

APPENDIX A. FULL STATIC WORKLOADS TABLES 55

384 0.8 0.0 0 0 86149.0 87139 85159
384 0.9 0.0 0 0 92749.0 93079 92089
672 0.01 310.4 611 131 22133.9 36723 13902
672 0.1 328.7 794 131 34726.5 37692 31761
672 0.2 145.7 202 70 30134.8 34694 24787
672 0.25 115.2 245 60 36467.7 44587 31716
672 0.3 66.4 123 9 39927.5 48541 34681
672 0.5 0.0 0 0 60745.0 61405 60415
672 0.7 0.0 0 0 77907.0 79227 77247
672 0.75 0.0 0 0 81537.0 82197 80217
672 0.8 0.0 0 0 86158.0 87148 85168
672 0.9 0.0 0 0 92758.0 93088 92098
1152 0.01 322.6 568 131 23236.8 34746 13915
1152 0.1 310.4 568 131 29293.5 34751 23836
1152 0.2 151.8 245 70 30840.9 45604 24799
1152 0.25 109.1 184 60 35588.5 44600 29750
1152 0.3 60.3 80 9 40137.1 45583 34693
1152 0.5 0.0 0 0 60922.5 61418 60427
1152 0.7 0.0 0 0 77919.0 79239 77259
1152 0.75 0.0 0 0 81549.7 82210 80229
1152 0.8 0.0 0 0 86170.0 87160 85180
1152 0.9 0.0 0 0 92771.0 93101 92111

Table A.2: LUMI static experiment results with 3600 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top of the symbol
indicates average over the 10 different workloads generated.

CPUs Fair share Tq (s) max Tq (s) min Tq (s) P max P min P

96 0.01 304.3 568 131 21820.0 32732 13886
96 0.1 334.8 855 131 28766.0 31744 25788
96 0.2 145.7 202 70 30316.7 34678 25760
96 0.25 103.0 141 60 35757.4 44571 29721
96 0.3 66.4 123 9 39812.5 45554 34665
96 0.5 0.0 0 0 60729.0 61389 60399
96 0.7 0.0 0 0 77891.0 79211 77231
96 0.75 0.0 0 0 81521.0 82181 80201
96 0.8 0.0 0 0 86142.0 87132 85152
96 0.9 0.0 0 0 92742.0 93072 92082
192 0.01 292.1 568 131 21325.5 29773 13888
192 0.1 292.1 507 131 28768.5 31747 25790
192 0.2 157.9 306 70 30022.9 34679 24773
192 0.25 103.0 141 60 35462.2 45563 29723
192 0.3 66.4 123 9 40111.3 45556 34666
192 0.5 0.0 0 0 60896.0 61391 60401
192 0.7 0.0 0 0 77893.0 79213 77233
192 0.75 0.0 0 0 81523.0 82183 80203
192 0.8 0.0 0 0 86143.3 87134 85153
192 0.9 0.0 0 0 92744.0 93074 92084
384 0.01 310.4 672 131 21332.7 34741 13893

APPENDIX A. FULL STATIC WORKLOADS TABLES 56

384 0.1 322.6 672 131 27787.0 29779 25795
384 0.2 157.9 306 70 30226.3 34685 24778
384 0.25 109.1 184 60 35864.2 44579 29728
384 0.3 66.4 123 9 39918.5 45562 34672
384 0.5 0.0 0 0 60901.0 61396 60406
384 0.7 0.0 0 0 77898.0 79218 77238
384 0.75 0.0 0 0 81528.0 82188 80208
384 0.8 0.0 0 0 86149.0 87139 85159
384 0.9 0.0 0 0 92749.0 93079 92089
672 0.01 316.5 507 131 22530.4 34728 13902
672 0.1 316.5 672 131 28782.5 31761 25804
672 0.2 145.7 202 70 29837.8 34694 24787
672 0.25 115.2 245 60 35279.6 41617 29737
672 0.3 66.4 123 9 39828.4 45571 34680
672 0.5 0.0 0 0 60745.0 61405 60415
672 0.7 0.0 0 0 77907.0 79227 77247
672 0.75 0.0 0 0 81537.0 82197 80217
672 0.8 0.0 0 0 86158.0 87148 85168
672 0.9 0.0 0 0 93088.0 94078 92098
1152 0.01 316.5 550 131 22741.1 34746 13915
1152 0.1 310.4 507 131 29784.5 31773 27796
1152 0.2 145.7 202 70 30048.2 34706 24799
1152 0.25 103.0 184 60 35587.8 44600 29750
1152 0.3 66.4 123 9 40138.1 47563 34693
1152 0.5 0.0 0 0 60922.5 61418 60427
1152 0.7 0.0 0 0 77919.0 79239 77259
1152 0.75 0.0 0 0 81549.7 82210 80229
1152 0.8 0.0 0 0 86170.0 87160 85180
1152 0.9 0.0 0 0 92771.0 93101 92111

Table A.3: LUMI static experiment results with 7200 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top of the symbol
indicates average over the 10 different workloads generated.

CPUs Fair share Tq (s) max Tq (s) min Tq (s) P max P min P

96 0.01 292.1 507 131 22115.6 31744 13886
96 0.1 304.3 550 131 28766.0 31744 25788
96 0.2 145.7 202 70 30514.9 36650 24771
96 0.25 115.2 245 60 35956.7 44571 29721
96 0.3 66.4 123 9 40109.5 45555 34665
96 0.5 0.0 0 0 60729.0 61389 60399
96 0.7 0.0 0 0 77891.0 79211 77231
96 0.75 0.0 0 0 81521.0 82181 80201
96 0.8 0.0 0 0 86142.0 87132 85152
96 0.9 0.0 0 0 92742.0 93072 92082
192 0.01 316.5 611 131 21427.5 32749 13888
192 0.1 316.5 611 131 28772.0 31754 25790
192 0.2 151.8 245 70 31408.2 45578 24773
192 0.25 109.1 184 60 35660.8 41603 31702

APPENDIX A. FULL STATIC WORKLOADS TABLES 57

192 0.3 66.4 123 9 40309.4 45557 34666
192 0.5 0.0 0 0 60896.0 61391 60401
192 0.7 0.0 0 0 77893.0 79213 77233
192 0.75 0.0 0 0 81523.0 82183 80203
192 0.8 0.0 0 0 86143.3 87134 85153
192 0.9 0.0 0 0 92744.0 93074 92084
384 0.01 304.3 550 131 22520.4 32747 13893
384 0.1 304.3 568 131 28282.0 30769 25795
384 0.2 151.8 245 70 31116.6 45583 24778
384 0.25 115.2 245 60 35567.7 44578 29728
384 0.3 66.4 123 9 39819.7 45562 34672
384 0.5 0.0 0 0 60901.0 61396 60406
384 0.7 0.0 0 0 77898.0 79218 77238
384 0.75 0.0 0 0 81528.0 82188 80208
384 0.8 0.0 0 0 86149.0 87139 85159
384 0.9 0.0 0 0 92749.0 93079 92089
672 0.01 292.1 568 131 21438.6 29787 13902
672 0.1 359.2 916 131 27300.5 28797 25804
672 0.2 157.9 306 70 30532.2 37664 24787
672 0.25 109.1 184 60 35972.2 44588 30727
672 0.3 66.4 123 9 40521.5 46561 34681
672 0.5 0.0 0 0 60910.0 61405 60415
672 0.7 0.0 0 0 77907.0 79227 77247
672 0.75 0.0 0 0 81537.0 82197 80217
672 0.8 0.0 0 0 86158.0 87148 85168
672 0.9 0.0 0 0 92758.0 93088 92098
1152 0.01 292.1 568 131 21451.2 31780 13915
1152 0.1 304.3 507 131 28794.0 31772 25816
1152 0.2 157.9 306 70 30643.6 38667 24799
1152 0.25 109.1 184 60 35489.5 44600 29750
1152 0.3 66.4 123 9 39840.8 45583 34693
1152 0.5 0.0 0 0 60922.5 61418 60427
1152 0.7 0.0 0 0 77919.0 79239 77259
1152 0.75 0.0 0 0 81549.7 82210 80229
1152 0.8 0.0 0 0 86500.0 87160 85180
1152 0.9 0.0 0 0 92771.0 93101 92111

Table A.4: LUMI static experiment results with 12600 seconds of runtime. Tq is the
time in queue and P is the priority upon start time. The overline on top of the symbol
indicates average over the 10 different workloads generated.

	Glossary
	Acronyms
	Introduction
	Motivation
	Objective
	Contribution

	Background
	Related Work
	Slurm Scheduler
	Scheduling Loop of Slurm

	Job Priority
	Fair share factor
	Workloads
	Static Workloads
	Dynamic Workloads

	Computational Workflows
	Autosubmit
	Wrappers

	Methods
	Software Stack
	Slurm simulator
	Standard Workload Format tool

	Slurm configuration
	Workloads
	Static
	Dynamic

	Results
	Job's and User's Attributes Impact
	Dynamic Workload

	Discussion
	Conclusions
	Future Work

	Full Static Workloads Tables

