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Climate The large amount of information that arises from the climate is hard to understand and in most cases wind energy users are not able to
information Incorporate it in their daily activities. The main goal of this work is the creation of tailored climate information that can be afterwards used
as a tool to inform wind energy users with greater accuracy than their current approaches.
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Wind en ergy Climate predictions tailored to the wind energy sector represent an innovation to better understand the future variability of wind energy
resources. These predictions can improve decision making processes related with: maintenance works, the matching of supply with
demand and the reduction of financial penalties for incorrect wind power predictions.
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