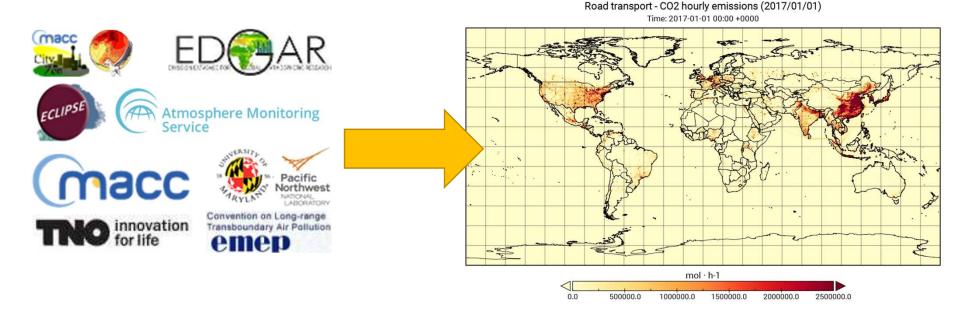
HERMESv3

A python-based, open source, parallel and stand-alone multiscale atmospheric emission model that processes and estimates gas and aerosol emissions for use in chemistry transport models

A processing system to calculate emissions through an automatic combination of existing inventories and user defined vertical, temporal and speciation profiles

bottom-up module (HERMESv3_BU)


An emission model to estimate emissions at the source level (e.g. road link) combining state-of-theart bottom-up methods with local activity and emission factors

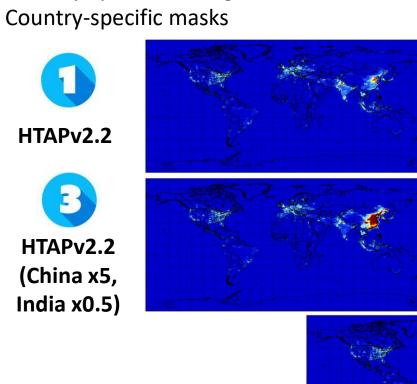
HERMESv3_GR

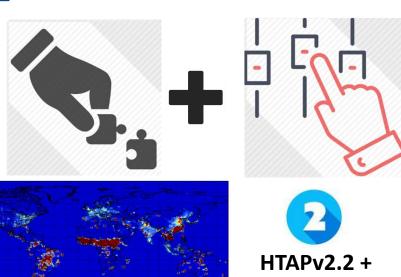
Existing emission inventories

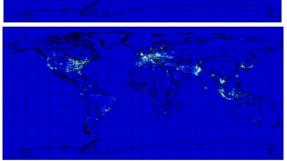
HERMESv3_GR output

- Multiple up-to-date gridded emission inventories available to the user
- User defined destination working domain (conservative remapping)
- Combination of multiple emission inventories
- Application of country-specific scaling factors
- Monthly, weekly and diurnal profiles per sector and pollutant
- Speciation profiles for multiple chemical mechanisms (CB05, AERO5 and AERO6)

HERMESv3_GR: Emission data library

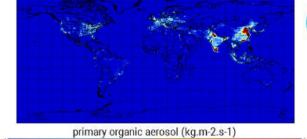

Multiple up-to-date gridded emission inventories available to the user


Name	Sources	Spatial res/cov	Temporal res/cov	Reference
EDGARv4.3.2	Anthropogenic	Global (0.1x0.1)	Annual (1970 – 2012) Monthly (2010)	Cripa et al. (2018) Huang et al. (2017)
CEDS	Anthropogenic	Global (0.5x0.5)	Monthly (1851 – 2014)	Hoesly et al. (2018)
ECLIPSEv5.a	Anthropogenic	Global (0.5x0.5)	Monthly (1990 - 2050)	Klimont et al. (2017)
HTAPv2.2	Anthropogenic	Global (0.1x0.1)	Monthly (2008 and 2010)	Janssens-Maenhout et al. (2015)
GFASv1.2	Biomass burning	Global (0.1x0.1)	Daily (2012-present)	Kaiser et al. (2012)
CAMS- GLOB_ANTv2.1	Anthropogenic	Global (0.1x0.1)	Monthly (2000 - 2018)	Elguindi-Solmon et al. (under preparation)
CAMS- GLOB_SHIPv1.1	Anthropogenic	Global (0.25x0.25)	Daily (2000 - 2018)	Jalkanen et al. (2011)
CAMS- GLOB_OCEANv1.1	Ocean	Global (0.5x0.5)	Daily (2000 - 2015)	-
CAMS- GLOB_SOILv1.1	Soil	Global (0.5x0.5)	Monthly (2000 - 2015)	-
Carn	Volcanoes (degassing)	Point sources	Annual (2005 – 2015)	Carn et al. (2017)
Wiedinmyer	Open air trash burning	Global (0.1x0.1)	Annual (2010)	Wiedinmyer et al. (2014)
TNO_MACC-iii	Anthropogenic	Regional (0.0625*0.125)	Annual (2000 – 2011)	Kuenen et al. (2014)
EMEP	Anthropogenic	Regional (0.1x0.1)	Annual (2000 – 2016)	Mareckova et al. (2017)
CAMS- REG_APv2.2.1	Anthropogenic	Regional (0.1*0.05)	Annual (2000 – 2015)	Kuenen et al. (2014)


HERMESv3_GR

Designing and adjusting the emission modelling experiment:

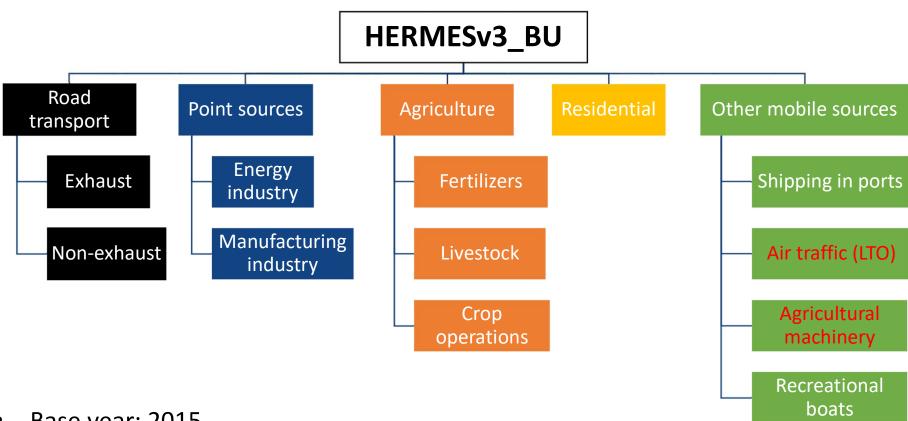
- Combination of multiple emission inventories
- Country-specific scaling factors



GFASv1.2

HTAPv2.2 (China and India masked out)

2.0E-12

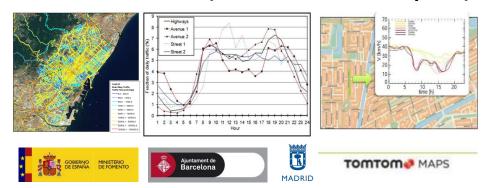

2.7E-12

1.3E-12

ECLIPSEv5.a (China and India) **HTAPv2.2** (other countries)

HERMESv3_BU

Base year: 2015

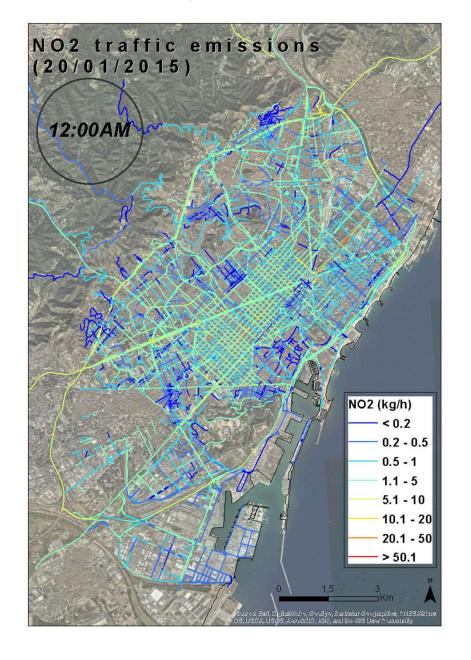

Pollutants included: NO_x, CO, SO_x, NMVOC, NH₃, PM₁₀, PM_{2.5}, CO₂, CH₄

Speciation profiles: CB05 and AERO5

HERMESv3_BU: Road transport

Traffic flow data (vehicle counts and speed)

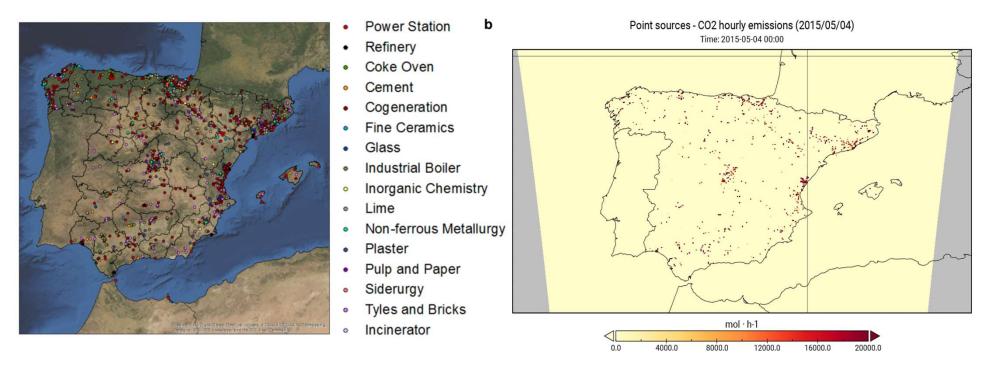
Vehicle fleet composition


Emission factors (speed dependent)

+ resuspension (Amato et al., 2012)

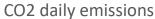
Meteo parameters

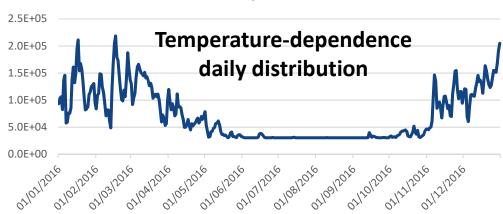
Temperature to account for variation in evaporative/cold-start emissions

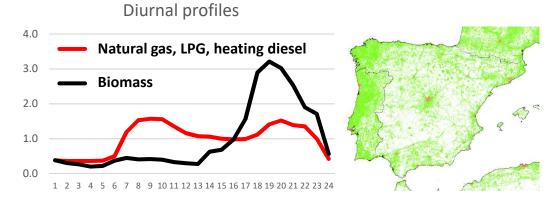

HERMESv3_BU: Road transport

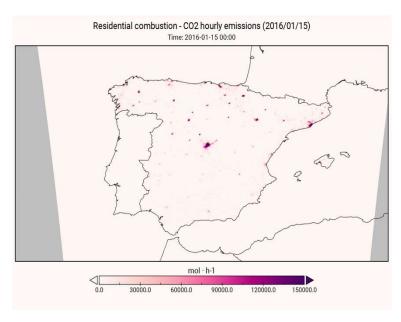
Pollutants included: NO_x, CO, SO_x, NMVOC, NH₃, PM₁₀, PM_{2.5}, CO₂, CH₄ Configuration options:

- Select type of source
 - **❖** do_hot = 1
 - **❖** do cold = 1
 - do_tyre_wear = 1
 - ❖ do brake wear = 1
 - do_road_wear = 1
 - do_resuspension = 1
 - do evaporative = 0
 - ❖ do other cities = 0
- Clip area of interest with a given shapefile or a defined square (lat lon points)
- Select type of vehicles
 - vehicle_types = BD_11 BD_12 (···)

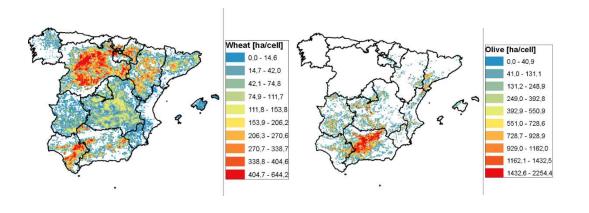


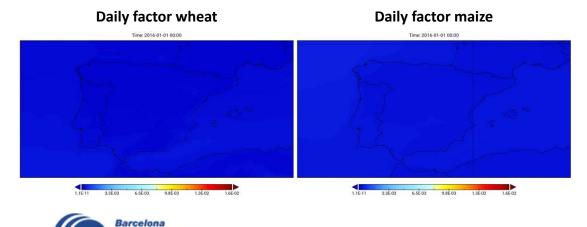

HERMESv3_BU: Point sources


- More than 1,800 stacks with specific information on:
 - Geographical location
 - Activity and emission factors (combustion and process)
 - ❖ Stack height, diameter, exhaust velocity and exhaust temperature
 - Temporal and speciation profiles
- Each source can be individually activated/deactivated
- Hourly measured emissions can be used if available
- Pollutants included: NO_x, CO, SO_x, NMVOC, NH₃, PM₁₀, PM_{2.5}, CO₂, CH₄


HERMESv3_BU: Residential combustion

Fuel-dependence diurnal and spatial distribution




- Pollutants included: NO_x, CO, SO_x,
 NMVOC, NH₃, PM₁₀, PM_{2.5}, CO₂, CH₄
- Select fuel type:
 - fuel_list = HD_res, LPG_res,
 NG_res, B_res, HD_com,
 LPG com, NG com, B com

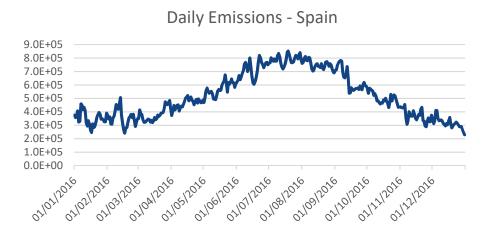
HERMESv3_BU: Fertilizers

Crop-dependence spatial and daily distribution using land use information, crop calendars and meteorological data (temperature and wind speed)

intro Nacional de Supercomputación

Pollutants included: NH₃

Select crop type:

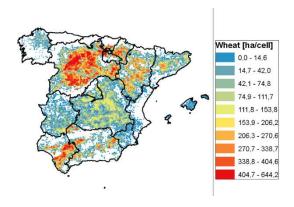

crop_fertilizer_list = alfalfa, almond, apple, apricot, barley, cherry, cotton, fig, grape, lemonlime, maize, melonetc, oats, olive, orange, pea, peachetc, pear, potato, rice, rye, sunflower, tangetc, tomato, triticale, vetch, watermelon, wheat

HERMESv3_BU: Livestock

Animal-dependence spatial distribution

cattle

Meteorological-dependence temporal distribution

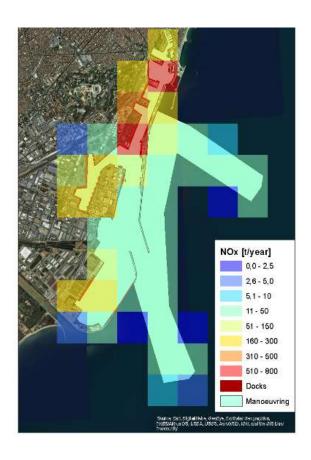


Pollutants included: NO_x, NMVOC, NH₃, PM₁₀, PM_{2.5}, **Select animal type:** animal_list = cattle chicken goats pigs sheep

HERMESv3_BU: Agricultural operations

Crop-dependence monthly distribution using land use information and crop calendars

Cron tuno	Soil cul	tivation	Harvesting	
Crop type	Start_date	End_date	Start_date	End_date
Wheat	1 st November	31 st December	1 st June	31st July
Rye	1 st September	31 st October	1 st June	31st July
Barley	1 st November	31 st December	1 st June	31 st July
Oat	1 st October	31 st November	1 st May	30 th June


Pollutants included: PM_{10} , $PM_{2.5}$,

Select crop type:

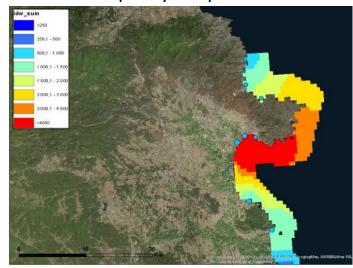
crop_list = barley, oats, rye, wheat

HERMESv3_BU: Shipping in ports

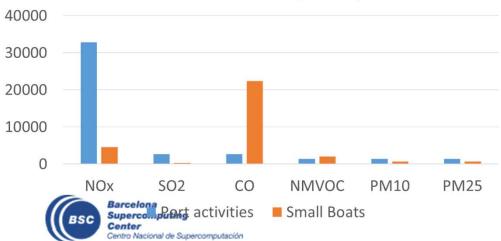
Pollutants included: NO_x , CO, SO_x , NMVOC, NH_3 , PM_{10} , $PM_{2.5}$, CO_2 , CH_4

Select type of vessel:

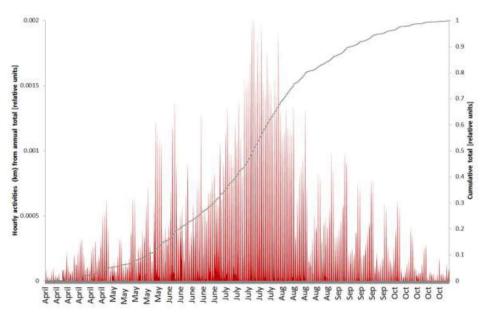
vessel_list = LC,DC,GC,RO,FE,CR,CO,TU,OT


Select port:

port_list = ACO, ALC, ALI, ALM, ARI, ARR, AVI, ALG, BAR, BIL, CAB, CAD, CSA, CAR, CTG, CAS, CEU, HIE, FER, GAN, GIJ, HUE, IBI, LPM, LCR, MAH, MAL, MPO, MEL, MOT, PMA, PAS, PRO, PSM, SSG, SCP, SCT, SAG, SAL, SCI, SAN, SEV, TAR, TRG, VAL, VIG, VIL, ZFC



HERMESv3_BU: Recreational boats


Spatial distribution as a function of the location and capacity of Spanish marinas

TOTAL EMISSIONS (TON/Y)

Estimated temporal profile based on AIS-data

Pollutants included: NO_x , CO, SO_x , NMVOC, NH_3 , PM_{10} , $PM_{2.5}$, CO_2 , CH_4

Select boat type:

recreational_boats_list = YB_001,YB_002,SB_001,SB_002,SP_001,SP_0 02,OB_001,OB_002,WS_001,WS_002,YB_003, SB_003,SP_004,SP_005,OB_002,WS_003,MB_ 001,MB_002,MB_003,MB_004,MB_005,MB_ 006,MS_001,MS_002,SB_004,SB_005

Known issues

HERMESv3_GR:

- Add function to use daily, weekly and hourly gridded profiles (currently only monthly)
- Review parallel writing module

HERMESv3 BU:

- General:
 - Use NMMB-MONARCH/WRF meteo files (from reduced format) (now only ERA5)
- HERMESv3_BU_point_sources:
 - · Implementation of plume rise algorithm in the point source module
- HERMESv3 BU traffic:
 - Implementation of rain correction for traffic resuspension emissions
- HERMESv3_BU_agriculture:
 - Correct FAO's animal density raster files (contact with MITECO, mail)

