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Abstract: This study assesses the effectiveness of various downscaling methods applied to multi-
model decadal predictions in the Southern African Development Community (SADC). These fore-
casts combine decadal predictions from the 13 forecast systems contributing to the Decadal Climate
Prediction Project Component A (DCPP-A), one of the components of the Coupled Model Inter-
comparison Project Phase 6 (CMIP6). This work focuses on mean near-surface air temperature and
precipitation for the forecast years 1-5. The performance of the different downscaling methods is
determined by comparing their forecast quality against raw, coarser-resolution predictions by means
of the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) coefficient, which
ranks them. It has been found that the ranking primarily depends on the calibration or linear
regression approaches, with little differences resulting from the tested interpolation methods. For
both variables, the 4 nearest neighbors linear regression method provides the highest skill. However,
the outcomes of the additional downscaling process vary between temperature and precipitation.
For instance, applying specific downscaling methods for temperature improves skill compared to
raw predictions in some areas (i.e. the highest quality is achieved by correcting the mean value and
variance, or by correcting just the mean value). For predictions of precipitation, the basic linear
regression returns the highest forecast quality, outperforming the rest of techniques, such as simple
bias correction and simple interpolation.

I. INTRODUCTION

Until recently, climate projections were the only source
of information to estimate climate evolution in the com-
ing years and decades. Nowadays, there is another source
of climate information aiming to predict the evolution of
the climate system from 1 to 10 years ahead: decadal cli-
mate predictions (Dunstone et al. 2020). Whereas both
climate projections and decadal predictions contain infor-
mation about external forcings, their main difference is
that decadal predictions also include information on the
phase of the internal climate variability (Delgado-Torres
et al. 2022, Doblas-Reyes et al. 2013, Smith et al. 2019).

In order to incorporate the predictability provided by
this internal climate variability, climate models are ini-
tialized once per year with observation-based products,
known as initial conditions (Hazeleger et al. 2013, Smith
et al. 2013). The goal of this initialization process is
to incorporate other sources of predictability that have
a slow evolution, such as changes in ocean state or at-
mospheric composition (Boer 2011, Doblas-Reyes et al.
2013). Consequently, by incorporating information about
the current climate state, the initialization process aligns
the phase of the predictions with observations.

This process is also conducted for previous decades,
obtaining a set of past predictions known as hindcasts.
These hindcasts are essential tools for estimating fore-
cast quality and determining its usability and value for
decision-making in climate-dependent sectors such as
agriculture (Solaraju-Murali et al. 2021), renewable en-
ergy (Bruno Soares et al. 2018) and water management
(Paxian et al. 2019). The estimation of the forecast qual-

ity is achieved by comparing the hindcasts with observa-
tions to determine how well the model has performed in
predicting past conditions.

However, climate predictions are also impacted by dif-
ferent kinds of errors as, for example, by inaccuracies in
the initial conditions, which arise due to observational
uncertainty (Slingo and Palmer 2011). To account for
these errors, the ensemble approach is used, which in-
volves producing multiple predictions with slight per-
turbations in the initial conditions, known as ensemble
members. This approach provides different paths for the
evolution of the climate system and, hence, it gives an
estimate on the uncertainty associated with the predic-
tions.

Another source of error is the uncertainty inherent to
the models themselves, stemming from the inadequate
representation of the climate system, the use of approx-
imate mathematical techniques to solve physical equa-
tions, and the systematic errors present in all forecasting
systems. For instance, one of this errors is the model’s
drift, which occurs when the system is initialized with
initial conditions that deviate from the model’s preferred
state, and the forecasts gradually progress towards that
state (Boer et al. 2016). In that case, to minimize the
impact of these model-specific errors, a multi-model ap-
proach can be used. This approach is expected to provide
higher-quality predictions due to: (i) the cancellation of
errors between models, (ii) increased ensemble size, and
(iii) the signal that each model adds to the ensemble
(DelSole and Tippett 2014).

Beyond merely serving as a tool to evaluate model
skill, hindcasts play a critical role in identifying these
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systematic errors, also known as model biases. Recog-
nizing these biases is vital as it enables the application of
bias adjustment and calibration techniques, which par-
tially correct these errors and, thus, improve the model’s
overall accuracy. These adjustments ensure the statisti-
cal parameters of the predictions, such as the mean and
variance, to be more similar to the observed values, im-
proving their potential applicability (Doblas-Reyes et al.
2005, Dunstone et al. 2020).

Additionally, since producing decadal predictions is
very computationally expensive, models are often run
at a lower resolution than what might be optimal for
user-specific needs. For instance, a grid point may not
entirely represent a specific location if there are features
like mountains and valleys within that same grid cell. To
overcome this limitation, downscaling methods can be
applied to increase the resolution of the predictions and,
therefore, provide users with regional information better
suited for their local decision-making frameworks.

Currently, two main types of downscaling approaches
exist: dynamic and statistical (Gutierrez et al. 2013).
Dynamical downscaling involves running at higher-
resolution climate models to simulate local processes
(Keller et al. 2022). In contrast, statistical downscaling,
which we have used in this work, uses different statistical
techniques to increase the resolution of the raw model
output, thereby providing regional information of future
climate (Fowler et al. 2007).
Considering all these aspects, this work seeks to

evaluate and compare different post-processing meth-
ods to improve the performance and resolution of
decadal forecasts for the Southern African Development
Community (SADC) within the FOCUS-Africa project
(https://focus-africaproject.eu/). This project aims to
develop tailored climate services in the SADC region to
adapt to the impacts of climate variability and change.
Particularly, one of its key objectives is to evaluate the
forecast quality, and analyze and compare various cal-
ibration and downscaling techniques in order to iden-
tify which ones are the most effective. These methods
will then be applied to case studies for different climate-
vulnerable sectors to ensure the delivery of the highest
quality climate services possible for regional decision-
making. In addition, up to our best knowledge, there is
no study systematically analyzing the performance of dif-
ferent calibration and downscaling methods for decadal
predictions over Africa.

II. DATA

In this study, we have utilized decadal predictions from
the Decadal Climate Prediction Project Component A
(DCPP-A; Boer et al. (2016)) of the Coupled Model In-
tercomparison Project Phase 6 (CMIP6; Eyring et al.
(2016)), which provides the latest and most comprehen-
sive set of hindcasts resulting from a collaborative effort
involving global climate modeling centers. The charac-

teristics and information of these forecast systems is pre-
sented in S1. This work employs these hindcasts to ana-
lyze and understand the skill of these systems in predict-
ing climate variability at decadal time scale.
In order to evaluate the skill of raw and downscaled

predictions, we have used the high-resolution ERA5land
reanalysis (Muñoz Sabater et al. 2021) as the reference
dataset. This reanalysis has been chosen due to its high
spatial resolution (0.1◦, which corresponds to 11.1 km in
the equator).
The variables considered are the mean near-surface air

temperature, mean precipitation and three extreme in-
dices based on daily minimum and maximum tempera-
ture and precipitation (TN10p, TX90p, R95p). TN10p
corresponds to the yearly percentage of days when min-
imum temperature is below the 10th daily percentile;
TX90p, provides the annual percentage of days when
maximum temperature is above the 90th daily percentile;
and R95p, gives the annual sum of precipitation in days
where daily PR exceeds the 95th percentile of daily pre-
cipitation (Zhang et al. 2011). The evaluation period
ranges from 1961 to 2014 for two forecast periods: one
year (start dates 1960-2013), and years 1-5 (start dates
1960-2009). Nevertheless, given the length constraints
and in the interest of conciseness, we will focus our dis-
cussion on the main outcomes for precipitation and tem-
perature for the forecast years 1-5.

III. METHODOLOGY

In this section, we describe the different post-
processing techniques that have been applied to the
decadal forecasts with the aim to increase their potential
usability by the end-users. The first step consisted on set-
ting up a multi-model with all the different decadal mod-
els and ensembles. On this regard, we first brought all
the models to the same common resolution. Thus, con-
sidering that the coarsest model was the CanESM5 with
2.8◦, all the models have been interpolated to that resolu-
tion before assembling the multi-model. Afterwards, we
have built the multi-model using the multi-model-mean
approach, assigning equal weight to every model regard-
less of its number of members. This choice was based on
the similarity of results obtained with other multi-model
approaches (Delgado-Torres et al. 2022).
After that, we have applied different downscaling ap-

proaches to the multi-model in order to bring the predic-
tions to the ERA5land resolution (0.1◦). All these com-
putations have been done in cross-validation, that is, ex-
cluding data from the specific year under post-processing
to avoid overfitting and, consequently, the overestimation
of the actual skill. The downscaling methods applied are
the following:

1. Interpolation: this approach is widely employed to
obtain higher resolution grids by estimating their
values from the coarser grid cells. We have selected
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five interpolation methods: two conservative vari-
ants (first and second order), bilinear, bicubic, and
nearest neighbor. Since spatial interpolation can be
understood as a kind of zero-order downscaling, it
has been used as a benchmark for evaluating more
advanced downscaling approaches (Schoof 2013).

2. Interpolation plus bias adjustment: this method in-
volves combining the initial interpolation with dif-
ferent calibration techniques: simple bias adjust-
ment, which corrects the mean value (Leung et al.
1999); bias adjustment (EVMOS; (Van Schaey-
broeck and Vannitsem 2011)), that rectifies the
mean value and the variance; Mean Square Er-
ror minimization (MSE-min; (Doblas-Reyes et al.
2005)), that corrects the mean value, the variance
and the spread (using two parameters); Continu-
ous Ranked Probability Skill minimization (CRPS;
Gneiting and Raftery (2005)), that uses three pa-
rameters to do the correction; and ratio predictable
components (RPC-based calibration; Eade et al.
(2014)), which aims to increase the signal-to-noise
ratio. In addition, quantile mapping has been
also applied for precipitation. This technique ad-
justs simulated data by matching the percentiles of
observed and simulated distributions (Fang et al.
2015).

3. Interpolation plus linear regression: this approach
integrates both interpolation and linear regression
in the downscaling process. Two distinct method-
ologies have been compared for the linear regres-
sion step. The first method utilizes high-resolution
observations as predictands and the interpolated
model as the predictor (for the same variable). The
second method, known as the 4 nearest neighbors
approach, implements linear regression with the
four nearest neighbors as predictors, while high-
resolution observations serve as predictands (Wilby
and Wigley 1997).

4. Analogs: this method looks for fields with similar
conditions to the one being predicted in the refer-
ence large-scale historical dataset (at the coarser
resolution). Once the date for the best past analog
is identified, then the high-resolution reference field
is retrieved as the predicted one. This approach
is known as perfect prognosis because it assumes
that the model has the same behaviour as the ref-
erence(Wu et al. 2012).

Due to these combinations, 37 methods have been com-
pared for temperature and 42 for precipitation. These
comparisons have been conducted with four metrics (two
deterministic and two probabilistic. For determinis-
tic predictions, we have used the Anomaly Correlation
Coefficient (ACC;Wilks (2011)), which ranges from -
1 (indicating total inverse correlation) to 1 (indicating
perfect correlation) and the Root Mean Squared Error

Skill Score (RMSSS; Murphy (1988)); whereas for prob-
abilistic predictions, the Ranked Probability Skill Score
(RPSS; Wilks (2011)) for tercile categories (i.e. below-
normal, normal and above normal) and the Continuous
Ranked Probability Skill Score (CRPSS; Wilks (2011)).
The skill scores have been chosen to assess the skill of

the model in comparison to a reference forecast. Skill
scores range from -infinite to 1, with positive values in-
dicating better performance of the forecast than the ref-
erence forecast, meaning the opposite otherwise. In this
study, the climatological forecast is used as the reference
forecast because it is the most readily available for the
users. For the deterministic evaluation, the climatologi-
cal forecast is defined as no anomaly while, for the prob-
abilistic evaluation, it is defined identical likelihood for
all categories (i.e., probability of 33.3% for each tercile).
Regarding the statistical significance of the results, a

one-sided t-test has been applied to assess if ACC values
significantly differ from zero at the 95% confidence level
(Wilks 2011). The significance of RMSSS and RPSS has
been evaluated using the one-sided Random Walk Test
applied to RMSE and RPS time series (DelSole and Tip-
pett 2014). This test determines if the frequency of one
forecast outperforming the other is significant at a 95%
confidence level, focusing solely on the number of occur-
rences rather than the skill score value.
To summarize all the skill estimates obtained with

the different metrics and facilitate the choice of the best
overall approach, the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS; Hwang et al.
(1981)) has been used. TOPSIS determines a relative
score of the downscaling methods compared to the ideal
value by normalizing all the considered metrics in a com-
mon ranking. The normalization of each metric is con-
ducted on the basis of its ideal value, which is the high-
est value of the metric for that group of methods. For
instance, if a downscaling technique obtains an average
ACC value of 0.8, being the highest among all the other
ACC values, it is considered the ideal value.

IV. RESULTS AND DISCUSSION

In this study we have evaluated the forecast quality
of around 40 downscaling strategies (37 for temperature-
based variables and 42 for precipitation) in the SADC re-
gion, for five different variables (i.e. mean temperature,
mean precipitation, cold extremes, hot extremes and pre-
cipitation extremes) and two forecast periods (forecast
year 1 and years 1-5), using four different verification
metrics (ACC, RMSSS, RPSS, CRPSS) and the TOPSIS
coefficient. However, only a set of results are presented in
this paper due to space limitations: those for mean tem-
perature and precipitation for forecast years 1-5 (showing
TOPSIS and ACC in the main text, and the RPSS in the
Annexes). The rest of the results are available in the R
Shiny App (https://earth.bsc.es/shiny/smoreno/).
First, the results obtained using TOPSIS for tempera-
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(a) (b)

Figure 1: TOPSIS coefficient results for mean temperature for all the downscaling methods. The five types of
interpolations performed, along with the respective calibrations are displayed in (a). The results without

downscaling and the two methods which do not employ any interpolation (4 nearest neighbors linear regression and
analogs) are shown in (b).

(a) (b)

Figure 2: As Figure 1, but for precipitation.

ture and precipitation are presented in Figures 1 and 2,
respectively. The higher skill obtained for temperature
than precipitation showed in TOPSIS coefficients is in
accordance with previous studies (Delgado-Torres et al.
2022, Smith et al. 2019).

Despite the discrepancies between variables, some sim-
ilar patterns can be observed in the TOPSIS coefficients.
For both variables, the values obtained for the same
type of calibration, which appear in the same column
of Figures 1b and 2b, are very similar for all interpola-

tion methods, with slight differences in value across rows.
These small differences indicate that the type of calibra-
tion applied carries more importance in the TOPSIS co-
efficient than the interpolation method employed. This is
in consistent with the results obtained for each interpo-
lation type using the same calibration, which show very
small differences among them.

Turning to the spatial distribution of the ACC and
percentage of grid points showing statistically significant
correlation values for temperature predictions, they are
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Figure 3: ACC obtained for temperature with no interpolation (a) and using different interpolation methods (b-f)
for forecast years 1-5. The results are obtained comparing them with ERA5land reanalysis data. Additionally, the
results obtained without downscaling is shown. The percentage of significant grid points is displayed in the subtitles.

Points with no significant skill are shaded.

Figure 4: As Figure 3, but for precipitation

very similar for all interpolation methods (shown in Fig-
ure 3 ordered according to the TOPSIS value). The ar-
eas where the multi-model exhibits skill after applying
the interpolation follow a spatial distribution similar to
that observed without downscaling. However, the per-
centage of significant points for this particular metric

and TOPSIS coefficients reveal that downscaling meth-
ods employing only interpolation on the observation grid
show higher skill compared to the large-scale reference
resolution.

This behavior observed for temperature interpolations
is also evident in the case of precipitation. The differ-

Treball de Fi de Master 5 Barcelona, July 2023



A Comparative Analysis of Multi-Model and Downscaled Decadal Climate Predictions
over the Southern African Development Community Sara Moreno Montes

Figure 5: (a) ACC obtained for temperature for forecast years 1-5 with no downscaling; (b-j) using nearest neighbor
interpolation for the downscaling methods. The reference dataset is ERA5land reanalysis. Additionally, the results
obtained without downscaling are shown. The percentage of significant grid points is displayed in the subtitles.

Points with no significant skill are shaded.

ent interpolation methods shown in Figure 4 exhibit a
similar spatial distribution of areas with significant skill,
as well as a comparable percentage of significant corre-
lation values. Besides, Figure 2 shows that all of them
obtain a higher TOPSIS coefficient than the reference
values without downscaling.

The comparison of interpolation techniques (including
the ones analyzed in this paper) has been already con-
ducted in numerous works. For instance, Hossain et al.
(2021) compared the five interpolation methods discussed
in this study, among others, for monthly precipitation
over Australia. Their results are in line with those pre-
sented here, indicating that all the interpolation methods
exhibited similar skill and regional distribution. How-
ever, further work is needed to see whether these results
are also applicable to other regions or variables.

Due to the small differences observed between inter-
polation methods, the results are presented solely based
on the interpolation method that most often yields the
best outcomes: the nearest neighbor method for both
variables. Therefore, the visual comparison of the results

from now onwards is only provided with this interpo-
lation technique. It is worth noting, nevertheless, that
although nearest neighbor interpolation may not provide
the absolute best results for all the calibrations (e.g., for
temperature RPC-based calibration, bilinear interpola-
tion performs better than the nearest neighbor; Figure
1b), the observed differences in TOPSIS are minimal.
According to the TOPSIS coefficient values (Figures 1a

and 2a), the 4 nearest neighbors linear regression method
provides the highest skill estimates for both variables,
yielding a perfect TOPSIS coefficient.
If we focus separately for each variable, there are also

other methods that provide higher skill than the raw
predictions for both variables. For temperature, for ex-
ample, calibration-based methods adjusting the bias and
the variance yield better results than predictions with-
out any downscaling applied (with the CRPS, EVMOS,
and MSE-min calibration methods providing the highest
skill). Moreover, the analogs method has also delivered
remarkably favorable outcomes in this context.
The ACC obtained for each method, filtered only for
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Figure 6: As Figure 5, but for precipitation.

the nearest neighbor interpolation, including analogs and
4 nearest neighbors linear regression along with the ref-
erence value without downscaling, are shown in Figure
5, ordered according to the obtained TOPSIS coefficient.
Firstly, it is important to emphasize that, since TOPSIS
combines information from the four metrics, the ranking
according to TOPSIS in this figure may not correspond
to the ranking of methods based solely on the ACC.

As for the interpolations, the skill distribution maps
for ACC exhibit a spatial pattern similar to the reference
map without downscaling. For this particular metric, all
methods show high skill in the central part of the con-
sidered regions and nearly all coastal areas. Nonetheless,
this is not the case for the inland regions in the south-
ern and northern parts of the SADC, where all methods
exhibit low prediction quality. This decrease of quality
is even more pronounced for cases involving RPC-based
calibration (Figure 5h), due to the nature of this method
(Eade et al. 2014). RPC-based calibration focuses on
correcting the signal-to-noise ratio for values that exhibit
skill. When the original skill is not statistically signifi-
cant, it directly replaces it with the climatology value,
resulting in a metric score of -1. The same behaviour
is manifested for skill distribution of the RPSS metric,

shown in the Annexes in Figure S2.
Until now, only a limited number of studies have been

conducted on downscaling methods of decadal climate
predictions. Therefore, it is not straightforward to di-
rectly compare the results obtained in this study with
any equivalent findings. Nonetheless, similar investiga-
tions have been carried out at the seasonal temporal
scale, revealing consistent behavioral patterns. For in-
stance, a work by Manzanas et al. (2018) for downscal-
ing seasonal temperature predictions in Europe observed
that the analogs and linear regression methods without
interpolation added skill to the results without affect-
ing their spatial distribution. Likewise, Alfonso Hernanz
(2021) demonstrated that these two methods enhanced
the skill of the raw model output for seasonal predictions
in Spain. This behaviour is similar to the one obtained
here, where the analogs method and the 4 nearest neigh-
bors linear regression have obtained high TOPSIS values
without showing any differential skill distribution at re-
gional level (Figures 5b and 5f).
For precipitation predictions, many of the downscaling

methods return lower skill than the non-downscaled pre-
dictions (Figure 2). However, in addition to the 4 nearest
neighbors linear regression, some other techniques such
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as basic linear regression, simple bias adjustment and
CRPS calibration provide higher skill than the raw pre-
dictions. In particular, the use of interpolation alone
provides higher skill than when additionally applying cal-
ibrations. Nevertheless, calibration is a necessary step in
a decision-making context as it improves the reliability
and correct the statistical properties of the predictions
for them to be more similar to the observations (Doblas-
Reyes et al. 2005).

The results obtained for the ACC for precipitation with
the different downscaling methods using only the near-
est neighbor interpolation, the reference value without
downscaling, and the two methods that do not use in-
terpolation are displayed in Figure 6, ranked from best
to worst. It can be seen that the spatial distribution
of areas showing skill is very similar to that of the raw
predictions for most of methods. Despite maintaining a
similar spatial distribution, the original results already
had limited skill throughout the region, and this skill is
further reduced for almost all of the methods employed.
This behaviour is also shown in Figure S2, where the
RPSS distribution for precipitation is similar to the raw
predictions for almost all the methods.

Nevertheless, in the two methods that show the high-
est skill (i.e. 4 nearest neighbors linear regression and
interpolation with basic linear regression; Figures 6b and
6c, respectively), a particular behaviour is displayed: the
central area of SADC region, which originally had neg-
ative skill before downscaling for both metrics (Figures
6a and S2a), shows a significantly positive skill. The ex-
ceptional performance of these methods in this certain
area can be attributed to the ability of the downscal-
ing method to correct specific characteristics of the pre-
dictions. Figure S3 in the Annexes shows the temporal
evolution of precipitation anomalies in a specific location
within this region (longitude 20◦E, latitude 1◦N), com-
paring the results obtained using the 4 nearest neighbors
linear regression method with those without downscaling
and with observed time series (for the individual mod-
els and the multi-model). The comparison reveals the
remarkable performance of the downscaling method for
the multi-model, overcoming the raw predictions.

In the case of the RPC-based calibration method, it
yields remarkable results with highly negative values in
many areas of the map (Figure 6j), reaching ACC values
close to -1, which is due to the nature of this method as
it replaces the original grid points that do not show skill
with the climatology.

In line with temperature, there is limited research on
downscaling for decadal climate predictions of precipi-
tation. Nonetheless, a recent study conducted by Pax-
ian et al. (2022) focused on downscaling decadal pre-
dictions of precipitation in Germany using a combina-
tion of analogs and linear regression, showing promis-
ing outcomes. Consistent with these findings, our study
also highlights the effectiveness of linear regression-based
methods, which have exhibited notable skill improve-
ments when applying downscaling. Other studies have

been conducted on downscaling seasonal predictions of
precipitation. For example, Tabari et al. (2021) have ex-
plored the use of simple bias adjustment as a downscaling
method, yielding comparable outcomes to those obtained
in our study.
It is worth noting that there are potential sources of

error associated with statistical downscaling methods.
First, these methods assume the stationarity of the re-
lationship between predictors and predictands. How-
ever, in the context of climate change, non-stationarity
behaviours become a significant concern (Fowler et al.
2007). Second, the accuracy of the downscaled results
depends on the quality and limitations of climate models
used for deriving the large-scale predictors. If the models
produce inaccurate predictions, it can impact the quality
of the downscaled outputs. Therefore, careful selection
of variables and the choice of an appropriate statistical
methodology play a vital role. Simple linear models can
yield misleading conclusions by generating artificial lin-
ear relationships between predictors and predictands.

V. CONCLUSIONS

In this work we have carried out a forecast quality as-
sessment of downscaled decadal predictions for the SADC
region using all available decadal predictions from the
forecast systems contributing to CMIP6/DCPP-A. This
has been achieved upon a multi-model approach com-
bining the predictions from 13 different forecast systems.
This evaluation has been applied for the forecast years 1
and 1-5 for two essential climate variables: near-surface
air temperature and precipitation, and three extreme in-
dices based on daily minimum and maximum tempera-
ture and precipitation (TN10p, TX90p and R95p). The
forecast quality has been assessed from two viewpoints:
one, deterministic, through the ACC and RMSSS and
the other, probabilistic, with the RPSS and CRPSS. On
the other hand, the raw multi-model has been set as
the benchmark to help us identify the potential improve-
ments the downscaling methods could bring.
The results obtained vary depending on the variable,

region and forecast period considered. However, both
variables (temperature and precipitation) show similar
behaviours for some characteristics. In the two cases,
for example, the choice of the interpolation method does
not remarkably impact the forecast quality and the rank-
ing depends on the calibration or linear regression tech-
niques. Besides, regarding the selection of the best
method through the TOPSIS coefficient, 4 nearest neigh-
bors linear regression provides the highest skill results for
both variables.
In addition to this method, for temperature, although

the overall skill distribution across the region generally
remains similar to the raw forecasts, it is noteworthy that
some areas show a moderate enhancement in skill, pre-
sumably due to the application of specific downscaling
techniques. These improvements in skill seem to be pos-
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sible when adjustments are made to both the mean value
and the variance in the model output, when the CRPS
calibration is applied, or when the Mean Squared Error-
minimization (MSE-min) method is employed. Addition-
ally, the use of the analogs method has also shown po-
tential for achieving reasonably high forecast quality, al-
though further exploration is necessary to confirm these
preliminary observations.

When considering precipitation predictions, both the 4
nearest neighbors method and the basic linear regression
have shown a good transition from the coarse resolution
to the finer one, maintaining the performance or even in-
creasing it in some areas and forecast periods. This is
also true, but not equally general, for simple bias correc-
tion and interpolation-only approaches.

In summary, this research establishes an initial bench-
mark for future research in the SADC area, fostering fur-
ther exploration and analysis in the field of multi-model
downscaling of decadal predictions. In terms of future
work, we aim to extend the boundaries of this research
by examining additional downscaling techniques and in-
corporating an expanded range of variables and forecast
periods (some of these are already included in the R
Shiny App, https://earth.bsc.es/shiny/smoreno/). The
ultimate objective of these efforts is the publication of a
manuscript based on this study.
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APPENDIX

Forecast system Institution DCPP members Spatial resolution Initialization month Reference

BCC-CSM2-MR BCC 8 1.125°x 1.125° January (Wu et al. 2019)

CanESM5 CCCma 20 2.8°x 2.8° January (Swart et al. 2019)

CMCC-CM2-SR5 CMCC 10 0.9°x 1.25° November (Nicol̀ı et al. 2023)

EC.Earth-i1 BSC 10 0.7°x 0.7° November (Döscher et al. 2022)

EC-Earth-i2 SMHI/DMI 5 0.7°x 0.7° November (Döscher et al. 2022)

EC-Earth-i4 BSC 10 0.7°x 0.7° November (Döscher et al. 2022)

HadGEM3-GC3.1-MM MOHC 10 0.55°x 0.83° November (Sellar et al. 2020)

IPSL-CM6A-LR IPSL 10 1.25 °x 2.5 ° January (Boucher et al. 2020)

MIROC6 MIROC 10 1.4°x 1.4° November (Tatebe et al. 2019)

MPI-ESM1.2-HR DWD 10 0.9°x 0.9° November (Müller et al. 2018)

MRI-ESM2-0 MRI 10 1.125°x 1.125° November (Yukimoto et al. 2019)

NorCPM1-i1 NCC 10 1.9°x 2.5° October (Bethke et al. 2021)

NorCPM1-i2 NCC 10 1.9°x 2.5° October (Bethke et al. 2021)

Table S1: Forecast systems that contribute to the DCPP-A component of CMIP6 and their specifications, including
the available simulations at the time of the study and the atmospheric grid’s spatial resolution (latitude x longitude).

Fig. S1: As Figure 5, but for the RPSS.
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Fig. S2: As Figure 6, but for the RPSS.

Fig. S3: Precipitation anomaly temporal evolution from observations, downscaled data using 4 nearest neighbors
linear regression and data without downscaling for longitude 20◦E and latitude 1◦N. Thick lines represent the

multi-model values while thin lines represent each model values individually.
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