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Abstract

Earth System Models (ESMs) are complex models used to simulate the Earth climate and
are commonly built from different independent components that simulate a specific nat-
ural phenomenon (ocean dynamics, atmospheric dynamics, atmospheric chemistry, land
and ocean biosphere, etc.). To simulate the interactions between these processes, ESMs
use coupling libraries that manage the synchronization and field exchanges between the
independent components, running in parallel in a typical Multi Program, Multiple Data
(MPMD) application. The performance achieved depends on the coupling approach,
and on the number of parallel resources and scalability properties of each component.
Finding the best number of resources to use for each component of coupled ESMs is
crucial to use the parallel resources efficiently. However, it is still a task involving man-
ually testing multiple process allocations by trial and error, leading to configurations
that are sub-optimal given that the dependencies between the constituents are complex
and models do not scale perfectly. This project presents a methodology to find the
optimal number of resources to allocate for each component to achieve the best compu-
tational performance for the coupled ESM, minimizing the cost of executing each of the
constituents, which may not run at individual optimal configurations, and the waiting
time due to the synchronizations between them. To achieve this, a number of novel
metrics were designed and implemented in order to identify the component(s) acting
as a bottleneck(s) and to evaluate the performance of the coupled execution according
to different Energy-To-Solution (ETS) / Time-To-Solution (TTS) tradeoff criteria. The
methodology has been tested against multiple resource configurations used for the widely
known ESM in Europe: EC-Earth3. The results show that some configurations could
run up to 34% faster and reduce the execution cost by 6.7%. Moreover, the method has
been contrasted against a configuration used for the Coupled Model Intercomparison
Project Phase 6 (CMIP6)) and achieved a set-up 5% faster and 1% less costly. Lastly,
the work has been integrated into a workflow manager to automatize the tasks, involving
minimum user intervention.
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Chapter 1

Introduction

Coupled General Circulation Models (CGCMs) have been used to simulate the Earth
system since the late 1960s (Manabe S. et.al [1]) including numerical codes simulating
the atmosphere, the ocean, the land surface and the sea ice. The standard constituents
of a CGCM model are an Atmospheric General Circulation Model (AGCM) including
a land surface model coupled to an Oceanic General Circulation Model (OGCM) incor-
porating a sea-ice model. Developing climate CGCMs that are capable of simulating
the Earth system over a wide range of spatial and temporal scales is one of the main
objectives of the World Climate Research Programme (WCRP) of the World Meteo-
rological Organisation (WMO), aiming to "facilitate analysis and prediction of Earth
system variability and change for use in an increasing range of practical applications of
direct relevance, benefit and value to society"1.

To facilitate and improve the quality of the analysis and prediction, the scientific
community organized the Coupled Model Intercomparison Project (CMIP), started 20
years ago as a comparison of coupled climate models. These models are used to run
experiments using atmosphere components coupled to a dynamic ocean, a simple land
surface, and thermodynamic sea-ice (Eyring V. et al. [2]). Throughout the years, it has
evolved over 6 phases into a major international multi-model research activity that has
become crucial for the climate science research and for the national and international
assessments of climate change. In the latest phase, the Coupled Model Intercompari-
son Project Phase 6 (CMIP6) comprised 23 individually designed Earth System Models
(ESMs) (Gerald A. et al. [3]). The total amount of output from CMIP6 was estimated to
be between 20 and 40 petabytes of experiments with various resolutions and configura-
tions. Accounting only for the production runs, almost 240000 years were simulated, as
shown by a collection of the computational performance metrics of various institutions
and models by Acosta M. et al. [4].

The scientific community acknowledges that climate models need to evolve to be
more complete, accurate and complex. As simulating more features of the Earth system
has shown to improve the usefulness of climate models, more components have gradually
been included to simulate more natural climate phenomena (e.g., atmospheric chemistry,
marine biology, the carbon cycle). However, the introduction of more components also
implies more complexity. Given the nature of the underlying physics, components within
the system have to interact via coupling and the more components, the more complex
will be the coupling.

These kinds of simulations using different components are known as coupled ESMs.
There are different approaches when it comes to the design of the coupling process.

1http://www.wcrp-climate.org/mission.shtml
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10 CHAPTER 1. INTRODUCTION

Often, multiple individually developed codes are executed concurrently and synchronized
during the runtime to exchange fields with the others. This kind of applications are
computationally known as Multi Program, Multiple Data (MPMD) and components
executed in parallel can use different parallel paradigms such as MPI to take advantage
of the computational resources of HPC machines.

Achieving a good performance of coupled ESMs is a difficult task. MPMD appli-
cations are made of multiple independent codes, each one having its own performance
issues and parallelism characteristics. Additionally, the grids used can be very differ-
ent between the components and extra computation and even serialization is needed to
interpolate (regrid) the data, reducing the overall parallel efficiency. One of the most
problematic issues that coupled ESMs introduce is the load imbalance. Coordination
among components is required to exchange coupling fields, which means that faster com-
ponents have to wait for the slower ones before continuing their own execution. All the
computing resources given to a component that has to wait will be idle. Minimizing
this waiting time (or rather the cost of this idle processes) is known as load-balancing
the coupled ESM. Finding the best resource configuration is a non-trivial process that
involves: analyse the individual components speedup at different processor counts, study
the interaction between them during the coupling and make compromises between the
cost and time to execute the coupled ESM.



Chapter 2

Related work

ESMs are among the most challenging applications that run on HPC platforms. The
difficulties that they present now and for the upcoming generation of models (with even
higher resolutions and data intensity) and machines (exascale computing) are addressed
by André J. et al. 2014 [5], Cappello F. et al. [6], Attig N. et al. [7], Reed D. and
Dongarra J. [8], and Wehner et al. [9]. On the current generation of new machines, ESMs
have been able to show only modest performance gains as shown by Balaji V. et al. in
[10]. One of the main factors that limit ESMs performance is the load-imbalance. Valcke
S. et al [11] have shown that most of the climate and weather applications used in a wide
range of institutions are set to run multiple individual components in parallel, and the
interactions between them are handled by a coupler. There are two different approaches
to couple different components: using an "external coupler or coupling library", and
the "integrated coupling framework" [12]. In the first approach, the component models
remain as separate executables and the original codes are modified as little as possible.
The code of the component models is instrumented with calls to the coupling library
API and the synchronization of the components is implicitly ensured by the algorithm
of the coupling exchanges. The communication, regridding and other transformations
on the coupling fields are done either directly by the coupling library or by a subset of
processes especially allocated for the coupler to do the work. OASIS [13], MCT [14],
C-Coupler [15], and YAC [16] are some examples. The integrated coupling framework
approach involves splitting the original component codes into initialize, run and finalize
units. Adapting them to standard data structures, routine interfaces and rebuilding a
single integrated application based on these units. The coupler layer is in charge to call
the different component and coupling units and controls their execution. Some examples
are the Factorial snowpack model (FSM) [17], the Earth System Modeling Framework
(ESMF) [18] and Cpl7 [19].

One model using integrated coupling framework approach is EC-Earth3 [20], a global
ESM used in multiple institutions in Europe which uses the OASIS3-MCT coupling li-
brary to control the information sent and received by the constituents. In this context,
different components are synchronized during their execution and faster components
have to wait for the slower ones. Trying to find a combination of processors that mini-
mizes the cost of having dependencies between components is known as load-balancing
an ESM. Load-balance algorithms can be divided in dynamic load balancing, where the
load-imbalance is minimized during the runtime, and static load-balancing, where the
process involves stopping and rerunning the model execution to find resource configu-
rations that minimize the coupling cost. Most of the literature focuses on solving the
load-imbalance dynamically. But it is not a feasible solution for big ESMs which are
constituted by individual models written and maintained by different institutions in the

11
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short term, given that the source code of this type of ESMs can not be freely modified
and the coordination to apply malleability to all of the constituents would take too much
effort. This is why in these circumstances, static solutions are preferred.

To deal with the load-balance problem "dynamically" some scientists have explored
the possibility of reallocating the processes on which an application runs during its exe-
cution. A property known as malleability [21]. Vadhiyar and Dongarra developed SRS
[22], a framework that allows a parallel application to reconfigure the number of processes
that it uses by stopping and restarting its execution using checkpoints. Maghraoui et
al. [23, 24] implemented malleability integrating the Internet operating system (IOS),
a framework for middleware-driven dynamic application reconfiguration, to the PCM
(process checkpointing and migration) library. This approach proves the usefulness of
malleability to deal with the load-balance problem using the PCM/IOS framework. But
while they allow to reconfigure the processes on which an MPI application runs, the
overhead of checkpointing and resuming the execution is too high. Another example of
dealing with the load-balance issue "dynamically" by taking profit of the malleability of
the constituents is the load balance manager (LBM) module, which has been developed
in the Malleable Model Coupling Toolkit (MMCT) by Kim D. et al. [25]. MMCT is an
extension of MCT (Model Coupling Toolkit, Larson J. et al. [14]) that supports dynamic
load balance in parallel coupled models. It consists of MCT, LBM and a dynamic process
and communicator management system. The LBM decomposes the time of each compo-
nent during a coupled interval (CI, interval after which the coupled system has evolved)
as constituent computation and constituent coupling. The LBM will tag components
as donor (the fastest constituent) or recipient (the slowest constituent) and will keep
reallocating the Processing Elements (PEs) away from the first to the second at each
coupling interval until the solution stops improving. However, the solution converges too
slowly to be used in production. Kim D. et al. [26] proposed an improvement for LBM
consisting of a Predictive load-balancing algorithm. After each CI, the constituent time
and number of resources used are stored into a file. After some iterations, the LBM is
able to predict the constituent time using N processors by reading its constituent record.
Finally, it uses that value for all constituents to predict the CI execution time under a
particular resource configuration. This method was extended by Kim D. et al. [27] to
support coupled models that have changing loads during the execution. Lastly, Kim et
al. [28] enhanced the performance predictor by instrumenting each model and obtaining
the timing and interaction information automatically. Then, the predictor can relate
CI execution time with the execution time of each individual model and guide the PEs
reallocation automatically. However, the results are very sensitive to the timings that
are captured during the runtime, which are taken for a very short execution period (a
single CI). It is well known that applications running in HPC machines will have some
degree of variability and it is better to record the performance of an application running
in tens or hundreds of nodes during long simulations and, preferably, replicating the
measures. Furthermore, the proposed method is based on the ability of changing the
number of processes that a constituent uses during the runtime, a feature accessible only
if the models are ported to MMCT. Furthermore, it has only been tested in toy models
and not in big ESMs such as EC-Earth3.

Another approach for the load-balance problem was proposed by Alexeev Y. et al.
[29], Nan D. et al. [30] and Hongliang et al. [31] to avoid manually setting the number
of processes for each component of the Community Earth System Model (CESM) by
formulating the problem as a mixed-integer nonlinear optimization problem. The com-
ponent, layout and process count (integer) are the decision variables, and the component
running time is a nonlinear function of the process count. Their scheduling is based in
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the fact that CESM coupling approach allows components to be executed sequentially in
the same processors, which is done as subroutines instead of independent binaries with a
static number of resources during the whole run. Furthermore, the predictions are based
on performance models and not from instrumenting and running "real" simulations.

Although the examples presented previously are considered as dynamical solutions
according to the state of the art, it is important to highlight that they are static solutions
at the end. In these previous examples, the new number of resources is changed after
localizing the optimal by getting the performance metrics during the runtime. However,
a real dynamical solution should be able to change and load balance the work along
all the iterations of a complete simulation, using other kind of approaches as tasks,
an option that has been explored in the Dynamic Load Balance1 library developed at
the Barcelona Supercomputing Centre (BSC). This library has been used to speedup
hybrid parallel applications and maximise the utilization of computational resources. It
improves the load-balance of hybrid applications managing the number of threads in
the shared memory level. One of its modules, Lend When Idle (LeWI) has been used
to reassign computation resources of blocked processes to other processes more loaded
successfully on MPI+OpenMP and MPI+SMPSs hybrid applications by Garcia M. et al.
in [32, 33]. This could not only be used to deal with the coupled load-balance problem,
but also to solve imbalances inside the tasks within a component. Although this is
a promising option to be explored in the future, it can not be considered as the only
solution. It is not possible to ensure that an ESM will use a parallelization paradigm
suitable for tasks (such as OpenMP). Additionally, the work done until now using the
Dynamic Load Balance library with hybrid MPI+OpenMPI parallelization proves that
the library has room for improvement and it is not ready for operational applications as
the ESM under study in this work.

On the other hand, there are the static solutions. An example of dealing with
the load-balance statically for an ESM was shown by Will A. et al. in [34] for the
COSMO-CLM regional climate model. This model uses OASIS3-MCT to couple the
land surface models, Mediterranean, North and Baltic seas models, and the MPI-ESM
Earth system model. The LUCIA tool was used to find the optimum processor count for
each component considering the Time-To-Solution (TTS), computing cost and parallel
efficiency of the simulation. They stated that given a number or PEs, the coupled TTS
is minimized if all components have the same execution time. Which ensure that there is
no load imbalance (no idle cores during the simulation). The method consisted on, once
a proportion of PEs per component that minimized the coupling cost was found, double
the resources for each component (and doing some re-distributing if necessary) until one
of the components reaches a limit of 50% of parallel efficiency. Although this seems
to be a good solution at first (actually it is the most adopted one by the earth system
community), in this work we will show that running all the constituents at the same
speed can lead to sub-optimal solutions. Furthermore, there is no value that can be used
as a threshold for the parallel efficiency that ensures optimality given the heterogeneity
of models and platforms.

For EC-Earth3, the ESM under analysis in this work, Acosta M. et al. showed
in [35] the performance issues due to the coupling. Identified some caveats with the
LUCIA metrics that difficult the task of load-balancing the atmospheric and oceanic
coupled configurations and demonstrated that the coupling time can be very high when
conservation methods are used in the coupler.

Performance metrics are crucial when evaluating how models of such complexity run

1https://pm.bsc.es/dlb

https://pm.bsc.es/dlb


14 CHAPTER 2. RELATED WORK

on HPC machines. Traditional metrics, like the floating-point operations per second,
are not fully representative for multi-physics models like the ones related to climate and
weather forecasting. Balaji V. et al. [36] also showed that a single performance metric is
insufficient given the heterogeneity of ESMs, proposing the Computational Performance
Model Intercomparison Project (CPMIP) metrics, which are a collection of metrics uni-
versally available, representative of the performance under "real" conditions (not under
ideal conditions nor from subsets of the code), which can cover data and computational
load and are easy to collect. One of the metrics to evaluate the load-imbalance is the
coupling cost. We have reformulated this metric to, instead of giving the overall exe-
cution cost loss due to coupling events, provide how much each component adds to the
coupling cost (the Partial coupling cost). This metric will help to identify which is the
component acting as a bottleneck in coupled ESMs. The Energy-Delay Product (EDP)
was a metric proposed by Gonzalez R. et al. [37] to evaluate the time/energy trade-off
on general purpose microprocessors. In the HPC field, the EDP metric is still used al-
though the naming can be different: Abdulsalam S. et al. called it Powerup in [38] and
Yepes-Arbós X. et al. [39] named it as "Performance-efficiency compromise". In this
work we introduce the Fitness metric (FN): a parametrizable performance metric that
allows to find different optimal solutions (number of processes to allocate) depending on
the selected Energy-To-Solution (ETS) / TTS tradeoff criteria.



Chapter 3

Problem to solve, objectives and
approach proposed

The load-imbalance is known to be one of the main factors limiting the performance of
coupled ESMs. While some works have proposed to deal with the problem by reallocat-
ing the resources during the run (dynamic load-balance), they are not suitable for many
ESMs since malleability is currently not an option. Therefore, the optimal resource con-
figuration has to be found by manual approaches using static load-balancing. Without
a methodology to minimise the load-imbalance and a set of metrics designed to evaluate
and understand the performance of coupled ESMs, the best possible solution can not
be found. One of the most widespread approaches is to find a resource configuration
in which all components run at the same speed, expecting that this method will reduce
the waiting time to synchronize the models to the minimum. This, however, can lead to
suboptimal solutions under some circumstances. We will show in our analysis that there
are better resource configurations which may seem counter-intuitive at first, but are easy
to identify with the right performance metrics (more in Section 5.2). The objectives of
this work can be summarized as follows:

• Create a methodology to find the the best possible resource configuration for cou-
pled ESMs, which doesn’t involve modifying the sources of the models but only
changing how many PEs are allocated to each one.

• Define a metric to evaluate the performance of coupled ESMs that allows to have
control over the energy cost / execution time tradeoff.

• Integrate the steps into a workflow manager so that finding the optimal result
requires minimum user intervention.

The novel developments that this work has introduced are:

• The Scalability workflow (Section 6.1): A new workflow that automatizes the
process of getting the scalability curves of individual constituents. A single coupled
run will have the information of each of the constituents execution time as if they
were executed standalone.

• The Prediction script (Section 6.2): A Python script that, given the scalability
curves of the constituents, will predict the best combination of PEs subject to
user constraints like the energy/time tradeoff criteria, restriction on the number
of PEs to use and maximum parallelization allowed for the coupled run.

15



16CHAPTER 3. PROBLEM TO SOLVE, OBJECTIVES AND APPROACH PROPOSED

• The Load-balance workflow (Section 6.3): A new workflow that runs multiple re-
source configurations for the ESM on the HPC machine, gets the performance
metrics and tries to improve the solution even further by changing the PEs allo-
cation based on the results from real simulations.

The new methodology will be used to optimize resource configuration for different
resolutions of EC-Earth3 simulations. The results will be compared to the default allo-
cations used on the European Centre for Medium-Range Weather Forecasts (ECMWF)
machine, and to the ones used by large projects such as CMIP6 and the European Cli-
mate Prediction project (EUCP) executed in MareNostrum4. The method proposed
has shown to provide resource configurations that are up to 37% faster and reduce the
execution cost by 6.7%.
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Context

Climate science is, by nature, a complex problem where we try to simulate the time evolu-
tion of the Earth system. ESMs have always presented issues regarding their performance
on HPC platforms. This problem comes from the inherent complexity of the models,
and because the development involves many independent teams that are specialized
in one of the sub-parts (e.g. ocean dynamics, atmospheric chemistry, biosphere, etc.).
ESMs often are built of a mixture of independent codes that make multi-component
ESM run separate binaries concurrently with their connections managed by a coupler,
raising the load-balance problem. This problem comes when coupled components have
to be synchronised during the simulation and if they do not run at the same speed, some
processors will be idle (waiting for the slowest component).

For a coupled model, components may not be able to run at their individual optimal
scaling point but at the point which is optimal for the ESM as a whole, which also
takes into account the performance loss due to synchronizations. Finding the optimal
number of processes for one component involves testing the throughput of that model at
different PEs counts and use a metric like the EDP to numerically evaluate each one of
the scalability points. Reducing the load-imbalance involves measuring the cost of the
dependencies between components and modify the number of PEs allocated to each one
accordingly.

The next sections give an overview of the performance issues of the different coupling
approaches, introduce the ESM under study (EC-Earth3) and its most used configura-
tions (atmosphere component coupled with the ocean), and provide a brief description
of the workflow manager used (Autosubmit).

4.1 Coupling approaches

As mentioned, there are two ways in which different components can be coupled: using an
"external coupler or coupling library" where components remain as separate executables
and use a coupling library, and the "integrated coupling framework" where the original
component codes are modified and redefined to be part of a single larger application.
The external coupler or coupling library approach will generally reduce the efficiency of
the ESM. Components involved in the simulation have to run concurrently on separate
processors. The coupling exchanges occur between different processes/nodes and the
speed at which they can be transferred depends on the bandwidth and latency of the
HPC network. Also, as components have to be synchronized to exchange the fields,
data dependencies that were not present in stand-alone runs appear. Processes of a
component waiting for a field from another component will be idle and reduce the ESM

17
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parallel efficiency. Figure 4.1 illustrates two components coupled using this approach.
Figure 4.1a shows that each component runs as an independent binary and has its
own PEs allocated during the whole simulation. Figure 4.1b shows the pattern of this
approach during the simulation. Both components are synchronized at every coupling
interval (CI). Component 2 is faster than Component 1 (smaller Calculation time) and
has to wait at the end of each iteration. The execution time of both components is
extended at the end of their steps when they have to interpolate the fields before sending
them to a component using a different grid or due to the execution of conservative
algorithms to ensure that the total integrated value of a coupling field is the same in
both the source and target grid.

On the contrary, in the integrated coupling framework the same processor can run
the multiple components as routines. This offers the possibility to make components
share the coupling fields using the DRAM. Furthermore, components can be allowed to
be flexibly placed on arbitrary subsets of computing resources in a sequential, concurrent
or mixed mode. Helping to define an overall sequencing of the components that optimizes
the coupled ESM performance. Figure 4.21 shows some of the possible layouts that are
supported for some couplers using this approach.

(a) (b)

Figure 4.1: Overview of two components using a coupling library.

1https://is.enes.org/events/is-enes3-webinar-on-oasis3_mct

https://is.enes.org/events/is-enes3-webinar-on-oasis3_mct
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Figure 4.2: Layouts supported in Cpl7 using the integrated coupling framework ap-
proach. In A (left), all components (Coupler CPL, land LND, ice ICE, Atmosphere
ATM and ocean OCN) are run sequentially on all available processors. In B (center),
the OCN is run in parallel with the other components, which themselves run sequentially
on a subset of the remaining processors. Some idle time after the OCN execution. This
is so called the hybrid layout. In C (left), the hybrid layout is used again but achiev-
ing a better load-balance by changing the placement of components to the computing
resources.

4.2 EC-Earth3

EC-Earth3 is a global coupled climate model, which integrates a number of component
models in order to simulate the Earth system. It is developed by a consortium of
European research institutions, which collaborate in the development of a new ESM. The
goal of EC-Earth3 is to build a fully coupled atmosphere-ocean-land-biosphere model
usable for problems encompassing from seasonal-to-decadal climate prediction to climate
change projections and paleoclimate simulations. Figure 4.3 shows an overview of a
configuration involving 5 components and an IO server and how they are interconnected
by the OASIS3-MCT coupler. A brief description of the components is listed below:

• The OASIS3-MCT coupler: a coupling library to be linked to the component
models and whose main function is to interpolate and exchange the coupling fields
between them to form a coupled system.

• The Integrated Forecasting System (IFS) as atmosphere model: an operational
global meteorological forecasting model developed and maintained by the Euro-
pean Centre of Medium-Range Weather Forecasts (ECMWF). The dynamical core
of IFS is hydrostatic, two-time-level, semi-implicit, semi-Lagrangian and applies
spectral transforms between grid-point space and spectral space. In the vertical
the model is discretized using a finite-element scheme. A reduced Gaussian grid
is used in the horizontal.

• The Nucleus for European Modelling of the Ocean (NEMO) as ocean model:
a state-of-the-art modelling framework for oceanographic research, operational
oceanography seasonal forecast and climate studies. It discretizes the 3D Navier-
Stokes equations, being a finite difference, hydrostatic, primitive equation model,
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with a free sea surface and a non-linear equation of state in the Jackett. The ocean
general circulation model (OGCM) is OPA (Océan Parallélisé), a primitive equa-
tion model which is numerically solved in a global ocean curvilinear grid known as
ORCA. EC-Earth 3.3.2 uses NEMO’s version 3.6 with XML Input Output Server
(XIOS) version 2.0, an asynchronous input/output server used to minimize previ-
ous I/O problems.

• The Louvain-la-Neuve sea-Ice Model 3 (LIM3): a thermodynamic-dynamic sea-ice
model directly coupled with OPA.

• PISCES-v2 (Pelagic Interactions Scheme for Carbon and Ecosystem Studies vol-
ume 2) : an ocean biogeochemical model for nutrients and the carbon cycle that
is directly coupled to NEMO.

• LPJ-GUESS (LPJG) as a dynamic vegetation-terrestrial ecosystem model.

• The Tracer Model 5 (TM5): a global chemistry transport model describing the
atmospheric chemistry and transport of reactive or inert tracers.

• The Runoff-mapper (RNF) component: used to distribute the runoff from land
to the ocean through rivers. It runs using its own binary and coupled through
OASIS3-MCT.

Figure 4.3: Overview of an EC-Earth3 experiment using NEMO as the ocean (with sea
ice and ocean biogeochemistry), IFS as the atmosphere, LPJG as the vegetation, TM5
as the chemistry, RNF as the runoff from land to the ocean and XIOS as the IO server.
The arrows show the dependencies between components in simulated time. XIOS does
not communicate through OASIS-MCT but adds some dedicated processes (IO servers)
directly connected to NEMO to handle the ocean output in parallel.

The configurations under study for this work will be the Standard Resolution (SR)
and High Resolution (HR) simulations. They are the most used on EC-Earth3 and,
therefore, the ones that consume more computing resources and for which any gain
in performance has a greater impact. They both include IFS coupled with NEMO as
the main components, parallelized using MPI, and which interchange 23 fields (6 from
NEMO to IFS and 17 from IFS to NEMO) through OASIS3-MCT at the beginning of
their own timestep. As a consequence, the two components have to be synchronized
before starting executing their own computation.

In the SR, IFS uses the T255L912 grid, which corresponds to a resolution of 80 km
for the atmosphere, coupled to NEMO using an ORCA1L753 grid, which corresponds

2https://confluence.ecmwf.int/display/OIFS/4.+OpenIFS%3A+Grid+and+Resolution
3https://www.nemo-ocean.eu/doc/node108.html

https://confluence.ecmwf.int/display/OIFS/4.+OpenIFS%3A+Grid+and+Resolution
https://www.nemo-ocean.eu/doc/node108.html
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to a 1 degree resolution at the equator (∼25km). In the HR configurations, the grids
are T511L91 for the atmosphere and ORCA025 for the ocean, which correspond to a
resolution of 40 km and 1/4 of a degree for IFS and NEMO, respectively. They both
involve, in addition to NEMO and IFS the RNF and XIOS components. For the load-
balancing, XIOS and RNF are not taken into account, as XIOS does not communicate
via OASIS but directly with NEMO to handle its IO operations in parallel and RNF
runs in serial and is much faster than the other components.

4.3 Autosubmit

Workflow managers are used to control the tasks and their dependencies in complex
Earth system workflows, which normally include running more tasks than just the sim-
ulation: the models need to be compiled on the HPC machine, the data for the initial
conditions and namelists to configure the run have to be present in the runtime direc-
tory, the output from the simulation is often post-processed and the data is normally
moved out of the HPC filesystem once the experiment has finished. Scientists at BSC
and other institutions use the Autosubmit workflow manager (AS) [40] to do these tasks
with EC-Earth3.

Autosubmit [40] (AS) is a Python-based workflow manager that helps creating, run-
ning and monitoring climate experiments remotely using computing resources on super-
computing platforms. It is able to handle complex tasks involving different jobs. These
jobs can be executed locally or remotely on different platforms (e.g. HPC computing
nodes, data transfer nodes, workstations). It manages the submission of jobs to the
queue scheduler, provides the tools to control job status and to build their dependencies
and can serve to handle errors during the workflow execution. It was specifically devel-
oped with climate experiment’s needs in mind and it is currently used at BSC to run
several climate, weather and air quality models such as EC-Earth3, MONARCH, NEMO,
CALIOPE and HERMES on numerous HPC platforms for research and production.

As in this work the model of interest is EC-Earth3 and it has a production workflow
running with AS, integrating the load-balance method to this workflow manager will
also serve to make it accessible to other users and portable to other machines without
the extra effort that it would require otherwise.
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Chapter 5

Coupled ESM performance

5.1 Performance metrics to evaluate coupled ESMs

Measuring the performance of MPI applications (like EC-Earth3) on HPC machines
involves timing the execution of the application running at different processor counts
(i.e. getting the strong scalability curve). This helps to identify how well the program
scales by comparing the results against the ideal speedup and find the maximum speed
at which the application can run. As a general rule, one would like to see that when
doubling the number of processors of the run, the TTS drops by a half. However, it
is well known that models scale less than perfectly. Therefore, boldly selecting the
number of resources that maximises the speed is usually a bad decision as it leads to
a waste of resources. Energy metrics are used to evaluate the cost associated to the
execution and they increase when adding more resources under a non-perfect scalable
model. Selecting an appropriate number of resources to execute the program becomes,
therefore, a trade-off between the speed and the execution cost.

5.1.1 CPMIP performance metrics

The set of performance metrics for the computational performance model intercompar-
ison project (CPMIP) try to take into account the structure of ESMs and how they are
executed in production runs. The ones of interest for this work are listed below:

– Parallelization (NP): Total number of cores allocated for the run

– Simulated Years Per Day of execution (SYPD): The simulated years (SY)
per day of execution (24h of execution time on the HPC) of the ESM

– Core-Hours per Simulated Year (CHSY): The core hours per simulated year.
Measured as the product of the model runtime for 1 SY and the number of cores
allocated (NP). Note that the CHSY and SYPD are related by the following for-
mula:

CHSY =
24 ·NP

SY PD
(5.1)

– JPSY: The energy cost of a simulation, measured in Joules per simulated year.
Directly proportional to the CHSY.

– Coupling cost (Cpl_cost): Measures the overhead caused by the coupling. This
can be due to the waiting time caused by the synchronization between models
within the ESM (faster components have to wait for slower ones), the added cost

23
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of interpolating the data from the source grid to the target one and the time spent
in communications when sending/receiving the data.

Cpl_cost =
TMNP −

∑
c TCPC

TMPM
(5.2)

Where TM and NP are the runtime and parallelization for the whole model, and
TC and PC the same for each component.

For this work, the Equation 5.2 has been reformulated to evaluate how much each
component adds to the coupling cost, which is essential to know which component
should lend PEs, and which one should receive them. It has been called Partial
coupling cost:

Partial_cpl_cost =
TCcplPC

TM ·NP
(5.3)

Where TCcpl is the total time spent by a component in coupled events (waiting,
interpolating and sending).

During the simulation, the OASIS3-MCT coupling library will record the timings
for the starting and ending of waiting (Oasis_get), sending (Oasis_put) and interpo-
lation (Oasis_interpo) events for each component involved. After the run, this timing
information is post-processed using the LUCIA1 tool to collect the mentioned CPMIP
metrics for the simulation.

5.1.2 Time-to-Solution vs Energy-to-Solution criteria

If we want an application to run faster, we will increase the number of PEs and, conse-
quently, the cost (i.e. energy) of the execution will be higher. Given that some of the
ESM components can not run in serial, the execution in a single node (Po) is taken as
the baseline. Therefore, the Speedup will be defined as:

Speedup =
TPo

TP
(5.4)

Where TP is the execution time using P processes. Consequently, the parallel efficiency
will be:

Efficiency =
Speedup

P
Po

(5.5)

Probably one of the most widespread metrics to evaluate the performance of a pro-
gram is the Energy-Delay Product (EDP). Which for MPI applications can be computed
as:

EDP =
Speedup

Efficiency
(5.6)

For this work, we define a new metric that allows to parameterise the ratio of Time-
Energy at which we want to run: the Fitness metrics FN. We first define a Time-To-
Solution ratio (TTSr) and the Energy-To-Solution ratio (ETSr), both of which range
between 0 and 1 and must add to unity:

TTSr + ETSr = 1 (5.7)

1https://www.cerfacs.fr/globc/publication/technicalreport/2014/lucia_documentation.
pdf

https://www.cerfacs.fr/globc/publication/technicalreport/2014/lucia_documentation.pdf
https://www.cerfacs.fr/globc/publication/technicalreport/2014/lucia_documentation.pdf
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Then, given the scalability curve of one component, where for each core count we have
the SYPD (metric of speed) and CHSY (metric of cost), the FN is calculated as

FN = TTSr · SY PDn + ETSr · (1− CHSYn) (5.8)

Where SY PDn (CHSYn) is the value of the SYPD (CHSY) after a min-max normal-
ization. Note that we use 1 − CHSYn given that the greater the cost, the less energy
efficient the execution will be (i.e. the minimum cost maximizes the energy).

By pondering the SYPD (CHSY) with the TTSr (ETSr) ratio values, the result
is more flexible and allows finding an optimal resource configuration depending on the
needs.

Table 5.1 shows how the FN metric compares to the EDP under varying TTSr for
IFS in SR. The SY PDn (CHSYn) column is the value of the SYPD (CHSY) after a
min_max normalization. For instance, using 48 PEs for IFS is the slowest configuration
(SY PDn=0) but the one that consumes less energy (1 − CHSYn=1). On the other
hand, using 1008 PEs is the fastest configuration (SY PDn=1) but the worst in terms
of energy (1− CHSYn=0).

Using the EDP metric, the optimum is at 864 PEs (576 PEs being a very close
second). Using the FN metric, we see that as we increase the TTSr, the optimum tends
to be a resource configuration with a larger number of PEs. For a TTSr ≤ 0.3, the
solution is to use the minimum number of resources possible, as it’s the configuration
which minimizes the CHSY. For a TTSr close to 0.5, the metrics selects configurations
that are balanced in terms of speed and energy cost. For a TTSr of 0.7 the best
configuration matches the one we obtained with the EDP metric. Finally, if the TTSr

is set over 0.9, the best configuration is the one that maximizes the SYPD, no matter
the cost. Note that the FN metric can asses that not all PEs counts are optimal.
For instance, changing the TTSr from 0.6 to 0.7 finds two optimal solutions that are
864− 576 = 288 PEs apart.

Figure 5.1 shows graphically the information from Table 5.1. Here we see that the
EDP metric benefits configurations that are faster, while penalizing the energy-aware
ones. The FN metric has a similar slope when it comes to the fastest configurations,
but does not punish slower configurations as hard.

Figure 5.1: SY PDn, CHSYn, FN and EDP for IFS in SR. Using a TTSr of 0.5
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FN results using different TTSr

nproc SY PDn 1− CHSYn EDP ≤0.3 0.4 0.5 0.6 0.7 0.8 ≥0.9
48 0.000 1.000 0.000 0.700 0.600 0.500 0.400 0.300 0.200 0.100
96 0.097 0.941 0.184 0.688 0.603 0.519 0.435 0.350 0.266 0.181
144 0.187 0.896 0.341 0.684 0.613 0.542 0.471 0.400 0.329 0.258
192 0.271 0.855 0.476 0.680 0.621 0.563 0.504 0.446 0.388 0.329
240 0.348 0.813 0.588 0.673 0.627 0.580 0.534 0.487 0.441 0.394
288 0.418 0.767 0.677 0.662 0.627 0.593 0.558 0.523 0.488 0.453
336 0.481 0.718 0.744 0.647 0.623 0.599 0.576 0.552 0.528 0.504
384 0.540 0.672 0.803 0.632 0.619 0.606 0.593 0.580 0.566 0.553
432 0.601 0.636 0.868 0.625 0.622 0.618 0.615 0.611 0.608 0.604
480 0.660 0.603 0.931 0.620 0.626 0.632 0.637 0.643 0.649 0.655
528 0.716 0.568 0.983 0.612 0.627 0.642 0.657 0.671 0.686 0.701
576 0.758 0.517 0.999 0.589 0.614 0.638 0.662 0.686 0.710 0.734
624 0.778 0.435 0.958 0.538 0.573 0.607 0.641 0.675 0.710 0.744
672 0.792 0.346 0.908 0.480 0.524 0.569 0.614 0.658 0.703 0.748
720 0.815 0.274 0.885 0.436 0.490 0.544 0.598 0.652 0.706 0.761
768 0.851 0.231 0.900 0.417 0.479 0.541 0.603 0.665 0.727 0.789
816 0.909 0.227 0.965 0.431 0.500 0.568 0.636 0.704 0.772 0.841
864 0.954 0.203 1.000 0.428 0.503 0.578 0.653 0.728 0.803 0.878
912 0.957 0.113 0.943 0.367 0.451 0.535 0.620 0.704 0.789 0.873
960 0.959 0.022 0.888 0.303 0.397 0.491 0.584 0.678 0.772 0.866

1008 1.000 0.000 0.918 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Table 5.1: Comparison between the FN and EDP metrics for IFS. Using different TTSr

values

5.2 Balancing EC-Earth Standard and High resolution ex-
periments

As explained in Section 4.2, in the SR and HR experiments of EC-Earth, IFS and NEMO
are coupled and synchronized at the beginning of their own timestep to exchange in-
formation. Ideally (and as stated in the literature), if both components run at exactly
the same speed, the overhead due to the coupling would be minimal and the coupled
SYPD be almost the same of its components. The waiting time would be negligible and
only the extra computation due to the transformation of the data from one grid to the
other (interpolation) would add some computation time to the simulation. However,
Figure 5.2a shows that resource configurations in which both components run "roughly"
at the same speed like using 576 processes for IFS (ATMIFS in the images) and 144
for NEMO (oceanx in the images) still performs much slower than expected. In ad-
dition, Figure 5.2b shows that the load-balance is not perfect as both components are
still wasting an important amount of computing resources waiting. Figure 5.3 shows
the timings for each timestep and we observe that NEMO (top) has regular timestep
computations while IFS (bottom) has some irregular timesteps, which are due to the
radiation code being called every 4 timesteps. This irregularity is propagated in the
next timestep of NEMO as waiting time. The other 3 IFS timesteps (the regular ones)
are a little bit faster than in NEMO. Therefore, IFS has to wait for NEMO in 3 out of 4
timesteps. While both components execution time is the same, the irregularities in IFS
timesteps execution create an imbalance that leads to a coupled execution that is slower
and wastes 16.5% (coupling cost) of the resources as waiting time. The SYPD of the
coupled simulation with this configuration is 21.91. Given that it uses 720 (576+144)
processes, the cost of the simulation is 789 CHSY (see Equation 5.1).



5.2. BALANCING EC-EARTH STANDARD AND HIGH RESOLUTION EXPERIMENTS27

Achieving a perfect load-balance (waiting time close to 0) is impossible due to the
irregular execution time of IFS timesteps. However, the solution can be improved by
reallocating the resources from one component to the other. By looking at the partial
coupling cost, we know the computational cost of the waiting time per component. Both
components wait the same amount of time (same SYPD) but IFS uses 4 times as many
processes compared to NEMO. Therefore, the computational cost of the waiting time in
IFS will be much higher. Figure 5.4a shows that giving resources from IFS to NEMO
(552 processes for IFS and 168 for NEMO) improves the coupled SYPD compared to
the previous allocation by a 10% (24.15/21.91). As the total number of PEs is the same,
the cost of the simulation (CHSY) is also improved from 789 to 715. Finally, as most
of the waiting time now happens in NEMO (Figure 5.4b), which still uses less PEs, the
coupling cost has also been reduced to 9.8%.

Having a set of performance metrics and tools is absolutely necessary to find this
kind of solutions. The best resource configuration was only achievable by instrumenting
the code (OASIS3-MCT), having a set of performance metrics (CPMIP) and manually
testing multiple resource allocations for each model. The optimization shown above
required to run the scalability of IFS and NEMO separately, find a number of processors
so that both have the same execution time, get the performance metrics for a coupled
experiment with that resource configuration, realize that it would be better to have
NEMO running faster to reduce the coupling cost and then try multiple tests where a
subset of IFS processes are reallocated to NEMO, until the best solution is found.

(a)
(b)

Figure 5.2: Coupled execution running IFS and NEMO at the same speed. Figure 5.2a
shows the SYPD of IFS, NEMO and for the Coupled simulation. Figure 5.2b shows
the time spent executing component operations and on events related to the coupling
(waiting, interpolation, sending).
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Figure 5.3: Information per timestep for IFS-NEMO coupled executions when both
components run at the same speed.

(a)
(b)

Figure 5.4: Coupled execution running IFS and NEMO in a balanced resource config-
uration. Figure 5.4a shows the SYPD of IFS, NEMO and for the Coupled simulation.
Figure 5.4b shows the time spent executing component operations and on events related
to the coupling (waiting, interpolation, sending).
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Automatic load-balance method

The following section describes the automatic load-balance method (auto-lb), which can
be divided in 3 main steps:

1. Scalability workflow: Get the SYPD (i.e. execution time) for each one of the
components involved in the coupled configuration under different processor counts.
There is no strict rule on how many PEs counts should be tested or how many
runs for each PEs count may have to be executed, as it depends on the component
under analysis and the possible variability of the machine. Having more PEs
counts tested and running each one for longer (or more than once) will result in a
better representation of the performance of the model (at the expense of greater
computing power required).

2. Prediction script: A Python script that, given the scalability curves of the com-
ponents involved in the coupled configuration, will return the best NP allocation
depending on the user criteria (TTS or ETS) using the FN metric.

3. Load-balance workflow: Workflow controlled by Autosubmit that will submit the
jobs on the HPC machine with the NP allocation that the Prediction script esti-
mate as optimal. Validating the results and doing some fine-grain modifications
to achieve a better load-balance.

6.1 Scalability workflow

The load-balance method can only modify the number of PEs allocated for each of the
components to obtain a better resource configuration. Thus, it is essential to know how
each of the models involved in the coupled configuration performs at different processor
counts. Until now, for all the EC-Earth community around Europe, there wasn’t any way
of getting this information without having to run each of the components in standalone
for multiple processor counts manually. A new workflow has been created to automatize
this process. Moreover, it also optimizes the work by allowing to use coupled executions
to get a point of the scalability curve (nproc,SYPD) for each of the models involved
in one run. This is done using the OASIS3-MCT internal load-balance tool (LUCIA).
It collects the timings of all coupled events within a component during the runtime.
The time outside the coupler is, therefore, the time a component spends in its own
computations and it is equivalent to its execution in stand-alone. Hence, running a
single instance of an IFS-NEMO experiment will now suffice to get the SYPD of IFS
and NEMO (at their respective number of PEs). Autosubmit is used to automatize the
process. Which follow the next steps:

29
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1. Configure the coupled experiment under study.

2. Define a list with the number of PEs to use for each of the components in a text file
(nproc_config). For instance: IFS_nproc=( 48 144 384 480 576 684 768 912 ) and
NEMO_nproc=( 48 96 144 192 240 288 336 384 ) will run 8 members (different
realizations). The first one with 48 processes for both components, the second
with 144 for IFS and 96 for NEMO, and son on.

3. In the Autosubmit configuration, define the number of chunks (individual execu-
tions) and their duration. Running multiple chunks for longer periods helps to
mitigate the variability of the HPC machine.

4. Run a bash script to create the Autosubmit jobs and their dependencies. This
script takes the list of PEs from the nproc_config file and modifies the jobs.conf
file that AS uses to create the workflow.

5. POST_LUCIA job: New Autosubmit job (bash script) to get the performance
metrics of a chunk. Used to get the SYPD of IFS and NEMO running with a
particular number or PEs.

6. SCALABILITY job: New Autosubmit job to transfer the performance results form
the HPC machine to the local workstation and do the average result of the executed
chunks.

Figure 6.1 is an example of the scalability workflow for 8 different PE allocations for
IFS and NEMO. Each resource configuration will be executed twice (2 chunks). The
POST_LUCIA job runs at the end of each member to get the performance metrics for
all the executed chunks. Finally, all the jobs are synchronized with the SCALABILITY
job, which transfers and gathers all the performance metrics in the local machine, does
the average of the chunks executed in the same member and creates the CSV files with
the nproc,SYPD points for each component.

Figure 6.1: Auto-scalability workflow for 8 different PE allocations per component (mem-
bers) running 2 chunks each.

6.2 Prediction script

The number of possible configurations that can be used in coupled ESMs is so large that
it would not be practical to test all of them one by one. For instance, in IFS-NEMO
experiments where both components can easily take any number of PEs from 48 (1 node)
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to 1008 (21 nodes), the number of solutions using a granularity of say, 24 processes (half
a node), is 20/0.5∗20/0.5 = 1600. Most of them, however, are configurations that would
be very imbalanced in practice and testing them would only be a waste of resources.
Nevertheless, the Prediction script can search in this solution space in less than one
second and approximate the results from each combination of PEs for IFS-NEMO based
on the prior knowledge of the parallel behaviour that we have from the scalability curves.
The Prediction script is a Python script configured through a YAML file where the user
can set the next parameters:

– max_nproc: Add a limitation on the maximum number of PEs to use for the
prediction.

– TTS_ratio: Float number between 0 and 1. Note that the ETSr is inversely
proportional as described in Equation 5.7

– interpo_method: Choose the interpolation method to use for the scalability
curves (linar, slinear, quadratic, cubic).

– show_plots: Boolean. Show some extra information as plots. Used for debug
proposes.

– node_size: Define the number of PEs that each node has. Machine dependent
value.

And also the settings for each component:

– Component name: A string with the name to give to the component

– scalability_file: Path to the scalability curve, a CSV file with the PE count in
the first column and the corresponding SYPD in the second.

– nproc_restriction: Array with the only PEs that this component can take. In
the format [48,128,..,912].

– timestep_info (optional): Path to the information per timestep. A CSV file
with the time spent in component execution, waiting, interpolating and sending
at each timestep.

– timestep_nproc (mandatory only if timestep_info is set): The number of re-
sources used by the component when the timestep_info timers were collected.

If the information per timestep is not present, the script will by default assume that
the models have perfect regular timestep lengths. When provided, it allows the script to
better understand the coupling phase and estimate more accurately the computational
cost it will add.

The Prediction script will return the top 5 best configurations for the TTS/ETS
criteria selected while respecting the limitations (max_nproc, nproc_restriction) spec-
ified by the user. It also estimates what the SYPD, CHSY and coupling cost will be
for the best solution found. TextBox 6.1 shows an example of the output of the Pre-
diction script. Starting from the top, it shows the parameters set by the user. Then
the information per component (number of processes, SYPD and CHSY). Finally, the
coupled solution that expects to be optimal, with the total number of processes used,
the coupled SYPD and CHSY, the coupling_cost and the ratio of the execution time of
both components.

The process of interpolating the scalability curve, exploring all the possible combi-
nations of PEs and finding the best ones is explained in the following sections.
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Using a limitation of 2000 processes at most.
No information per timestep available.
Assuming regular timestep lengths
Optimal for TTS=0.5, ETS=0.5:

————————————————————
Results for component ATMIFS:
Number of processes: 720
CHSY: 5112
SYPD: 3.38

————————————————————
Results for component oceanx:
Number of processes: 1245
CHSY: 9054
SYPD: 3.30

————————————————————
Total number of processes: 1965
Expected coupled CHSY: 14290
Expected coupled SYPD: 3.30
Expected coupling cost: 0.87 %, (123.94 CHSY)
ATMIFS/oceanx speed ratio: 1.02

TextBox 6.1: Prediction script output example.

6.2.1 Interpolate the scalability curves

Running the scalability tests for a model using all the possible processor counts that it
can take would be just a waste of computational resources. Instead, one can approximate
the result of a particular processor count by looking at its nearest points and expecting
to be a value between both, given that the execution time of a model can be seen
as a nonlinear function of the process counts it uses. In the Prediction script, the
scalability curves of each component are interpolated (using the interpolate1 function
from the scipy python package) to have the expected SYPD when using a number of
PEs different than the points (nproc,SYPD) from the original file. If nproc_restriction
is set for a component, it will only interpolate for those PEs. If not, the node_size is
used instead. There are different algorithms to interpolate the scalability curves (e.g.
linear, slinear, quadratic, cubic...). But the prediction values do not change too much,
as it is shown in Figure 6.2. The interpolation can be used to estimate the scalability
values for any processor count without having to run the simulation. For instance, it is
used in Table 6.3 to have the SYPD of IFS and NEMO at processor counts multiple of
the node size (48 cores).

1https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html
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(a) (b)

Figure 6.2: Using different interpolation methods to extend the scalability curves and
be able to predict the SYPD using any processor count. Figure 6.2a compares the real
scalability values for IFS against various interpolation algorithms and Figure 6.2b does
the same for NEMO

nproc SYPD
48 3.27
96 5.92
144 8.41
192 10.76
240 12.96
288 15.01
336 16.64
384 17.34
432 18.25
480 20.27
528 21.37
576 20.81

Table 6.1

nproc SYPD
48 3.53
96 7.70
144 11.84
192 15.92
240 19.65
288 23.03
336 26.37
384 29.62
432 32.76
480 35.45
528 37.38
576 38.57

Table 6.2

Table 6.3: Scalability values after interpolating for IFS (Figure 6.2a) and NEMO (Fig-
ure 6.2b)

6.2.2 Create the TTS and ETS matrices

Once the SYPD have been interpolated for both components at the required PE counts
(Table 6.3), the TTS matrix (TTSmx) is build by speculating that the coupled SYPD
will be the minimum of both components. Table 6.4 shows the minimum SYPD achieved
for all possible IFS and NEMO nproc combinations.

The CHSY and SYPD are related with Equation 5.1. Therefore, from the TTSmx we
can get the ETSmx (Table 6.5). Likewise, the EDP of all possible nproc combinations
(EDPmx) is shown in Table 6.6 applying Equation 5.6.

Most of the configurations are really bad, mainly the ones in the first columns (rows)
where IFS (NEMO) is kept at very few PEs and we start giving more resources to
NEMO (IFS). The coupled SYPD stays at the same as the component running with
few resources, but the number of processes allocated grows. Therefore, the CHSY starts
increasing a lot, as it is seen in the ETSmx. To create the fitness matrix (FNmx) we
first have to normalize the SYPD (TTSmx) and the CHSY (ETSmx), and having values
that are too far apart caused difficulties when trying to compare configurations that
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were very close to each other. Table 6.7 is an example of how the FNmx would look like
if all combinations are taken into consideration. We observe that the FN values for the
best candidates are very close to each other. After normalizing, small differences (below
∼50 CHSY) are hidden by having extreme values (over 4000 CHSY) in configurations
like 48 PEs for IFS and 576 for NEMO. Looking at the EDPmx in Table 6.6, we see that
the worst resource configurations have an EDP lower than the base-case (in dark-gray).
And of course, they will never be selected as the best configurations. At the same time,
the best configurations (in green) are found in a region in which the predicted CHSY
and SYPD are quite similar. We enforce the final solution to have an EDP better than
the base-case to remove the extreme values and be able to highlight small differences
between good configurations. The result of this filtering in shown in Table 6.8.

NEMO nprocs
48 96 144 192 240 288 336 384 432 480 528 576

48 3.27 3.27 3.27 3.27 3.27 3.27 3.27 3.27 3.27 3.27 3.27 3.27
96 3.53 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92 5.92
144 3.53 7.7 8.41 8.41 8.41 8.41 8.41 8.41 8.41 8.41 8.41 8.41
192 3.53 7.7 10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76 10.76

IF
S

np
ro

cs 240 3.53 7.7 11.84 12.96 12.96 12.96 12.96 12.96 12.96 12.96 12.96 12.96
288 3.53 7.7 11.84 15.01 15.01 15.01 15.01 15.01 15.01 15.01 15.01 15.01
336 3.53 7.7 11.84 15.92 16.64 16.64 16.64 16.64 16.64 16.64 16.64 16.64
384 3.53 7.7 11.84 15.92 17.34 17.34 17.34 17.34 17.34 17.34 17.34 17.34
432 3.53 7.7 11.84 15.92 18.25 18.25 18.25 18.25 18.25 18.25 18.25 18.25
480 3.53 7.7 11.84 15.92 19.65 20.27 20.27 20.27 20.27 20.27 20.27 20.27
528 3.53 7.7 11.84 15.92 19.65 21.37 21.37 21.37 21.37 21.37 21.37 21.37
576 3.53 7.7 11.84 15.92 19.65 20.81 20.81 20.81 20.81 20.81 20.81 20.81

Table 6.4: TTS matrix for IFS-NEMO coupled execution. IFS PEs in the vertical axis.
NEMO PEs in the horizontal

NEMO nprocs
48 96 144 192 240 288 336 384 432 480 528 576

48 705 1057 1409 1761 2114 2466 2818 3171 3523 3875 4228 4580
96 979 778 973 1168 1362 1557 1751 1946 2141 2335 2530 2724
144 1305 748 822 959 1096 1233 1370 1507 1644 1781 1918 2055
192 1632 898 749 857 964 1071 1178 1285 1392 1499 1606 1713

IF
S

np
ro

cs 240 1958 1047 778 800 889 978 1067 1156 1244 1333 1422 1511
288 2284 1197 876 767 844 921 998 1074 1151 1228 1305 1381
336 2611 1346 973 796 831 900 969 1038 1108 1177 1246 1315
384 2937 1496 1070 868 864 930 997 1063 1129 1196 1262 1329
432 3263 1646 1168 941 884 947 1010 1073 1136 1199 1262 1326
480 3590 1795 1265 1013 879 909 966 1023 1080 1137 1193 1250
528 3916 1945 1362 1085 938 916 970 1024 1078 1132 1186 1240
576 4242 2095 1459 1158 997 996 1052 1107 1163 1218 1273 1329

Table 6.5: ETS matrix for IFS-NEMO coupled execution. IFS PEs in the vertical axis.
NEMO PEs in the horizontal
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NEMO nprocs
48 96 144 192 240 288 336 384 432 480 528 576

48 1.000 0.667 0.500 0.400 0.333 0.286 0.250 0.222 0.200 0.182 0.167 0.154
96 0.777 1.639 1.311 1.093 0.936 0.819 0.728 0.656 0.596 0.546 0.504 0.468
144 0.583 2.218 2.205 1.890 1.654 1.470 1.323 1.203 1.102 1.018 0.945 0.882
192 0.466 1.848 3.094 2.707 2.406 2.166 1.969 1.805 1.666 1.547 1.444 1.353

IF
S

np
ro

cs 240 0.388 1.584 3.278 3.491 3.142 2.856 2.618 2.417 2.244 2.094 1.963 1.848
288 0.333 1.386 2.913 4.214 3.831 3.512 3.242 3.010 2.809 2.634 2.479 2.341
336 0.291 1.232 2.622 4.310 4.316 3.984 3.699 3.453 3.237 3.046 2.877 2.726
384 0.259 1.109 2.384 3.950 4.326 4.017 3.749 3.515 3.308 3.124 2.960 2.812
432 0.233 1.008 2.185 3.647 4.450 4.153 3.894 3.664 3.461 3.279 3.115 2.966
480 0.212 0.924 2.017 3.386 4.815 4.803 4.521 4.269 4.045 3.842 3.660 3.493
528 0.194 0.853 1.873 3.160 4.514 5.025 4.745 4.496 4.271 4.067 3.883 3.714
576 0.179 0.792 1.748 2.963 4.248 4.500 4.263 4.050 3.857 3.682 3.522 3.375

Table 6.6: EDP matrix for IFS-NEMO coupled execution. IFS PEs in the vertical axis.
NEMO PEs in the horizontal

NEMO nprocs
48 96 144 192 240 288 336 384 432 480 528 576

48 0.5 0.45 0.41 0.36 0.32 0.27 0.23 0.18 0.14 0.09 0.05 0
96 0.47 0.56 0.54 0.51 0.49 0.46 0.44 0.41 0.39 0.36 0.34 0.31
144 0.43 0.62 0.63 0.61 0.59 0.57 0.56 0.54 0.52 0.5 0.49 0.47
192 0.39 0.6 0.7 0.69 0.67 0.66 0.65 0.63 0.62 0.6 0.59 0.58

IF
S

np
ro

cs 240 0.35 0.58 0.73 0.76 0.74 0.73 0.72 0.71 0.7 0.69 0.68 0.66
288 0.3 0.56 0.71 0.82 0.81 0.8 0.79 0.78 0.77 0.76 0.75 0.74
336 0.26 0.54 0.7 0.84 0.85 0.84 0.84 0.83 0.82 0.81 0.8 0.79
384 0.22 0.52 0.69 0.83 0.87 0.86 0.85 0.84 0.83 0.83 0.82 0.81
432 0.18 0.5 0.68 0.82 0.89 0.88 0.87 0.87 0.86 0.85 0.84 0.83
480 0.13 0.48 0.66 0.81 0.93 0.94 0.94 0.93 0.92 0.91 0.91 0.9
528 0.09 0.46 0.65 0.8 0.92 0.97 0.97 0.96 0.95 0.94 0.94 0.93
576 0.05 0.44 0.64 0.79 0.91 0.95 0.94 0.93 0.93 0.92 0.91 0.9

Table 6.7: Fitness matrix for IFS-NEMO coupled execution using a TTSr of 0.5 and
without filtering by the EDP. IFS PEs in the vertical axis. NEMO PEs in the horizontal

6.2.3 Building the final solution

Table 6.8 shows the Fitness metric using a TTSr of 0.5. The optimal value is the same
as the one found by the EDP metric (Table 6.6), which is using 528 processes for IFS
and 288 for NEMO. However, these values represent only predicted results based on the
scalability curves provided to the script and one expects to have some variability when
running real experiments on the supercomputing machine. Consequently, the Prediction
script will not only return the best solution but the best 5 (top5). In the example above,
that is 528-288, 528-336, 480-240, 480-288 and 480-336 (IFS-NEMO).

The Prediction script will, therefore, serve as a guide for the Load-balance workflow
as now it will search in a smaller space to find the best resource configuration without
having to waste as many resources testing combinations of PEs for IFS and NEMO that
can not be an optimal solution for the ESM.
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NEMO nprocs
48 96 144 192 240 288 336 384 432 480 528 576

48 0.5 - - - - - - - - - - -
96 - 0.54 0.45 0.36 - - - - - - - -
144 - 0.6 0.59 0.52 0.46 0.4 0.33 0.27 0.21 0.14 - -
192 - 0.53 0.69 0.64 0.59 0.54 0.49 0.44 0.39 0.34 0.29 0.24

IF
S

np
ro

cs 240 - 0.46 0.7 0.72 0.68 0.64 0.6 0.56 0.52 0.48 0.43 0.39
288 - 0.39 0.66 0.8 0.76 0.72 0.69 0.65 0.62 0.58 0.55 0.51
336 - 0.32 0.61 0.81 0.81 0.78 0.75 0.71 0.68 0.65 0.62 0.59
384 - 0.25 0.57 0.77 0.81 0.78 0.75 0.72 0.69 0.66 0.63 0.6
432 - 0.19 0.52 0.74 0.83 0.8 0.77 0.74 0.71 0.68 0.65 0.63
480 - - 0.48 0.71 0.87 0.87 0.85 0.82 0.8 0.77 0.74 0.72
528 - - 0.43 0.67 0.84 0.9 0.88 0.85 0.83 0.8 0.78 0.75
576 - - 0.39 0.64 0.82 0.85 0.82 0.8 0.77 0.75 0.72 0.69

Table 6.8: Fitness matrix for IFS-NEMO coupled execution using a TTSr of 0.5. IFS
PEs in the vertical axis. NEMO PEs in the horizontal.

6.3 Load-balance workflow

The last part of the method is the load-balance workflow. This is an iterative process
that will submit the top5 best configurations found by the Prediction script, run multi-
ple chunks for each resource configuration to lower the impact that the HPC platform
variability can add, do some small improvements (changing the number of PEs from
one component to the other) based on the performance results from real executions and
propose a new set of 5 resource configurations. The process will converge when no new
configurations can be explored. Once that point is reached, it will calculate the Fitness
metric for all the PEs combinations tested and return the best resource configuration
(the one that maximizes the FN).

6.3.1 Creating the list of jobs and their dependencies

Firstly, the workflow jobs and dependencies have to be created given the top5 best
configurations coming from the Prediction script. The procedure is similar to what was
done in Section 6.1. It consists of a bash script (create_lb_jobs.sh) that takes the
top5 resource configurations and the target jobs.conf files as parameters. Additionally,
the user has to specify the total number of iterations that the workflow will run (lb-
iterations). This is not known beforehand, but since AS does not support the creation
of jobs dynamically a maximum value must be defined. There is no penalization on
adding more lb-iterations than needed as once the method has converged, the workflow
will stop and jobs that were waiting will not be executed. Normally, setting the lb-
iterations to 8 is enough. But it depends on the step size used (number of processes
that are given from one component to the other) and on how good the initial resource
configurations were (a configuration with a high load imbalance will take more time to
achieve a balanced configuration). Figure 6.3 is an example of the workflow that will
run 2 chunks per resource configuration.

6.3.2 POST_LUCIA job

A new job (bash script) to get the performance metrics needed for the load-balance
optimization. It executes the LUCIA tool, which provides the CPMIP metrics from all
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Figure 6.3: Overview of the load-balance workflow. An iterative process that submits
simulation jobs to the HPC machine for different resource configurations (SIM), gets the
performance results (LUCIA) and give resources from one component to the other to
achieve better balanced NP allocations (LOAD_BALANCE)

the chunks executed by a member.

6.3.3 LOAD_BALANCE job

A new job to control which component will give PEs (donor) and which will receive
them (recipient) in the next iteration. First, it will transfer the results from the HPC
machine to the local platform. Once all the performance metrics are in the local plat-
form, the LOAD_BALANCE job will read them and use the Partial_coupling_cost
(Equation 5.3) to determine which component adds more to the coupling cost. That
component will be tagged as the donor, as it is wasting more resources and/or for longer
time. The other component will be the recipient. The number of PEs to reallocate at
once is the step size and can be any number. Likewise, the job defines a minimum step
size to avoid doing reallocations of PEs counts that are too small to have any impact on
the execution and improve the solution.
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By default, the step size is the same as the size of a node but it could depend on the
models and the initial resource configurations used. Components that do not experiment
rapid changes in their execution time when adding or reducing the step size of 1 node
should use bigger step sizes. On the other side, if a small modification on the number of
PEs results in significant changes, it should be better to use smaller step sizes. Finally,
if the resource configuration is already a balanced one, moving many PEs in one step
between components will make the solution worse. But if the resource configuration is
very imbalanced, then having a bigger step will help to find a balanced one with less
intermediate steps.

Figure 6.4 is an example of how the LOAD_BALANCE job modifies the number
of processes of IFS and NEMO to achieve more balanced configurations. The initial
configurations (the ones in the first iteration or lb-iter 0) correspond to, left to right:

• Predicted: the best prediction configuration found by the Prediction script using
a TTSr = 0.5, 528 IFS - 192 NEMO (test 0)

• same SYPD: a configuration where IFS and NEMO run at the same SYPD, 610
IFS - 148 NEMO (test 1)

• EDP: the best resource configuration using the EDP metric, 576 IFS - 168 NEMO
(test 2)

• same nproc: a configurataion where IFS and NEMO use the same number of PEs,
384 IFS - 380 NEMO (test 3)

After the first iteration, the number of PEs exchanged between components will be
the one defined by the step size variable. Therefore, all tests in lb-iter 1 are the result
of giving 48 processes from IFS to NEMO (tests 1 and 2) or from NEMO to IFS (tests
0 and 3) depending on the performance results (i.e. the Partial coupling cost) from the
previous lb-iter (lb-iter 0) for each test.

Before defining the resource configurations to use in the next lb-iter, the
LOAD_BALANCE job checks that it will indeed be a new configuration (not executed
by any of the tests in any of the lb-iters before). If the candidate resource configuration
is not a new one, the step size for that test is divided by 2. This is illustrated in
the evolution of test 0: lb-iter 1 resource configuration is the result of modifying the
allocation used in lb-iter 0 by giving 48 PEs from NEMO (192 -> 144) to IFS (528 ->
576), and lb-iter 2 is the result of changing lb-iter 1 by giving 24 PEs from IFS (576 ->
552) to NEMO (144 -> 168). If the step was not reduced the resource configuration of
lb-iter 2 would be the same as the initial one. If the LOAD_BALANCE job can not
find a new resource configuration for a test without using a step size smaller than the
minimum allowed, that test will not be executed anymore. In the example, test 3 is the
one that takes longer to converge, making tests 0 and 2 wait (i.e. the number of PEs for
IFS and NEMO and the performance results are the same) for lb-iterations 5 to 7 and
test 1 for lb-iterations 6 and 7.

Figure 6.5 shows how the coupling improves for different initial resource configura-
tions. Figure 6.6 shows the same but for the Fitness values. At the first lb-iteration,
the "Predicted" (blue) is the configuration with the highest FN and the lowest coupling
cost. But in the next iteration (lb-iter 1), the step size is too big and the configuration
gets worse (the coupling cost is doubled). Subsequent lb-iterations keep improving the
Fitness (and coupling cost) until lb-iteration 4. The configuration using the EDP metric
(yellow) is a bit inferior at the beginning (lb-iteration 0) but it is improved in the next
iteration. During the lb-iteration 2 it becomes worse than with its initial setup, but
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this test is needed to then find its better configurations in lb-iterations 3 and 4. The
approach of using the same SYPD (red) for IFS and NEMO was already discussed in
Section 5.2. This example shows again how this configuration is suboptimal. In the first
lb-iteration the coupling cost is 20% and the FN is less than the Predicted and EDP
configurations. But the auto-lb workflow can balance this configuration in subsequent
iterations to reduce the coupling cost and increase its FN. Finally, the worst configura-
tions is the same nproc (green). It starts having a coupling cost over 30% and it is the
one with the smallest initial FN. But next lb-iterations can reduce the coupling cost and
make it a better resource configuration.

Notice that starting the auto-lb with a resource configuration that is imbalanced
(e.g. same nproc) makes the workflow converge much slower than when starting with
a well balanced one (e.g. Predict). We can observe this in Figure 6.5: the "Predicted"
resource configuration takes 5 lb-iterations to converge and the "same nproc" takes 8.
Therefore, while the lb-workflow can balance any resource configuration, providing a
well balanced one is important as it reduces the amount of lb-iterations needed to finish
(i.e. the amount of simulations to run on the HPC platform and the overall cost of
running the workflow).

The workflow finishes if the LOAD_BALANCE job can not find any new resource
configuration for the next lb-iter. Later, it will create the plot with the performance
metrics of all the executed tests and mark the best one in green (as seen in Figure 6.4).
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Figure 6.4: Example illustrating the Load-balance workflow.
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Figure 6.5: The coupling cost is reduced by allocating PEs from one component to the
other.

Figure 6.6: The FN value tends to improve as the workflow iterates. But the best
solution does not have to be at the last one.

6.4 Portability to ECMWF HPC

EC-Earth3 was already deployed on the ECMWF supercomputer. Therefore, the porting
of EC-Earth3 was already done and using the AS workflow manager to handle the tasks.
So no further changes were needed in that regard. However, some modifications to the
auto-lb method had to be introduced to run on this machine. Firstly, the scheduler
used in ECMWF machine is LSF, while SLURM is used in MareNostrum. That means
that the header of the batch jobs had to be modified on the script that creates the
job list for AS (Section 6.3.1), translating the SLURM commands to LSF. LSF requires
defining explicitly the allocation of each MPI process to a physical core. Table 6.9 shows
the differences when running an experiment with 144 processors divided as 1 XIOS, 36
NEMO, 106 IFS and 1 RNF. In SLURM only the total amount of processes has to be
defined, in LSF the "tasks" command is used to map the number of PEs to use each
component. Additionally, the "tasks-per-node" command (which in SLURM is set to
be the size of a node) has to be set to the number of MPI processes to run on a node
for each one of the binaries. Finally, the "export" command used in SLURM to set-up
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command SLURM LSF
tasks 144 1:36:106:1

tasks-per-node - 1:36:36:1

export #SBATCH –export=ifs_np=106,
nemo_np=36

#PBS -v ifs_np=106,
nemo_np=36

Table 6.9: Summary of scheduler command modifications to port the auto-lb method
from MareNostrum (SLURM) to ECMWF (LSF)

MN ECMWF
Processor type Intel Xeon Platinum 8160 CPU Intel E5-2695v4 “Broadwell”
Cores per CPU 24 18
CPUs per node 2 2
Cores per node 48 36

Memory per node (GB) 96 128
Network 100 Gbit/s Intel Omni-Path 16 Gbit/s Cray Aries

Linpak Rmax (PFlop/s) 6.47 3.94

Table 6.10: MareNostrum4 and ECMWF HPC machine overview

the IFS and NEMO processes to for a particular run was changed to the equivalent "-v"
command in LSF.

Most part of the POST_LUCIA job (Section 6.3.2) could remain as it was for
MareNostrum. The only change was to load the required Python version and libraries
before running the LUCIA tool and get the performance metrics of the simulations. The
LOAD_BALANCE job (Section 6.3.3) had to be modified to handle the transferring of
files from the ECMWF to the local machine. A "data_transfer" node is used as a bridge
to get the performance metrics as direct connections were not allowed. The performance
results are first moved to the "data_transfer" node and then transferred to the local
machine running AS. If this job finishes correctly, it will keep only the local files. Thus,
it deletes all the copies from the ECMWF machine and "data_transfer" node.

Table 6.10 shows some of the differences between the two HPC machines. The aim of
this work is not to compare how the same model performs on different platforms but to
highlight that the auto-lb method is capable of finding optimal solutions across varying
hardware, probing the portability of the new approach. The size of a node (in number of
cores) is 48 in MareNostrum4 and 36 in ECMWF. This value is used by the Prediction
script as the granularity to interpolate the scalability curves and by the Load-balance
workflow to set the starting step (i.e. the number of processes reallocated from one
component to the other to achieve a better load-balance). This influences the resource
configurations that will be tested and the number of lb-iterations executed before the
workflow stops.
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Results

The auto-lb method has been used to optimize the resource configuration for IFS-NEMO
executions in SR and HR in two different platforms. Firstly, the method is used on the
ECMWF HPC to evaluate the performance gains against processor allocations that were
recommended by only looking at the scalability properties of both components. Later,
the auto-lb method is contrasted against configurations that were specially designed for
very long experiments in CMIP6 and EUCP projects. In these two configurations the
resource allocations were carefully chosen to be optimal after manually trying multiple
combinations.

For each of the following performance studies we have used the auto-scalability work-
flow (Section 6.1) to get the speedup for each of the components, executed the Prediction
script (Section 6.2) to interpolate the curves to have the SYPD values at PEs multiple
of a node size and to generate the top 5 best predicted resource configurations, and run
the Load-balance workflow (Section 6.3) to find the optimal processors allocation.

7.1 ECMF

7.1.1 High resolution experiment in ECMWF machine

The scalability of IFS (ATMIFS in the images) and NEMO (oceanx in the images) using
the HR grids on ECWMF is shown in Figure 7.1. IFS scalability (Figure 7.1a) shows
that its speed can take a range between 0.5 and 3.5 SYPD depending on the number
of PEs used. The cost increases slightly as we use more processors, being 5000 CHSY
the minimum and almost 9000 the maximum. There are two regions where the model
seems to have an important parallel efficiency loss: after 800 and over 1080 PEs. On the
other hand, NEMO (Figure 7.1b) shows a linear speedup as the cost does not increase
as we add more resources, but stays close to 9000 CHSY. The SYPD it rages between
0.25 and 4.

Table 7.1 shows the top5 best predicted resource configurations using a TTSr of 0.5,
without any limitation on the maximum number of resources and using a step of one
node (36 processes) for the prediction script. Additionally, the last row corresponds to
the recommended set-up. The best predicted resource configuration is also shown in
Figure 7.1, giving 1080 PEs to IFS and 1343 to NEMO.

Figure 7.2 shows the different resource configurations tested by the Load_balance
workflow with the performance metrics averaged after running a simulation of 2 months
twice. The original configuration gives a SYPD of 1.94 using 1404 processes (504 IFS,
900 NEMO), and the CHSY is 17709. The cost due to the load-imbalance is 17.02%.
The optimal solution found by the workflow is one of the recommended by the Prediction

43
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script, using 756 processes for IFS and 996 for NEMO, giving a total number of PEs
of 1752. The performance of this new configuration is 2.60 SYPD and 16502 CHSY.
Which means that it is 34% faster and reduced the execution cost by 6.7%. Moreover,
the cost due to the coupling is reduced to 10.53%, meaning that this configuration is
more balanced than the original.

Note that the workflow was also capable of balancing the default configuration (test
5). In lb-iter 3, the coupling cost is reduced to 10.94% and the performance is 2.04
SYPD and 16926 CHSY using 792 processes for NEMO and 612 for IFS. While the total
number of PEs is the same, this new configuration is better than the default (5% faster
and 4.5% less costly).

It is also important to note that most of the resource configurations coming from the
Prediction script (tests 0-4) are much better than any of the achieved from the original
configuration (test 5), even when it is balanced properly (lb-iter 3 test 5). This means
that the Prediction script has found a region where IFS and NEMO can use PEs counts
closer to their individual optimal scalability while still being balanced, thus proving the
usefulness of the Prediction script and the FN metric.

1 2 3 4 5 orig
IFS 1080 1008 1008 756 828 504

NEMO 1343 1086 1105 996 996 900

Table 7.1: Top 5 initial configuration from the Prediction script to be used by the load-
balance workflow for a HR experiment running in the ECMWF supercomputer and a
TTSr of 0.5.

(a) (b)

Figure 7.1: Scalability and predicted best PEs allocation for IFS and NEMO in HR
running on CCA machine
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Figure 7.2: Performance results of each of the resource configurations tested to optimize
a HR experiment in ECMWF. The metrics are the average of 2 runs of 2 months each
and using a TTSr of 0.5.

7.1.2 Standard resolution experiment in ECMWF machine

Figure 7.3a shows the scalability curve of IFS in SR running on the ECMWF machine.
After 600 PEs the SYPD can not be improved much. The maximum SYPD achieved
by this component is less than 20. Figure 7.3b shows the scalability results for NEMO.
Until 200 PEs, the model scales linearly. After that, the execution cost when allocating
more resources starts to grow and the component can not scale after 600 PEs. But with
that number of PEs, the model can run at roughly 40 SYPD, doubling the speed of IFS.

Table 7.2 shows the top5 best predicted resource configurations using a TTSr of 0.5,
without any limitation on the maximum number of resources, and using a step of one
node (36 processes). The last row corresponds to the recommended set-up (orig).

Figure 7.4 The original configuration gives a SYPD of 11.22 using 432 processes (288
IFS + 144 NEMO), a CHSY of 928 and a cost due to the load-imbalance of 15.83%.
The optimal solution is found by the workflow in lb-iteration 2 test 0. It uses 684
processes for IFS and 216 for NEMO, giving a total of 900 PEs for the run. The SYPD
achieved by this configuration is 17.55 and the CHSY is 1230. Compared to the original
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resource configuration, the best one using the Load_balance workflow is 56% faster while
increasing the computational cost by 33%. Moreover, the cost due to the coupling is
reduced to 11.21%, meaning that this configuration is more balanced than the original.

1 2 3 4 5 orig
IFS 756 684 756 684 792 288

NEMO 144 144 180 180 144 144

Table 7.2: Top 5 initial configuration from the Prediction script to be used by the load-
balance workflow for a HR experiment running in the ECMWF supercomputer using a
TTSr of 0.5.

(a) (b)

Figure 7.3: Scalability and predicted best PEs allocation for IFS and NEMO in SR
running on ECMWF machine using a TTSr of 0.5
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Figure 7.4: Performance results of each of the resource configurations tested to optimize
a SR experiment in ECMWF using a TTSr of 0.5. The metrics are the average of 3 runs
of 3 months each.

7.1.3 An ETS configuration for SR in ECMWF

In the previous section we have shown the performance improvements on a SR experi-
ment running in ECMWF. But the difference in the total PEs used in both configurations
was quite different. The original configuration used 432 processes and offered a solution
which was more energy-aware, while the optimal solution found used 900 PEs and was
faster but more costly.

To make fair comparison, we now take advantage of the parametrization of the
Fitness metric to find a more ETS configuration by reducing the TTSr to 0.2 (ETSr =
0.8). Table 7.3 shows the new top 5 configurations provided by the Prediction script.
Figure 7.5 shows the execution of the different tests to find the optimal. The best
configuration is in lb-iter 3 test 2, using 423 PEs for IFS and 117 for NEMO. Achieving
13.94 SYPD and 939 CHSY, with a coupling cost of 8.29 and using a total of 540
PEs. Compared to the original configuration (lb-iter 0 test 5 in Figure 7.4) this new
configuration is 24% (13.94/11.22) faster and only increases the execution cost by 1%
(939/929). Furthermore, this new resource configuration is more balanced configuration,
as the coupling cost is reduced from 15.83% to 8.29%.
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1 2 3 4 5
IFS 576 468 432 468 540

NEMO 144 108 108 144 144

Table 7.3: Top 5 initial configuration from the Prediction script to be used by the load-
balance workflow using an ETSr of 0.8 in SR running in the ECMWF supercomputer.

Figure 7.5: Performance results of each of the resource configurations tested to optimize
a SR experiment in ECMWF using a ETSr of 0.8. The metrics are the average of 3
runs of 3 months each.

7.2 Comparing against "optimal" solutions

The following sections shown how the auto-lb method performs against previously thought
"optimal" resource configurations: A HR experiment used in the EUPC project and a
SR experiment used during the CMIP6 activities. Both experiments were carefully set
up so that they had exactly the same parameters and model releases as the ones used
during the production runs.

7.2.1 HR EUCP

During the European Climate Prediction system (EUCP) project, a high resolution
experiment involving IFS and NEMO was used to simulate a total of 400 years. The
configuration used for those experiments was 912 PEs for IFS and 1392 PEs for NEMO.
Figure 7.6a shows the scalability of IFS. The CHSY does not increase much up to ∼500
processes. Almost achieving an ideal speedup. After 500 processes, there seems to be
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1 2 3 4 5 orig
IFS 864 912 864 768 768 912

NEMO 1389 1389 1437 1341 1389 1392

Table 7.4: Top 5 initial configuration from the Prediction script to be used by the load-
balance workflow to find a better resource configuration for the EUPC HR experiment
using a TTSr of 0.5.

some number of PEs better than others as the model SYPD curve is flat around 800, 900
and over 1000 PEs. Figure 7.6b shows the scalability of NEMO. We observe a superlinear
speedup as the CHSY is reduced as the number of PEs increases. The component,
however, does have a sub-optimal region close to 1000 PEs. And the execution cost
starts increasing at the highest number of PEs configurations.

Table 7.4 shows the default and the best 5 resource configurations found by the Pre-
diction script. The max_nproc allowed is 2400, the TTSr was set to 0.5, the information
per timestep was provided, and there was not any nproc_restriction. The node_size was
set to 48 (MareNostrum4 number of cores per node). The load-balance workflow finishes
after 5 iterations. The performance metrics of each resource configuration are taken by
averaging 2 runs of 2-months. The total execution time of the workflow is 50 hours ( 1
HourperTest * 2 TestsperConfiguration * 5 InitialConfigurations * 5 lb-iterations = 50
hours).

Figure 7.7 shows the result of the auto-lb method for this configuration. The per-
formance of the original resource configuration was 3.54 SYPD and 16277 CHSY, with
a coupling cost of 7.25%. The best solution is found in lb-iter 4 test 4 and achieves a
performance of 3.48 SYPD and 15494 CHSY. This configuration is 1.7% slower than the
original but reduces the execution cost by 4.9%. Moreover, note that there is also a new
and better resource configuration found while trying to reduce the coupling cost for the
original one, the lb-iter 3 test 5. Which uses 876 processes for ISF and 1428 for NEMO.
The parallelization and the SYPD are the same as the original one but the CHSY is
reduced by 363 (2.2%).

Having used this experiment to simulate the 400 years, reducing the CHSY by 4.9%
is equivalent to save the executing cost of running 400*4.9% ≃ 20 years (and more than
300,000 core-hours) with the same configuration.

(a) (b)

Figure 7.6: Scalability and predicted best PEs allocation for IFS and NEMO in HR for
an EUCP experiment using a TTSr of 0.5
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Figure 7.7: Performance results of each of the resource configurations tested to optimize
a HR EUCP experiment using a TTSr of 0.5. The metrics are the average of 2 runs of
2 months.

7.2.2 SR CMIP6

During the CMIP6 project, even when accounting only for experiments used for produc-
tion (not taking into account the spin-up runs), more than 240000 years were simulated
for multiple ESM and across different HPC platforms. At the BSC, EC-Earth3 a SR
CMIP6 configuration was used to execute 14020 years in MareNostrum4. Thus, achiev-
ing the best performance was crucial for such a big project. A "optimal" resource
configuration of 384 PEs for NEMO and 240 for NEMO was agreed upon. This con-
figuration gave a total number of PEs lower than 768 so that each chunk could fit into
the debug queue. Therefore, the waiting time on the queue was negligible but no more
than 1 chunk can be executed at a time by each HPC user. The average performance
results for one chunk with this configuration was 15.29 SYPD, 1113 CHSY and had a
coupling cost of 14.81%. Figure 7.8a shows the scalability of IFS. The model scales well
until 350 processes and seems to saturate at 550. Figure 7.8b shows that NEMO scales
perfectly. The cost of adding more parallel resources is negligible until 600 PEs, where
the speedup gains start being less pronounced than before.

After setting up the experiment and running the scalability curves for IFS and NEMO
with the auto-scalabilty tool, the Prediction script was executed with the following pa-
rameters: there was not any nproc_restriction, all PEs multiple of half of the MareNos-
trum node size (24) were available for both components by setting the node_size pa-
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1 2 3 4 5 orig
IFS 384 360 408 408 408 384

NEMO 264 240 264 240 216 240

Table 7.5: Top 5 initial resource configurations from the Prediction script to be used by
the load-balance workflow for the SR CMIP6 experiment.

(a) (b)

Figure 7.8: Scalability and predicted best resource allocation for IFS and NEMO in SR
for CMIP6 experiments

rameter to 24, the max_nproc was set to 672 (maximum PEs for IFS and NEMO after
subtracting the 95 used by XIOS and 1 used by RNF, 672+ 95+ 1 = 768), and a TTSr

of 0.5.
The Prediction script found the optimal to be 384 PEs for IFS and 264 for NEMO.

The top5 configurations are shown in Table 7.5. Each resource configuration was used
to simulate 3 chunks of 6 months and the average result is taken to get the performance
metrics. The result of the workflow is illustrated in Figure 7.9. Tests from 0 to 4 are
resource configurations given by the prediction script and test 5 is the original one.
The load-balance workflow finished after 4 iterations and a total of 24 (6x4) resource
configurations have been tested. Note however that 4 of them are repeated (lb-iter 3,
tests 0,3,4 and 5). The total execution time of the workflow has been 50 hours. The best
result is 408 IFS - 240 NEMO, which compared to the original configuration is 4.7% faster
(16.01/15.29) and 1.3% less costly (1099/1113). The coupling cost grows from 14.81% to
17.4% but it is compensated by using a number of PEs closer to the optimal for NEMO
and IFS. If the resource configuration found by the auto-lb method have had been used
during the CMIP6 exercise, being 4.7% faster is equivalent to reducing the simulated
time by 14020/15.29 − 14020/16.01 =∼ 41days (if experiments were run by only one
user) while a reduction of the cost by 1.3% is equivalent to the cost of simulating 182
years.

The results also show that the Prediction script has been very accurate as in lb-iter
0 tests 0,1 and 2 also offer resource configurations which are better than the original.
Therefore, the only predicted configuration performing behind the original configuration
is on test 4. Nevertheless, after two lb-iterations the auto-lb workflow achieved a new
configuration (lb-iter 2, test 4) which also outperforms the original one. Likewise, lb-iter
1 test 5 shows that reallocating 48 processes from IFS to NEMO also provide a better
configuration than the original.
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Figure 7.9: Performance results of each of the resource configurations tested to optimize
a SR CMIP6 experiment. The metrics are the average of 3 runs of 6 months each.



Chapter 8

Conclusions and future work

Coupled Earth System Models (ESMs) performance is limited by the load-balance be-
tween its constituents. While some works propose to deal with the problem by adapting
the applications to support malleability, operational ESMs developed and maintained
by different institutions in Europe mainly try to find the best resource configurations
manually. Without a proper methodology and a better set of metrics to evaluate and
improve the load-imbalance, it has been shown that coupled ESMs run with suboptimal
resource configurations that reduce their parallel efficiency.

This work presents a methodology to find the best number of PEs to assign to each
of the components in the most used EC-Earth3 configurations. It consists of: a workflow
to get the scalability properties of the coupled components, a Prediction script which
can estimate what the best solutions are, and an iterative process to run the simulations
on the HPC machine, gather the performance metrics and make fine-grain optimizations
that reduce the coupling cost. Furthermore, the whole methodology has been integrated
into the Barcelona Supercomputing Centre (BSC) official workflow manager used to run
EC-Earth3, the Autosubmit workflow manager (AS), and requires the minimum user
intervention possible.

To evaluate the performance of coupled ESMs we have introduced a new performance
metric that allows to parameterise the energy/time tradeoff. Giving the possibility to
find multiple optimal solutions depending on the specific needs a user may have: a
limitation on the core-hours budged to access a HPC platform, an urgency to get the
results as soon as possible, etc.

The results have shown that auto-lb can be deployed on different HPC platforms
and achieve better resource configurations for multiple resolutions. In European Centre
for Medium-Range Weather Forecasts (ECMWF), the method achieved to improve the
speed of a HR configuration by 34% while the execution cost dropped by 6.7%. For SR
experiments, we found a resource configuration 56% faster but 33% more costly. So we
changed the ETSr parameter to obtain a new allocation which is 24% faster without
adding any extra execution cost.

Furthermore, it has also been shown that even resource allocations that were thought
to be optimal and used for big European and Worldwide projects like Coupled Model
Intercomparison Project Phase 6 (CMIP6) could be still improved, thus potentially
saving 4.7% of of simulated time while still reducing the execution cost by 1.3% for
SR configurations that took months to simulate and consumed over 15M core-hours in
MareNostrum4.

Given that the method does not require to modify the sources of the ESMs, it can
be easily ported to optimize the resource configurations for other ESMs apart from EC-
Earth3. AS is used by other models to execute production and operational experiments
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in the Earth Science department and will be the workflow manager adopted by the next
EC-Earth version (EC-Earth4). Thus, allowing to give access to the auto-lb method
easily for a broad community.

In the future, ESMs similar to EC-Earth will include more components that will be
used in big projects like CMIP7. The auto-lb functionalities will be extended and be
ready for configurations using over 4 components coupled in the same simulation. In
this context, we strongly believe that traditional methods would not be able to achieve
even suboptimal resource configurations.
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