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1 TECHNICAL PROPOSAL 

1.1 PROPOSED DEVELOPMENT 
Droughts are among the most detrimental natural disasters due to their broad environmental, social 
and economical impacts (Gerber et al. 2017). It is estimated that around 20% of the total economic 
costs caused by global natural hazards can be identified with droughts (Wilhite 2000) and their 
complex interplay and cascade of possible effects (e.g. reduced precipitation, drier forests, increased 
risk of fires). The multidimensional nature of droughts leads to very heterogeneous representations 
in different disciplines (i.e. lack of rainfall in meteorology, dry soil and crop failure in agriculture 
or reduced river discharges and water reservoirs in hydrology) that in the end avoids to have a 
comprehensive characterization of these events. Moreover, under a global warming scenario, where 
mean annual rainfall rates are expected to decrease but extreme precipitation to increase in many 
regions of the world including most of Europe, the future impacts of droughts through their 
multifaceted relationships are only poorly understood and mostly uncertain (AR5-IPCC). 
Considering all these elements together, it emerges a clear and urgent need to deepen our 
understanding on the occurrence and the cascading effects of droughts. In this proposal, we consider 
seasonal climate predictions in the Iberian peninsula (Spain and Portugal), which is projected to 
move towards a drier climate (Vicente-Serrano et al. 2014, Donelly et al. 2017), as the perfect case 
study to test our ability to improve drought related phenomena predictions and measure the impact 
of the proposed development. 
 
Today, Earth Observation datasets provide valuable information on drought from different 
perspectives. While traditionally these have been based on vegetation, notably due to the difficulty 
in accurately quantifying precipitation from remote sensing data, the main drawback in assessing 
drought through vegetation indices is that the drought is monitored when effects are already causing 
vegetation damage. In order to address drought in the early stages, we need to monitor it from the 
moment when the lack of precipitation occurs, and the advent of soil moisture dedicated missions 
has paved the way for drought monitoring based on soil moisture data  (Escorihuela et al. 2020). 
Variables such as soil moisture or NDVI hold complex relationships to temperature and 
precipitation (e.g. by memory). Therefore it is plausible that eXplainable AI methods can describe 
these relationships. 
 
Seasonal climate predictions have witnessed considerable improvements in the last two decades 
demonstrating that probabilistic forecasting can inform better decision making at some temporal 
and spatial scales (Alessandrini et al. 2013, Doblas-Reyes et al. 2013). However, despite these 
improvements, it is notoriously difficult to provide skilful predictions at seasonal time scales for 
certain climate variables. In particular, seasonal predictions of precipitation exhibit often low skill 
in the extra-tropics (e.g. Cohen et al. 2019; Mishra et al. 2019). Even if the chaotic behaviour of the 
atmosphere does not allow predicting with accuracy the changing weather beyond a few days, 
climate predictions for the forthcoming months or seasons are feasible because atmospheric 
variability on monthly/seasonal time-scales is modulated by slowly-varying boundary conditions of 
the atmosphere such as soil moisture, sea surface temperature, sea-ice and snow cover.  
 
The dynamical-numerical climate models used in operational Seasonal Prediction Systems (SPS) 
are, however, not perfect; and exhibit persisting shortcomings. Of relevance to the prediction of 
climate extremes, including drought, the dominant patterns of atmospheric variability are not 
correctly reproduced by the atmospheric models (e.g. Walz et al 2018), and land surface models 
systematically overestimate drought intensity and duration in the dry season (Ukkola et al. 2016). 
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These types of errors lead to systematic biases that need to be corrected in post process steps. 
Moreover, the occurrence of extreme events are inherently tied to certain spatial resolutions (shorter 
than a few kilometers) that are not directly resolved by current operational SPS which present a 
much coarser resolution. A downscaling is therefore usually required in order to implement local 
impact studies and corresponding mitigation strategies. Traditionally, in-situ observations or 
reanalyses are commonly used as ground truth for all these post processing adjustments, although 
both are subject to known limitations as well. In-situ observational references often exhibit 
important spatial and temporal inconsistencies due to the sparse availability of historical weather 
records while reanalyses, being a numerical output, may present systematic biases as well.  
 
In this sense, the use of different available satellite-based Earth Observation (EO) products (like soil 
moisture, NDVI, lake levels or burned area) appear to be an attractive alternative to integrate into 
SPS a multidimensional, high quality and high resolution source of information required to properly 
characterize the multifaceted nature of droughts. This alternative approach faces however the 
inherent challenge of combining two intimately related but different representations of the climate 
system; the physical drivers provided by the SPS (temperature, precipitation, humidity...) and their 
direct impacts on the environment as seen by the satellite missions. To bridge this gap, the recent 
explosion of breakthroughs and successful examples of applying Artificial Intelligence (AI), in 
particular the branch of deep learning, to many diverse fields (computer vision, speech recognition, 
natural language processing) and also to Earth science (Tsagkatakis et al. 2019, Reichstein et al., 
2019) appears as an evident promising strategy. Some recent studies have already explored the 
potential of AI to exploit the temporal auto-correlations between EO-products alone to build skillful 
data-driven prediction models (Kraft et al. 2019, Foley et al. 2020). Others applied deep learning to 
explain in-situ environmental indicators (like soil moisture) from meteorological drivers (Cai et al. 
2019). And finally, very few studies have already shown that valuable data-driven models can be 
built combining deep learning, meteorological data and satellite-based observations (Peng et al. 
2018, Requena-Mesa et al. 2020, Klingmüller et al. 2021). However, the current approaches have 
only focused on describing one particular environmental impact represented by one single EO-
product (i.e. soil moisture or NDVI), have been limited to explore temporal relationships of a few 
days or have only minimally explored the interpretability of the often inescrutable data-driven 
models. 
 
In this proposal we present a comprehensive approach combining AI techniques, dynamical SPS 
and multiple EO-products that are appropriate for studying societal impacts (e.g. soil moisture, 
NDVI, lake levels or burned area) with the goal of improving our prediction capabilities and 
enriching our understanding regarding the causes, evolution and consequences of droughts at 
seasonal time-scales. We propose two lines of work (figure 1);  

• The first one will aim to directly improve raw seasonal forecast outputs (temperature, 
precipitation, humidity…) through an AI-based bias-adjustment and downscaling post 
process that will include EO-data during training.  

• The second one will instead provide seasonal predictions of multi EO-products making 
use of historical data (physical drivers and EO-products) during training.  
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Figure 1 Overview of the proposed development in AI4DROUGHT. Adapted from Requena-Mesa et al. 2020 
 
Both lines of work will be analysed with eXplainable AI (XAI) techniques in order to provide 
interpretability of the data-driven models and generate trust in the corresponding results. To unveil 
the potential cascade effects, a Hazards Events knowledge graph (Masmoudi et al. 2021) will be 
established providing causal interrelations between identified climate extreme events variables. 
AI4DROUGHT aims to become a milestone achievement in the generation of actionable knowledge 
on the relationship between Earth Observation long-term data records and modelled climate 
variables through innovative multi-scaled AI approaches.  
 
The AI4DROUGHT methodology will be demonstrated in the prediction of drought climatic events 
over the Iberian peninsula. With end-to-end demonstration scenarios, we will assess the 
improvement potential of such prediction and identification, as well as the assessment of actionable 
knowledge generated for policy-makers and risk-managers. Finally, the proposed methodology 
combining numerical climate models with AI driven approaches at different temporal and spatial 
scales to identify multi-hazards and cascading effects will be highly scalable, replicable and 
transferable to other regions and applications, thanks to data driven approaches and pipelines that 
permit to automate and continuously store climatic experiences.  
 
AI4DROUGHT is designed as a stepping-stone in Destination Earth, as it will provide: 

• functional inputs to data lake repositories and platforms enabling connectivity and access 
to cloud-based modelling and multi-scale predictive tools; 

• a wealth of actionable long data records on agricultural drought characterisation from 
Copernicus and Earth Observation sources, covering past, present, and future temporal 
scenarios, with a fast an easy access by application programming interfaces (APIs); 

• actual simulation engines available in real/near real time combining Earth Observation 
pipelines and seasonal forecasting models, based on data fusion and eXplainable AI, 
directly linkable to Digital Twins, fully documented for their integration; 

• a multi-hazard events knowledge graph around drought will store the causal interrelation 
between climate extreme events variables and cascading effects, under which semantic 
analytics and reasoning will serve to distil collateral cascading effects, demonstrating the 
direct impact of having a Digital Twins of the Earth system (Bauer et al. 2021). 
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1.2 SCIENTIFIC OR TECHNICAL OBJECTIVES 
The following are the main objectives to be achieved. Under each objective, specific target points 
are summarised, which contribute to achieving the objectives and their demonstration. 
 
Objective 1 tackles the scientific challenge in AI4DROUGHT and Objective 2 the technical one. 
 
Objective 1: To enhance our knowledge on the cause and effects of drought events by the 
combination of the complementary climate system descriptions provided by EO-based 
observations and Seasonal Prediction Systems (SPS) through the implementation of AI-based 
algorithms 
 

a. Improve operational SPSs raw outputs through AI-based post-processing techniques trained 
including EO-products to increase spatial resolution (downscaling) and to remove 
systematic biases leading to an enhanced predictive skill. 

 
b. Provide seasonal EO-based drought product predictions computed from AI-based models 

that translate climate model-based seasonal predictions into simulated EO products. 
 

c. Unveil and quantify the highly complex relationships that relate climate state variables 
typically provided by SPSs to characterize drought (e.g., precipitation, temperature, 
humidity) with those provided by EO-based datasets (e.g., soil moisture, NDVI, lakes level) 
through the use of appropriate explainable AI techniques applied to both predictive lines 
described above. These comprehensive results will enrich our knowledge of the physical 
processes that interplay in drought events providing at the same time hints to improve the 
physical models in the SPSs through better representations of the inter-variable relationships 
unveiled.  
 

d. Explore the chain of possible effects related to drought events linking the initial physical 
drivers (precipitation, temperature,....) all the way to the final measurable cascade of impacts 
through the implementation of data-driven causality graph models. Additionally, we will test 
our enhanced ability to predict these cascading effects making use of both hybrid seasonal 
prediction pathways previously developed. 

 
 
Objective 2: To design the appropriate deep learning architectures that allow us to maximize 
the extraction of information from both the EO-based datasets and the SPS. 
 
This objective will be achieved by the implementation of the following steps: 
 

a. Set-up of relevant operational big data ingestion and processing pipelines to ensure smooth 
running of all tasks. 
 

b. Development of an AI-based bias adjustment and downscaling post processing model 
inspired in image-to-image translation deep learning architectures that will incorporate 
drought related information from relevant EO-products to enhance the predictive skill of raw 
SPS. 
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c. Development of an AI domain transfer function based on image-to-image translation deep 
learning architectures that will convert most relevant droughts' physical drivers (e.g., 
temperature, precipitation) provided by SPS into convenient EO-based drought products. 
 

d. Analysis of hazard events variables to predict potential risks and also, provide a hintered 
link between the variables to generate automatic pipelines for annotating risks and cascading 
effects.  

 
e. Elaboration of a data-driven causality graph model (called “Hazards Events Knowledge 

Graph”) in order to annotate the different extreme events and predict/identify potential 
cascading effects using semantic analytics.  

1.3 REQUIREMENTS TO BE ADDRESSED BY THE PROPOSED 
DEVELOPMENT 

The following requirements are defined as expressed in the SoW, and according to the 
understanding of the consortium. 
 
Consistent language will be used in the requirements wording in accordance with the following 
conventions: 

- “shall” indicates a mandatory provision.  
- “should” indicates a recommended provision.  
- “will” is a declaration of purpose such as a design goal. 
- “may” indicates a permission for a provision. 
- “can” indicates a possibility or capability.  

 
A first iteration of the AI4DROUGHT requirements is presented, coming from relevant SoW 
requirements and a list of preliminary requirements compiled by the consortium according to 
different nature: scientific, conceptual and design, system and software, testing, verification and 
validation, data, functional and non-functional, according to the proposed work. The consolidated 
baseline requirements will be generated as a task in the project, after a thorough state-of-the-art 
and technical and scientific gap analysis.  
 
Table 1 Preliminary Requirements Baseline 

ID Name Description Verification method 

REQ-
SW-001 

Explainability  Explainability should be 
considered in the design of 
physics-driven AI 

Setting of a human-grounded methodology 
(human-in-the-loop) for the evaluation of 
the model results and the rule-based  
outcome provided by the applied XAI 
techniques  

REQ-
SW-002 

Transparency Outputs of AI based models shall 
be checked against transparency 

Assumptions encoded in the models must 
be plausible and backed up by scientific 
works as well as the combined expertise of 
the 3 partners. 
 
Development of systematic data exploratory 
and data causality analysis to gain 
transparency prior to AI model training 
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REQ-
SW-003 

Testability Outputs of AI based models shall 
be checked against testability 

WP3000 will focus on the development of 
models. The outputs will be implemented as 
a self-standing demonstration scenario, 
fully without executable open code from a 
set on input data, which will be also be 
made available  

REQ-
SW-004 

Fairness Outputs of AI based models shall 
be checked against fairness, 
accountability and trust  

Project outputs will be tested against ground 
truth datasets fully documented and 
accessible   

REQ-
SW-005 

Interpretability  AI solutions for Earth Science 
should consider aspects related to 
interpretability such as: 

- inherently interpretable 
and/or 

- permit model inspection 
and/or interpretation 
and/or 

- Error control, error 
modelling, quantified 
uncertainty 

A  combination of techniques (permutation 
analysis, visualization of features-heatmap 
activations, and clustering activations) will 
be used to open-up the AI black box and 
gain trust on what the model has learnt. 

REQ-
SW-006 

Uses Case The contractor shall define a use 
case considering one or more 
extreme climate and/or weather 
events with regional to global 
impact, focusing on aspects 
related to drivers, triggers, 
interactions and/or impacts 

The project focused on drought in the 
Iberian Peninsula, and the climatic variables 
that characterise this agricultural drought in 
particular, from the physical modeling and 
Earth Observation worlds. Drought 
cascading events will be analysed in the 
combination with heatwaves and 
consequent fires. 

REQ-
SW-007 

Test and 
Validate 

The contractor shall implement, 
test and validate an AI4EO 
methodology and algorithm 
incorporating explainability and 
demonstrate its suitability for the 
proposed Earth System Science 
use case focused on extreme 
events  

Task 4.1 will provide with an independent 
benchmarking of the methods developed 
Task 4.2 will result in an error analysis and 
uncertainty assessment applied to drought 
cascading events in the Iberian Peninsula in 
the last decades 

REQ-
SW-08 

Scalability  The contractor shall deploy the 
solution on a cloud infrastructure 
and demonstrate the solution is 
computationally scalable  

Task 3.4 implementation and results will be 
uploaded to a cloud repository, together 
with the input data needed to execute the 
scalable demonstration scenarios end-to-
end. A data lake will be set up in Task 3.2 
which will greatly support scalability 

REQ-
SW-09 

Workshops The contractor shall organise 
collocated workshops at the Phi-
week 2021/2022 and/or ESA 
Living Planet Symposium 2022 

WP5000 addresses both conferences 

REQ- Demonstration  The proposal shall demonstrate Performance of the proposed methods will 
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SW-010 the viability and performance of 
their proposed methods on 
concrete demonstration scenarios 
with occurrence or impact at 
regional to global scale.  

be measured by Task 4.2 on the 
demonstration scenario cascading effects 

REQ-
SW-011 

Data 
availability 

The proposal shall describe 
whether and how the algorithms 
and data products generated 
through the course of the 
proposed research will be made 
available to the scientific 
community for replication and 
validation 

Self-standing end-to end demosnatrtion 
scenarios will be implemented on a cloud 
repository as open source with access to the 
input data for its full execution. See 
Implementation aspects. 

REQ-
SW-012 

Duration The project shall be carried out 
within maximum 24 months 

Management and contractual sections 

REQ-
SW-013 

Open Science The projects should adopt as 
much as possible the principles of 
Open Science 

AI4DROUGHT will provide open source 
code and will promote publication in open 
access journals 

REQ-
TVV-
001 

Reliable Risk 
Assessment 
models 

Demonstrate the viability and 
reliability of the risk assessment 
digital tool and AI driven models 
in specific scenarios of droughts 
with the theoretical study to 
transfer to other types of scenarios 
and casuistics 

Demonstration of a combination of XAI and 
semantic analysis over a semantic 
knowledge graph and climate seasonal 
modelling outputs to identify hazardous 
events and generate actionable cascading 
effects pipelines. 

REQ-
TVV-
002 

Analysis of 
cascading 
impacts caused 
by extreme 
events 

Combination of seasonal climate  
models with AI to enhance the 
understanding of risks and 
adaptation pathways. 

Elaboration of a Hazards Events knowledge 
graph to analyse patterns related to 
hazardous events and potential cascading 
effects caused by previous and historical 
events. 

REQ-
TV-V-
003 

Discovery of 
extreme events 
patterns using 
AI 

Combination of the seasonal 
climatic models outputs and EO / 
observations with AI driven tools 
to the identification and annotation 
of extreme climate events 

Elaboration of two-layered AI driven tools to 
(i) detect patterns produced by the 
combination of different EO variables; and 
(ii) detection of patterns caused by temporal 
variability of the variables. 

REQ-
DATA-
001 

EO input data 
consistency 

EO datasets need to be regionally 
comprehensive, global in scope 
and consistently formatted to be 
useful for evaluating and 
improving climate and Earth 

A data preparation step will format and 
prepare cropped global data in its original 
grid, converted to Zarr, generate metadata 
files in STAC and make them available in a 
cloud-based data lake repository 
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system model (National Research 
Council. 2012) 

 

1.4 INNOVATIVE ELEMENTS WITHIN THE PROPOSED 
DEVELOPMENT 

AI4DROUGHT is highly innovative in nature, as it responds to the AI4Science initiative overall. 
In the context of the proposal, the following elements can be highlighted, as they represent a clear 
advancement in the state-of-the-art: 
  
1) Modelling of Earth Observations from physical model outputs  will allow the prediction of 
climate hazards such as drought, heat waves and fires 
 
Climate change is global, although its visible impacts have a great variation at local scale. 
Earth’s surface observations and relationships with driving climate variables remain  partly 
unresolved by existing physical models, and in some cases even unknown. We build an AI 
model  predicting future earth observations with inputs combining future mesoscale climate 
variables obtained by physical modelling (reanalysis or projections) and past memory of  high 
resolution earth surface observations. This approach is unprecedented since it places EO data 
predictions as an intermediate task  for climate impacts modelling.  By using high resolution 
grountruth provided by earth observations, the proxy for climate hazards assessments 
(drought, heatwaves, hazards) turns into a high resolution dataset. Last December, at the 2020 
NeurIPS conference, Requena-Mesa et al. 2020, presented their EarthNet 2021 analysis ready 
dataset, containing target spatio-temporal past and future Sentinel 2 satellite imagery at 20 m 
resolution, matched with high-resolution topography and mesoscale (1.28 km) future weather 
variables. The challenge is to predict future NDVI as seen from space, given coarse weather 
projections. By following this forefront path, we aim at forecasting a larger pool of EO data 
(soil moisture, NDVI, water bodies, burned area ..) and at a seasonal time scale.  
 
2) Data assimilation, or the process of combining observations and the forecast output from a 
weather/climate prediction model, is a challenging and imperfect process with many data 
constraints. 
 
AI techniques can help to fill the gap between modelled datasets and EO products by learning the 
complex spatio-temporal and multi-variate statistical links that exist between climate variables and 
satellite products. This knowledge will be extracted from observations-based records (gridded 
observations, reanalyses and satellite products) and transferred to seasonal predictions in order to 
correct its biases and to expand the portfolio of products that a climate service can offer. These 
statistical relationships will be encoded in AI-based transfer functions that can be trained on 
reanalysis and satellite products and then applied to variables from a seasonal forecasting system 
(Perfect prognosis) or learnt directly by fitting seasonal predictions to satellite and reanalysis 
products (Model Output Statistics).  
 
3) Working with a production mindset in order to deliver operational products from state-of-the art 
research 
 
Big geo data access, management, processing and visualisation define computational constraints 
preventing from delivering models adapted to deployment. Therefore, strong efforts in cuning 
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state-of-the art models can hide impossibilities of applying these models as solutions to real-world 
problems. By building on all recent years tools, platforms, libraries, data standards, production 
frameworks  (see 1.3 Requirements), we aim at thinking operationalisation since the first moments 
of conceptualisation.  
 
4) Next generation of AI4EO: stepping up from traditional vision problems to multi-types data 
blending  
 
Although DL-based techniques, namely convolution-based architectures (among the frequent  
frameworks of AI4EO are found CNNs, ResNets, UNETs, conv-LSTM), have been used 
extensively in EO and climate science (Reichstein et al. 2019), there is not a general pre-designed 
implementation that fits all purposes. Visions problems have been particularly tackled, since their 
transfer domain from natural images to remotely sensed data appears straightforward. Classification 
models (most recent EfficientNet, NFNets, ViT), semantic segmentation (UNET, Segnet), instance 
segmentation/detection (most recent Mask RCNN, Yolo V5, Transformers DETR) are being 
adopted by the deep learning EO community for vision at the rhythm of the release of the 
frameworks implementation. However, in AI4DROUGHT, we will address the challenges of cross-
domain data fusion (improving over the naive approach of adding variables as channels in the input 
of a CNN), domain transfer (in the perfect prognosis approach), of mapping a probabilistic input 
(SPS) to an observational reference (in the model output statistics approach), and producing a 
probabilistic improved seasonal prediction (instead of a deterministic one) for uncertainty 
quantification purposes.   

5)  Actionable and Augmented information for AI modelling interpretability  

One of the main challenges of AI4EO is on improving the understanding of extreme climate events 
and corresponding cascading effects. During recent years, there has been noticed the importance of 
cross-correlating and analysing past events from different spatial and temporal scales (Rudd et al. 
2019, Brunner et al. 2016, Kemter et al. 2020). These studies and analysis are mostly reported in 
literature but some few of them have been operationalised in specific databases. Therefore, there is 
a lack of knowledge and data to empower decision-making in relation to the (predicted) occurrence 
of extreme climate events. Complementing this information, there is also a trend on generating open 
data spaces in several areas due to making information and knowledge available for a broadening 
range of disciplines including environment, water, etc. Under this perspective and trends, 
AI4DROUGHT will advance on the generation of knowledge graphs and databases to provide 
augmented information considering different EO variables interrelated at different scales and 
temporalities. Moreover, AI4DROUGHT will also make this data openly available to be used by 
other digital systems (Digital Twins) or scientists. 

1.5 SCIENTIFIC OR ENGINEERING DEVELOPMENT APPROACH 
1.5.1 Scientific/Technical Steps 
This project will develop methodology to explain the relationship between Earth Observation long 
term data records and modelled climate variables allowing the improved prediction of key variables 
such as soil moisture in forecasting systems. The impact of this work will be measured in the scope 
of cascading effects in drought related phenomena, including environmental and socioeconomic 
factors. 
 
AI4DROUGHT will follow a clear strategy through the following steps: 
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1.5.1.1 Data preparation and working environment 
An object store or data lake will hold all inputs necessary for the various algorithmic components, 
as well as their outputs. This data lake will be exploited both during initial state-of-the-art analysis 
and experimentation, through the implementation of the refined prototypes and up to the final cloud-
based capability demonstration. 
Input Data 

1. CCI and selected EO datasets providing global long-term data records appropriate for 
climate studies 

Under ESA's Climate Change Initiative, international science teams are undertaking research to 
generate 21 Essential Climate Variables (ECVs). These are key indicators that describe the Earth's 
changing climate and are defined by the Global Climate Observing System. The 21 ECVs produced 
by the Climate Change Initiative (CCI) teams are ECVs that can be primarily generated from 
satellite data. They are validated against independent datasets, they have high levels of traceability 
and consistency, and include quantitative estimates of uncertainty. 
 

Table 2 Climate-quality data records are considered for their suitability to climate research 
 start end Spatial 

resolution 
Temporal 
resolution 

Sensor Ref 

Soil moisture Nov-1978 Ongoing 0.25º daily multi CCI 

Burned area Jan 1982 Dec 2018 0.25º monthly AVHRR CCI 

Cloud Jan 1981 Dec 2016 0.05º daily AVHRR CCI 

Land cover 1992 2015 
(extended to 
2020 

0.3 km yearly optical CCI 

lakes level 1992 2019 0.05º daily multi CCI 

NDVI 1981 ongoing 0.05º daily AVHRR NOAA 

LST 1979 2009 0.5 hourly LandSat Princeton 
Hydrology 

 
2. Climate modelled datasets and in-situ observations from Copernicus Data Store: 

The Copernicus Climate Change Service (C3S) provides a wealth of authoritative and quality 
controlled climate modelled datasets, such as Reanalyses and Seasonal Forecasts, that can be used 
to inform of risk of extreme events in the upcoming months.     
          
From C3S, we will use the ECMWF SEAS5 seasonal prediction system forecast, which contains 25 
members and a hindcast (i.e. retrospective forecasts) starting in 1993. As observational reference, 
the ERA5 reanalysis will be the benchmark employed as ground truth for bias adjustment and 
verification, although in this project EO products will be used as well for that purpose. Other high-
resolution observational gridded datasets such as E-OBS, Iberia01 and ERA5-Land are also suitable 
for the purpose of increasing accuracy, resolution and skill. 
 
Table 3 Quality controlled climate modelled datasets from the CDS 

Dataset Vars 
Spatial 

coverage 
Spatial 

resolution 
Time 

coverage 
Time 

resolution Gaps References 
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ERA5 - 
CDS 

psl, g500, tas, 
ta850, hur850, 
hus850, hurs, 
huss, prlr, uas, 
vas, ua850, 
va850... Global 0.25º 

1979-2020 
(preliminary 
version 
extension up 
to 1950) hourly NO 

https://doi.org/1
0.24381/cds.bd0

915c6 

E-OBS v20 

tas, prlr, 
tasmin, 
tasmax, 
humidity, 
radiation... Europe 0.1º 

1950-2020 
Extension up 
to 1920 daily 

Only land 
values 

https://surfobs.cl
imate.copernicu
s.eu/dataaccess/

access_eobs.php 

ERA5 land 
- CDS 

uas,vas,psl, 
rsds,prlr,swv,t
as global 

0.1° x 0.1°; 
Native 
resolution is 9 
km. 

January 1981 
to present Hourly 

Only land 
values 

https://doi.org/1
0.24381/cds.bd0
915c6 

Iberia01 
tas,tasmin,tas
max,prlr 

Iberian 
peninsula 

0.1º regular 
(and 0.11º 
CORDEX-
compliant 
rotated) 1971–2015 daily No 

https://digital.csi
c.es/handle/1026

1/183071 

Seasonal: 
SEAS5-
C3S 

g500 g850 
hus700 hus850 
prlr psl rsds 
sfcWind ta850 
tas tos global 1º 

Hcst 1993-
2016 
Fcst 
2017-now 6-hourly/daily NO 

https://cds.clima
te.copernicus.eu/
cdsapp#!/dataset

/seasonal-
original-single-
levels?tab=over

view 
   
Based on the above mentioned input data, an initial data volume assessment for the Iberian 
Peninsula (Portugal and Spain) has been carried out and is summarised in the following table. 
Note that the SEAS5 seasonal forecast is assumed to be obtained directly from CDS or its BSC 
mirror in an operational pipeline configuration.  
  
Table 4 Data lake volume estimation 

Dataset Characteristics Original 
format 

# variables 
considered 

Data 
volume 

[GB] 
Global 

Data volume 
[GB] 

Iberian 
Peninsula 

ERA5, daily From raw hourly data, 1979-
2020 

netCDF 20 638.3 1.28 

ERA5-Land, daily From raw hourly data, 1979-
2020 

netCDF 7 1391.5 2.79 

E-OBS 1950-2020 netCDF 10 60.0 0.12 

Iberia01 
 

netCDF 4 2.8 2.80 

CCI soil moisture 1978-2021 netCDF All 12.0 0.02 

CCI burned area 1982-2018 netCDF All 17.8 0.04 

CCI cloud 1981-2016 netCDF All 64.7 0.13 
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CCI land cover 1992-2020 netCDF, 
GeoTIFF 

All 67.0 0.13 

CCI lake levels 1992-2019 netCDF All 2100.0 4.22 

NDVI 1981-2021 netCDF All 780.0 1.57 

LST 1979-2009 netCDF All 52.0 0.10 

TOTAL 
 

  5186.2 13.21 

  
Data will be downloaded from their sources to in-house equipment, cloud-optimised and uploaded 
to the bucket. This cloud optimisation procedure will entail: 

● Cropping the original grid, without regridding 
● Conversion to a unified format, Zarr (file sizes very similar to the original ones above) 
● Creation of multiple dataset views 
● Generation of metadata files (STAC) 
● Uploading of data and metadata artefacts to the data lake 

  
Zarr format. Beyond the in-depth expertise with this format gathered recently by the partners of 
this consortium, Zarr has been a priori selected for this project due to multiple factors: 
  

- Its suitability for multidimensional data such as the multivariate, spatiotemporal fields 
required in this Project. By contrast, Cloud-Optimised GeoTIFFs are limited to the 
geospatial dimensions, requiring a large number of objects to represent the same data and 
losing the capability to compress in non-geospatial dimensions (e.g. time, elevation). 
 

- Its unique combination of simplicity (just a chunked N-dimensional matrix, which can be 
distributed globally through a Content Delivery Network) and flexibility (arbitrary selection 
of compression schemes and key-value stores, arbitrary metadata properties, etc.), which in 
practice have led to a proliferation of interoperable software tools, especially in its native 
Pangeo ecosystem but also more and more in the data visualisation domain. 
 

- Compatibility with current backend-agnostic tools, e.g. xarray, dask. 
  
Given the relatively low data volumes, it is expected that multiple copies (so-called dataset views) 
be stored, with different chunking configurations. These will enable various use cases, such as 
optimised bulk processing (large chunks, reducing overhead), and interactive exploration (small 
chunks in multiple dimensions, facilitating access to small subsets). 
  
The SpatioTemporal Asset Catalog (STAC). Metadata will be stored alongside the data in the 
same serverless fashion, using the emerging standard STAC. Data browsing and discovery will be 
possible thanks to interoperable tools such as Pangeo’s Intake, or downstream services which 
provide additional features (e.g. search). 
  
High scalability: storage. The selection of object storage for the data repository aims to cope with 
the demand for high scalability. Given the serverless architecture, no infrastructure redesign is 
needed even if eventually the area of interest is expanded to global coverage. Storage itself follows 
the pay-as-you-go model, so it is virtually boundless, and high performance levels are independent 
from volume (typical values shown): 
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● Data availability: ~99.99% 
● Data durability: ~99.999999999% over a given year 
● Low latency, thanks to fast origins (S3 buckets), a dense CDN, and no server in the middle 

  
Object storage features are provided not only by conventional cloud providers (AWS, GCP, Azure) 
but also by EO-specialised clouds (DIAS). 
  
High scalability: containerisation. All algorithm components will be containerised, with two 
goals in mind: (i) facilitating portability and repeatability; and (ii) enabling parallelisation and 
horizontal scalability (clustering) in a large data volume scenario, also benefiting from the high 
throughput and parallel-access characteristics provided inherently by the data lake 
 
1.5.1.2 Modelling approaches (applied data fusion) 
Machine learning models, and specifically deep learning models, are universal approximators able 
to represent highly complex nonlinear spatio-temporal and multi-variable relationships. Their 
successful application in diverse Earth science fields have been already demonstrated in very recent 
years (Reichstein et al., 2019) fueling an unstoppable motivation for further new promising results. 
Here, our aim is make use of AI to maximize the extraction of information from the available EO-
based products related with droughts in order to incorporate it to current operational SPS to generate 
two types of complementary and improved predictions; (1) EO-corrected seasonal predictions of 
common drought’s physical drivers (e.g., temperature, precipitation, humidity) and (2) EO-based 
products (e.g., soil moisture, NDVI, lake levels) at the seasonal timescale. Models from both 
approaches will learn during training the relationships between physical drivers and the EO-based 
products but they will differ in providing distinct and complementary outputs (see figure 1 and 3).  
 
Supervised Deep Learning (DL) architectures, such as those commonly used in computer vision 
(Salcedo-Sanz et al. 2020) are particularly suited to the spatial structure of the rasters embedding 
climate variables and satellite imageries. Common applications in computer vision encompass 
classification  (most famous architectures are ResNets, DenseNets, EfficientNets, NFNnets among 
other CNN-based models), semantic segmentation (UNets, Segnets and other Encoder-Decoder 
types architectures), detection/instance segmentation (Yolo, Faster R-CNN/Mask R-CNN). 
Generative models, like Variational Autoencoders or Generative Adversarial Networks, represent 
very promising architectures to be used in climate science since they aim to directly learn the 
statistical distribution of the ground truth which nicely resonates with the inherent unpredictability 
of the climate system and correspondingly with the requirement of working with probability 
estimations instead of deterministic approaches in any type of climate prediction. Recently, 
Transformers are revolutionizing the DL field for vision by by-passing restricting the limited local 
field of view to creating connections between distant pixels thanks to the “attention mechanism”. 
Transformers for detection and panoptic segmentation (implemented by the DETR architecture) 
disclose outstanding performances. Mapping architectures (segmentation/panoptic segmentation) 
appear to be the most suitable candidates to map these complex inter-variable Earth system 
relationships (Reichstein et al., 2019). However, some are easier than others to train by construction 
and in terms of the required amount of training data. Therefore, baselines such as well mastered 
UNets or ResNets should be favoured to consider for first experimentation of these multi temporal 
scales data fusion. Data blending should take into consideration the different input/output time 
scales, where blocks of convolutional layers should take in input similar time correspondances if 
channels are composed of different features. For instance, one convolutional block dedicated for 
past EO data memory, and another one for future climate variables before merging these layers into 
the mapping architecture (which should conserve the feature maps spatial size in output).  
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In climate prediction, post-processing techniques are commonly applied to raw climate model 
outputs in order to correct systematic biases and improve the limited spatial resolution 
(downscaling). This type of post-processing basically correlates past model outputs (hindcasts) with 
available representations of the past observed weather, usually from ground observations or from 
reanalyses. Two possible approaches are usually chosen for doing so (Maraun et al. 2010); Model 
Output Statistics (MOS) and Perfect Prognosis (PP). MOS aims at reducing the error of the model 
hindcast outputs by fitting them directly to observational data. Instead, the PP approach consists of 
two consecutive steps; a statistical model is first calibrated to correlate two independent 
observational references with distinct spatial scales (one with the climate model low resolution and 
the other with the target high resolution). And then this calibrated model is used to correct the raw 
climate model outputs. Both methods have specific  advantages and disadvantages. MOS is more 
accurate by constructions since the calibration directly minimizes the model-specific systematic 
errors, however limited hindcast time series may lead to less robust calibrations and in turn to some 
degree of overfitting. On the contrary, PP may provide a more generic and thus more robust transfer 
function since the calibrated model is not model-specific being also trained with usually longer 
available time series. The drawback is that it generally provides lower performance than MOS. In 
AI4DROUGHT we will implement DL-based models for both PP and MOS approaches and 
compare them in a robust way.  
 

1.5.1.2.1 EO-enhanced seasonal prediction 
Only recently, AI-based methods have been proposed to learn the highly non-linear transfer 
functions needed to correct climate model outputs (Chen et al. 2020, Gronquist et al. 2021, 
Steininger et al. 2021). These deep learning-based approaches are promising proof-of-concept of 
the potential of CNN-based architectures for the task of correcting information from climate models, 
although it is worth pointing out that none of them have focused on improving a dynamical seasonal 
forecasting system and neither of them have incorporated EO-based products to enhance the 
predictive skill.  
 
We will train our CNN-based models including as predictors all the relevant physical drivers fields 
(e.g., temperature, precipitation, humidity) at inference time-step t from the raw SPS hindcast in 
MOS or from the low resolution observational reference in PP. In order to incorporate EO data 
during training, we will also incorporate as inputs the selected EO products at time-step t=0 to 
provide a further complete representation of the climate system initial state. The ground truth will 
always be the observational reference of the physical drivers at high resolution together with the EO 
products both at time-step t.  
 
 



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  15 of 72 

 

Commercial in confidence 

 
Figure 2 Seasonal forecast for temperature available in the S2S4E DST (https://s2s4e-dst.bsc.es/) for July 2019 
issued in June. Only the forecasts where skill is above climatology are shown. The summer of 2019 in western-
central Europe was marked by two short episodes of extreme heat. 

1.5.1.2.2 EO-based drought products prediction 
Again, only very recently some studies have explored the potential of predicting specific EO-based 
products into the future making use of AI (Cai et al. 2019, Klingmüller et al. 2021).  However these 
studies focus on predicting one single EO field. Here, in order to extract as much information as 
possible from the EO world and also in order to better characterize the multidimensional nature of 
droughts, we propose to explore the use of multiple EO products at the same including fields like 
soil moisture, ndvi, lake level and burned area. This strategy may slightly reduce the predictive skill 
for specific fields but will lead to a more robust AI domain transfer function between the physical 
drivers provided by the SPS and the environmental impacts represented by the EO products since it 
provides more physical constraints. 
 
Analogously to the EO-enhanced seasonal prediction, our CNN-based model will use as inputs the 
physical drivers (raw SPS hindcast in MOS and low resolution observational reference in PP) at 
inference time-step t together with the multi product EO data at time t=0 to characterize the system 
initial state. In this case however, the ground truth will be the multi EO-based product at time t. 
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Figure 3 Simplified diagram with the general workflow proposed for the training of DL-based post-processing 
models. 

1.5.1.2.3 Cascading effects  
Continuous climate change in the southern part of Europe will lead to an accumulation and 
intensification of different extreme events [Enenkel et al. 2021]. Drought and heat events are 
counting as the more impacting events in this area. Moreover, this region is also prone to continuous 
episodes of fires that negatively impacts biodiversity and vegetation. It is expected these events will 
be more frequent in the near future causing substantial impacts on agriculture, inland waterways, 
forestry and land use.  
 
In the way to understand extreme climatic events over this region, existing approaches are focused 
on the elaboration of different climatic models to predict specific key variables for detecting and 
monitoring droughts (soil moisture, temperatures, precipitation to mention a few). The advancement 
and accurate information generated by satellite data [Lie et al. 2021, Papoutsis et al. 2021] permit 
accurate predictions and indeed improved monitoring of potential events. However, there is a need 
to understand multi-hazard risk and the associated cascading effects. Better understanding of risk 
assessment and subsequent cascading effects will support policy-makers and risk-managers to 
prioritize mitigation/adaptation actions and lately, support on the elaboration of climate adaptation 
pathways considering a balance in the AFOLU (agriculture, forestry and other land use) and socio-
economic parameters. 
 
An improvement in the seasonal climate prediction taking advantage of AI will be necessary to 
identify extreme events at different geographic and temporal scales. However, there is a need to 
advance in the understanding of such risk and also the potential cascading effects that could affect 
different areas such as agriculture, water, energy, land cover and other relevant socio-economic 
aspects. Moreover, better insights of risk and cascading effects assessment will facilitate policy-
makers and risk-managers to take accurate actions and design adaptation pathways at different 
scales. Responding to these challenges, the proposal will take advantage of a multi-scale AI driven 
approach to identify, categorise and analyse cascading effects of multi-hazards that could occur over 
different time-scales and across different observed/forecasted variables.  
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Indeed, the methodology we propose is based on the approaches exposed in several risk assessment 
articles that analyze risk at different levels [Vinuesa et al. 2020, de Brito 2021, DEEPCube 
(https://deepcube-h2020.eu)]. Under these methodologies, there is highlighted the importance of 
valuable data considering multi-scaled and temporal variables and extreme events identification and 
categorization. Another highlighted aspect is the analysis of the patterns and occurred extreme 
events to analyse hintered interconnections and interrelations between the variables to operationalise 
the identification of extreme events and cascading effects (through explainable AI or similar). As a 
response to these current challenges, the methodology proposed will combine seasonal climatic 
model information to analyse deeply multi-variable patterns to identify extreme events (e.g. using 
deep learning). Complementing this analysis, temporal analysis of the specific variables will serve 
to analyse potential impacts of the risks and also potential cascading effects that could occur (e.g. 
using time series analysis, pattern recognition mechanisms, etc). To empower the extreme climate 
events identification, a Hazards Events knowledge graph will be established considering previous 
experience and scientific climate information derived from existing databases such as EM-DAT 
[https://www.emdat.be/] and SENDAI [https://www.desinventar.net/] among others. This 
knowledge graph will serve to store and visualise causal interrelations between climate extreme 
events variables and cascading effects (link with other climate extreme events). Under this 
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knowledge graph, semantic analytics and reasoning will serve to distill collateral cascading effects. 
Complementing the Hazards Events Knowledge Graph, an explainable AI mechanism will be 
studied and incorporated to analyse variable interrelationships and automatically annotate causal 
interrelations between variables and events to be stored into the knowledge graph. For that purpose, 
explainable AI algorithms (detailed in 1.5.1.3) will be used as a predictive risk algorithm of climatic 
events that permit at same time, to understand the provenance of this event. 
 
At the end, the proposed solution will empower the generation of actionable information combining 
different sources of information to generate actionable knowledge through innovative multi-scaled 
AI driven approaches combined with seasonal climate predictions. This methodology will be 
demonstrated in the prediction of fire events and related impacts over the Iberian peninsula. 
Specifically, we will focus on the interrelation between droughts and heatwaves patterns and the 
interrelation on the appearance of fires in this mentioned region. With this demonstration, we will 
assess the improvement potential of such prediction and identification, as well as the assessment of 
actionable knowledge generated for policy-makers and risk-managers. Finally, the proposed 
methodology combining numerical climatic models with AI-driven approaches at different scales 
and temporalities to identify multi-hazards and cascading effects will be highly scalable, replicable 
and transferable thanks to data driven approaches and pipelines that permit to automate and 
continuously deal with climatic experiences. 
 

1.5.1.3 eXplainable AI 

Models are ultimately trained and used to improve 
decision making. The eXplainable AI (XAI) techniques 
are used intensively in several disciplines with success, 
but their systematization and intensive use in Earth 
Science is far from the rest of the disciplines [Bussman et 
al. 2020, Demajo et al. 2020, Sachan et al. 2020].  
Moreover, the current taxonomy and classification of XAI 
tools is extensive and depends largely on the input data, 
the model used, and the extent of the explanation to be 
obtained. We find in the literature a multitude of 
methodologies that are classified under a taxonomy in 
which the extension of the explanation is taken into 
account (local methods - global methods), its integration 
with respect to the adjustment of the model (pre and post 
trained) and its specificity to the algorithmic family used 
[Linardatos et al. 2021]. However, there is no 
standardized use of these techniques in Earth Sciences that allows designing an optimal flow of 
techniques for the interpretability of black box models [McGovern et al. 2019]. Therefore, the 
objective of this section is to design a methodological scheme that allows gaining depth in the 
knowledge of drought events, combining observational measurement data with EO data.  

To do this, this task will be developed in three main blocks :  

● Generation of a specific taxonomy for earth science, specially adapted to drought prediction, 
which takes into account the types of interpretation that give value to this discipline. 
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● Selection of techniques according to defined taxonomy to open up de AI4DROUGHT 
models to gain understanding about their learning performance and predictions. Rule-based 
explanations for drought events anc cascade effects will be generated. 

● Evaluation of the explanations and results generated  by each technique. 

The first part of the work will consist of defining the outcomes of the current methods and 
adapting them to the domain of Earth Science. In this sense, this taxonomy will be stratified 
around three dimensions: 

Passive vs active approaches: 

It divides the existing approaches according to whether they require changing the network 
architecture or the optimization process. The passive interpretation process starts from a trained 
network, with all the weights already learned from the training set. Thereafter, the methods try to 
extract logic rules or extract some understandable patterns. In contrast, active methods require some 
changes before the training, such as introducing extra network structures or modifying the training 
process. Until now, the techniques used successfully in Earth Sciences are based solely on a passive 
approach. 

Type / format of explanation: 

It refers to the type of explanation that we want to obtain and fully responds to the project's intrinsic 
objectives, rather than to the construction of the model itself. In this case, explanations can be 
obtained around the importance and weight of the attributes, make sense of hidden network layers 
(Hidden semantics) or obtain sets of logical rules. Current applications, which have been 
implemented in remote sensing image classification environments, focus on the development of 
techniques for obtaining hidden semantics, specifically. 

Global and local interpretability: 

The last dimension, from local to global interpretability (wrt the input space), has become very 
common in recent papers where global interpretability means being able to understand the overall 
decision logic of a model and local interpretability focuses on the explanations of individual 
predictions. 

The selection of XAI techniques will be done under a stratification methodology that encompasses 
both model-specific and model-agnostic techniques [Kakogeorgiou et al. 2021]. 

On the one hand, we will work with global methods to understand how the model makes decisions, 
based on a holistic view of its features and each of the learned components such as weights, other 
parameters, and structures. Global model interpretability helps to understand the distribution of the 
target outcome based on the features. Different techniques will be approached to obtain indicators 
of feature importance, such as permutation importance or Accumulated Local Effects (ALE) to 
obtain measures and relationships of the different variables in the final prediction. In this case, ALE 
is chosen instead of PDP's (Partial Dependence Plots) due to the high correlation of the input 
variables. Special attention will be paid to agnostic techniques, since they are not dependent on the 
specific algorithmic approach (LIME, SKATER, SHAP and ANCHOR). 
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On the other hand, local techniques will also be applied to understand and characterize how the 
ESM measures behave in relation to the EO variables by adjusting the AI transfer with deep learning 
techniques. For this, gradient methods, deconvolutional and guided back-propagation will be used. 

This point is especially relevant since the methodology presented in the proposal uses both EO data 
and physical model data, so the application of these XAI techniques in this context provides the 
opportunity to relate SPS parameters with drought events. Precisely, the use of observations and 
measurements will give greater reliability to the drought prediction model, and it is much more 
advisable to apply XAI techniques in this case, since its value is especially relevant in models with 
very high-performance metrics. Moreover, rule based and global explanations will be derived to 
gain a deeper understanding of drought and extreme climate events. 

Evaluation will take as input the adjusted model and the explanations provided by the implemented 
methods. To this end, we will involve human evaluators to perform a human-level assessment of 
the explanatory properties of the tools to measure the extent to which the explanations of the models 
are human-friendly and understandable. In addition, the ability to explain will also be measured 
through the complexity of the model.  

The transferability of each method, that is, the ability of the explain technique to work across 
multiple machine learning models, will also be considered. For example, specific-model methods 
have low transferability. In addition, other properties will be taken into account in the evaluation of 
the results: 

● Stability: measures how similar the explanations are for similar instances. 
● Importance Grade: measures how well the explanation reflects the importance of the 

features. 
● Representativeness: measures the proportion of instances that are covered by the explanation 

method. 

1.5.1.4 Benchmarking-based validation 
Bias adjustment is a fundamental step to reduce forecast errors and produce usable, tailored and 
high-quality climate predictions (Doblas-Reyes et al., 2013).  Current methods (Torralba et al., 
2017) apply bias adjustment post-process to adjust the statistical properties of climate predictions 
to those of an observational reference. The evaluation of the forecast quality is based on the 
comparison of the hindcasts and past observations. This comparison of conventional bias-
adjustment methods used as benchmarking, will allow us to analyse the merits and caveats of the 
new AI methods using EO developed in AI4DROUGHT. A benchmarking exercise will be carried 
out in T1.1 that will be used for comparison in T4.1. 
 

1.5.1.5 Error analysis and uncertainty measurements 
While these errors persist in state-of-the-art numerical climate models, blending the climate model-
based seasonal predictions with observational data using Artificial Intelligence (AI) methods holds 
great promise to improve the skill of seasonal predictions. In particular, drought and heat extremes 
affect the state of the land surface, and therefore EO-based data representing different land surface 
characteristics (such as soil moisture or vegetation) can help to correct some of the existing errors 
when predicting those extremes. 
 
AI and in particular the branch of deep learning has made advancements in EO using computer 
vision to analyse patterns over vegetation or land cover to mention some. Deep learning has also 
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shown great potential across many different problems in EO (Tsagkatakis et al. 2019) and climate 
sciences (Reichstein et al., 2019) thanks to its ability to exploit large spatio-temporal and multi-
variable datasets. 
 
Modelled datasets such as seasonal predictions and reanalyses provide information on a set of 
climate variables that are key to simulate the ocean/atmosphere/sea ice dynamics. On the other hand, 
EO products are typically derived from satellite radiances, quantities that are not readily available 
from models. Therefore modelled datasets and EO products are sometimes difficult to compare and 
combine. AI techniques can help to fill the gap between modelled datasets and EO products by 
establishing the complex spatio-temporal and multi-variate links that exist between climate 
variables and satellite products.  
 
This knowledge can be extracted from observed records (reanalyses and satellite products) and 
transferred to seasonal predictions to correct its biases and to expand the portfolio of products that 
a climate service can offer. This knowledge and relationships will be encoded in AI-based transfer 
functions that can be trained on reanalysis and satellite products. Lately, this AI-based transfer 
functions will be applied to variables from a seasonal forecasting system (Perfect prognosis) or 
learnt directly by fitting seasonal predictions to satellite and reanalysis products (Model Output 
Statistics). The explainable component of these AI methods is also very valuable to help advance 
the scientific understanding of key processes in the physical sciences that govern the complex 
interactions between modelled climate variables and observable quantities. From the point of view 
of building effective climate services, it is also beneficial to have an understanding of the physical 
aspects and causality links that can back up the predictions of extreme events. Accompanying a 
prediction with a storyline (i.e. the reasoning behind a specific prediction) can give confidence to 
decision-making as it hints on the original sources of the uncertainties. 

1.5.1.6 Output preparation for transfer knowledge: Demonstration 
scenario 

Once the methodology is fully tested, and the models are working at a known performance, an end-
to end demonstration scenario will be fully documented and implemented in open source code on 
cloud environment, together with a subset of input data allowing the execution by any given third 
party demonstrating the impact of the improved solution on Earth system modelling on one side, 
and on the measurement of cascade events such as the occurrence of fires when drought and heat 
waves are recorded in the Iberian Peninsula. 
 

1.5.2 Implementation aspects 

AI4DROUGHT will require a great amount of experimentation with a wide range of inputs, as well as various 
techniques and tools. The design of the processing platform shall provide a high degree of flexibility to the 
scientific experts. It shall also ensure a clear migration path to move from a Development (experimental) 
stage to a Production stage with limited effort. 

In the following diagram a first iteration on the overall system design is presented. Arrows apply to each of 
the interfaces that will be defined within the system 
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Figure 4 Baseline system design 
 
Data consistency and harmonization (of the datasets listed in Section 1.5.1.2): In particular EO datasets will 
be calibrated, regridded to match the resolution and temporally resampled to match the resolutions and 
temporal samplings of the reanalysis and seasonal forecasting system. We may explore AI-based 
downscaling post-processing for coarse climate data, but will default to a conventional interpolation-based 
regridding when needed. A common data lake will be used when possible, at least for a subset of the EO and 
climate data used for training the AI post-processing functions.  
 
Common strategy for Machine Learning training: A strategy should be implemented and agreed throughout 
the project,  including common data formats and data structures, a data splitting strategy for training, 
validation and testing purposes, and techniques for efficient training of deep neural networks on big datasets. 
We will rely on existing open-source packages such as: 

● xarray for input-output  
● holoviews, hvplot, ecubevis for interactive data visualization  
● scikit-learn for traditional ML tasks 
● jupyter-lab for data exploration and experimentation with DL architectures 
● tensorflow (keras) and pytorch for the implementation of DL models 
● horovod for efficient multi-device training of DL models (either for data or model parallelism) 
● xskillscore for forecast verification 
● easyVerification, multiApply, startR, easyNCDF, CSTools, s2dv for climate science tasks 

 
Tests will be conducted as part of the common Machine Learning approach and agreed by the three partners. 
A clear test plan and test workflow will be integrated in the Technical Report. Moreover, a benchmarking 
validation will be also conducted on the results of the demonstration scenario, to state the scientific baseline 
of improvements in drought prediction, and dedicated test results on error and uncertainty analysis will 
highlight the impact of the quality of the measurement in cascading effects. 

Best scientific practices will need to be put in place throughout the project, including preliminary 
experimentation. 
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AI4DROUGHT will adopt the principles of Open Science, and will facilitate the transfer of science results 
adopting Open Source. 

 

1.5.3 First iteration of Task 1: Problem formulation, state of the art and gap 
analysis 

Drought is a very complex hazard with multidimensional implications which explain why there is 
not a common understanding about drought definition. In fact, there is a range of definitions for 
drought. In increasing order of severity, we can talk about: meteorological drought is associated to 
a lack of precipitation, agricultural drought, hydrological drought and socio-economic drought is 
when some supply of some goods and services such as energy, food and drinking water are reduced 
or threatened by changes in meteorological and hydrological conditions. 
 
While the water management sector has routinely been using weather forecasts up to one or two 
weeks in advance, beyond this time horizon, climatological data (typically 5-30 year averages) are 
used. A common assumption in this method is that future conditions will be similar to past 
conditions. This assumption entails two inherent shortcomings. The first one is that past conditions 
can be highly variable, which can make them of limited use to forecast future ones. The second one 
is that climatology cannot predict events which have never happened before, e.g. extreme events, 
which can be particularly harmful and whose prediction is of special interest for stakeholders. Our 
knowledge of climatology is based on a finite sample of past events. This sample is limited in time, 
and is typically not fully representative of what can happen. Moreover, a climatological approach 
does not take into account changes in atmospheric dynamics, such as those caused by climate 
change. Climate change may render past conditions useless for predicting future events, as they may 
no longer be reproduced. 

The skill of seasonal forecasting has improved continuously over the past two decades, due to 
model improvements and better data and forecast initialization. However, despite these 
improvements, it is notoriously difficult to provide skilful predictions at seasonal time scales 
because seasonal forecasting  have major challenges such as: the complexity of the earth system 
dynamics and their integration in modelling systems, the proper definition of initial conditions, 
seasonal systems upgraded only occasionally (in general terms at intervals of four to six years 
due to the resources needed to complete the large re-forecast sets required for calibration),  
coarse resolution, and small number of ensemble members. Those shortcomings are mainly 
derived from model formulation deficiencies, the knowledge on the observed initial conditions 
and the limited computational resources available for its operational generation. Developing 
more skillful seasonal predictions would have, however, an enormous positive impact in a broad 
spectrum of sectors including fields as diverse as environment management, agriculture, energy 
production, health, tourism, logistics, transports, etc. A nice and comprehensive example of a 
recent application of state of the art sSPS is the S2S4E project (https://s2s4e.eu/; Soret et al., 
2019) aiming to provide reliable source information for the management of renewable energy 
variability (see Figure 2). 
 
Precipitation remains a very challenging essential climate variable (ECV) to model but also even to 
observe due to its complex nature. Ground-based instruments, including gauges and radars, are 
widely used across the globe for assessing precipitation. However, both of these observations have 
limitations. Rain gauges are prone to errors from wind effects and evaporation. Radar-based 
measurements are affected by errors due to contamination by surface backscatter, attenuation and 
extinction of signal, brightband effects, and uncertainty of the reflectivity–rain-rate relationship. As 
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a result, comprehensive near-real-time coverage of the earth can only be recorded with satellite 
precipitation sensors [Magioni 2016]. Satellite Precipitation Products (SPP) provide quasi-globally 
in uncovered areas but indirect estimates of rainfall through cloud-top properties modelling 
introducing biases in many regions.  
 
Datasets available for climate analysis and projections integrate a large variety of in-situ 
measurements but hardly integrate some EO observations of high spatio-temporal resolution. The 
sparsity of ground measurements can definitely be compensated by EO data which represent “the 
truth” of the earth system’ status with no spatial gap. Hydrological forecast modelling is particularly 
a good candidate in assimilating EO datasets such as soil moisture for runoff and discharge variables 
and lots of efforts have been dedicated these last two years [Hang et al. 2019]. Challenges in data 
assimilation lie in quantifying and accounting for uncertainties in model inputs, parameters, and 
model structure (Liu et al. 2007), in improving computational efficiency (Moradkhani et al. 2005; 
Sun, Seidou, Nistor, & Liu, 2016), and in assimilating multiple types of observations such as 
streamflow, soil moisture, and snow-water-equivalent (Bergeron, Trudel, & Leconte, 2016).  
 
One very solid piece of evidence that proves how EO data can in fact provide crucial information 
related to precipitation is the recent production of accurate precipitation fields directly estimated 
from processing remote sensing Soil Moisture (SM) data [Brocca 2016, Brocca 2017, Ciabatta 
2018]. Surface soil moisture can be seen as the trace of the precipitation and, consequently, can be 
used for providing a way to estimate rainfall accumulation as well as a constraint to rainfall 
algorithms. One of the most famous forecasting operational models, Global Flood Awareness 
System (GloFAS) has for instance introduced the SMOS soil moisture data in 2020 (Baugh et al. 
2020).  Assimilation is especially beneficial for forecasts in ungauged basins or where processes are 
poorly understood. Other traces of precipitation, like NDVI or lake levels could be used in theory 
as well to provide an enriched and multifaceted stream of information to the system. Here the 
challenge relies on how to blend and incorporate this type of information taking into account their 
very complex and poorly unknown relationships with the physical drivers such as precipitation or 
temperature.  
 
Climate predictions are affected by systematic errors resulting from the inability of global 
circulation models to reproduce all the relevant processes responsible for climate variability and the 
uncertainty affecting the initial conditions. Hence, current methods (Torralba et al., 2017) apply bias 
adjustment post-process to adjust the statistical properties of climate predictions to those of an 
observational reference. In AI4DROUGHT we want to go one step further blending the climate 
model-based seasonal predictions with EO data using AI methods to improve the forecast quality 
(or skill) of seasonal predictions. The AI transfer functions are trained in either a Perfect Prognosis 
or a Model Output Statistics setup, and are based on DL-based architectures for image-to-image 
translation. The estimation of the skill of both, the bias-adjusted seasonal forecast using current 
methods and the improved seasonal forecast by means of AI, is based on the performance of the 
forecasts to simulate past conditions. Moreover, the evaluation of the forecast quality is based on 
the comparison of the hindcasts and past observations. This comparison will allow us to analyse the 
merits and caveats of both methods (conventional bias-adjustment methods and AI-based correction 
using EO).  

AI4EO has mainly been shown to be effective and deployed in production for vision problems, 
benefitting from the success of such methods in natural world problems (face detection, image 
enhancements filters etc..) However, data gaps due to missing pixels and diversity of dates of 
acquisitions of remote sensing data represent serious challenges specific to the EO world and a 
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particular shortcoming for data fusion. While deep learning architectures are transferred to EO usage 
in a timely fashion after release (ResNet, UNET,  Yolo, Mask R-CNN), recently released 
frameworks (EfficientNet, NFNnet, Transformers ViT and DETr) are still being under-represented 
though showing unprecedented performances. Going beyond traditional CNN-based encoder-
decoder (e.g., UNET) or residual (i.e., ResNet) models for data fusion constitutes one way to explore 
designing the AI transfer functions of the system for perfect prognosis and MOS.      

 

1.6 SCIENTIFIC/TECHNICAL FEASIBILITY, PROBLEM AREAS 
AND DEVELOPMENT RISK 

Risk 1. Data pipeline, management and processing architectures delayed implementation. All 
data-driven based models require a very large volume of data to be organised and formatted in a 
suitable manner before actually playing with modelling. The first task of the project (Task 1) has 
been specially designed to define with a high level of agreements considering the entire processing 
chain of what will be the exact in/outs and what will be tried out with reasonable time evaluation. 
Mitigation: As explained in “Data preparation and work environment”, particular attention is 
dedicated to designing the data pipeline in parallel to the experience design, following good 
practises and dedicated developed tools.  
 

Risk 2. Lack of representative EO data to elaborate AI tools in relation to hazards identification 
and cascading effects. The lack of representative data directly impacts on the elaboration of the AI-
driven models. As a mitigation measure, AI4DROUGHT will select reliable datasets to test and 
validate the AI driven tools. 

Mitigation:  In case of insufficient data, we will evaluate the generation of synthetic data using for 
example GANS technique.  

Risk 3. The hazardous events based on historical information are limited. Similarly as the previous 
case, there is a need for the identification and selection of historical climate events to identify 
relevant patterns and cascading effects to model the knowledge graph and also train AI algorithms. 
As a mitigation measure, AI4DROUGHT will select reliable datasets to test and validate the Ai 
driven tools.  

Mitigation: In case of insufficient data, we will evaluate the generation of synthetic data using 
generative modelling algorithms.  

Risk 4. Selected AI driven models do not offer the performance and accuracy as expected. During 
the initial tasks of AI4DROUGHT, there will be selected the most suitable AI driven tools to (i) 
discover multivariate patterns to determine climate events; (ii) temporal analysis of the variables to 
predict trends and also detect fine-grained patterns; and (iii) explain the variables influence of 
climatic events to determine potential cascading effects. If some of the selected techniques do not 
offer a performance and accuracy as expected on the theoretical studies.  

Mitigation: AI4DROUGHT will work with a combination of AI driven models or selection of newer 
ones to offer better results as possible. 

Risk 5. Selected XAI techniques do not give clear and actionable knowledge. In parallel to the 
development of each AI model implemented in AI4DROUGHT, a selection of the most suitable 
XAI techniques will be carried out to (i) model performance understanding; (ii) gaining error control 
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and (iii) generating rule based global explanations of drought and related climatic events. To 
mitigate the lack of human interpretable results provided by the techniques, systematic data 
exploratory and causality analysis will be performed in parallel to the AI model design and 
adjustment. 
   

1.7 APPLICATION OF DEVELOPMENTS RESULTING FROM THE 
PROPOSED ACTIVITY 

Being one of the most important sources of information towards the achievement of sustainable 
development in its many different angles (Earth resources management, policy making, or 
environmental legislation enforcing to say a few), Earth Observation remains underused in the scope 
of operational climate services. These so-called operational climate services are delivered in the 
scope of public and private adaptation plans to climate change, in vulnerability assessment studies, 
or in resilient investment scenarios looking for optimal climate adaptation interventions. In the face 
of the climate emergency and the necessary rush towards the achievement of Agenda 2030 goals, 
operational climate experts are devoted to the understanding of sectoral needs and the development 
of robust solutions in a fast-growing market, and while Earth Observation offers essential 
quantifiable information on the Earth past, present -and even future- natural resources which are the 
very target of sustainable development, the integration of Earth Observation data with predictive 
information remains too complex to be actionable.     
 
Earth Observation has largely demonstrated its potential to contribute to climate resilience, 
providing unique, large-scale and high-definition measurements of the Earth system. Hence, 
projects such as AI4DROUGHT have the potential to truly represent a breakthrough in the 
operational use of Earth Observation in operational climate services, specially those targeted to 
climate adaptation and mitigation interventions, paving the way towards actionable, EO-fed 
predictive services. 
 
The AI4DROUGHT consortium is greatly knowledgeable of the existing needs for the scientific, 
operational and commercial uptake of the outputs of the project as it is part of their expertise and 
their day-to-day activities with stakeholders, users and clients. the Barcelona Supercomputing 
center, a first class research center in Earth System science and supercomputing, and Eurecat, an 
innovation center that counts with more than 650 professionals and a dedicated applied artificial 
intelligence unit working on the industrial, energy and sustainability sectors,  and Lobelia, a 
pioneering company in the use of Earth Observation satellites to address the climate emergency for 
international accounts, can guarantee the direct application, large uptake and high impact of the 
results of the project in their own fields of work across numerous sectors. 
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Figure 5 Lobelia provides drought monitoring operationally to the Cadre Harmonisé in West Africa every 10 

days based on their daily drought product at 1km from soil moisture (Dispatch REF). 
 

1.8 MECHANISM FOR COMMUNICATING/PROMOTING 
OUTPUTS OF THE PROPOSED ACTIVITY 

         
Dissemination will include the publication of (at least) two scientific papers in international peer-
review journals and attendance to major international conferences including: 

• Phi Week 2021 and 2022 
• Living Planet Symposium 2022 

 
Oral presentations as well as workshops and dedicated sessions will be pursued at these events, with 
the idea of establishing a dynamic and open collaboration with the large network of scientists and 
stakeholders in the community. 
 
It is in the interest of the consortium to communicate and promote the outputs of the project via 
Twitter and the partner’s web sites, ESA News, and a use case publication in the form of a Story 
Map. 
              
Communication will be centralised through the project web page. This webpage, on top of providing 
information about the objectives and state of development of the project, will be the main portal 
through which the dissemination and outreach activities will be published. The AI4DROUGHT  
web page will make use of interactive tools such as Twitter to receive feedback. It will also provide 
access to the AI4DROUGHT outputs.  

.  

1.9 TECHNICAL IMPLEMENTATION / PROGRAMME OF WORK 
1.9.1 Proposed Work Logic 
The rationale of the work logic kicks off with the complete and thorough formulation of the problem 
and a gap analysis that will establish the baseline for the study in WP1000 State of the Art and 
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Gap Analysis. The requirements baseline will be consolidated in WP2000 Requirements Baseline 
including the previous WP output, including details on the statement of work requirements as well 
as a full list of requirements for every component of the system. With these outputs, the system 
design and architecture will be established in WP3000 Design and Development, together with the 
set-up of a data lake, or centralised cloud repository containing the input data for the AI-based 
modelling approaches developed and implemented in this WP. WP3000 ends with the transfer of 
the output information as an end-to-end demonstrator scenario to a cloud repository. In WP4000 
Test and Validation, a benchmark of the results against observational data will be conducted as a 
validation means, and the error and uncertainty measured in the cascading effects will be analysed 
also according to the demonstration scenario in WP4000. WP500 Outreach and Communication 
and WP600 Management will be active during the entire project. 
 
It is important to point out that comprehensive main deliverables will be presented at the beginning 
of the project:  the Scientific Report (SR) and the Technical Report (TR). Both reports will be living 
documents with contributions from the different tasks and work packages every quarter, which 
means that the output of tasks such as the architecture design, the test plan, and implementation 
details will be documented in the technical report as dedicated sections rather than separate 
deliverables. The Scientific Report will contain full documentation of the Demonstration Scenario, 
impact of the development and a scientific roadmap for the future. Other deliverables are also 
marked in the following diagram with a circle: the requirements baseline document will include the 
state of the art and the gap analysis outputs. This approach aims to reflect the Statement of Work 
indications and maintain the good development of the project. 
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Figure 6 Proposed Work logic 
 
1.9.2 Contents of the proposed work 

1.9.2.1 Work Breakdown Structure (WBS) 
Table 5 Work Breakdown Structure 

WP and tasks Title Leader 

WP100 Problem formulation, state of the art and Gap analysis BSC 

1.1 Problem formulation BSC 

1.2 State of the art and Gap analysis LOBELIA 

WP200 Requirements baseline LOBELIA 

WP300 Design and development BSC 

3.1 System architecture  EURECAT 

3.2 Data preparation LOBELIA 

3.3 Methods  BSC 
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3.4 implementation and results LOBELIA 

WP400 Testing and validation EURECAT 

4.1 Benchmarking validation BSC 

4.2 Error analysis and uncertainty EURECAT 

WP5000 Dissemination and outreach LOBELIA 

5.1 Scientific publications LOBELIA 

5.2 Web Page LOBELIA 

5.3 Scientific dissemination LOBELIA 

WP6000 Management LOBELIA 
 

1.9.2.2 Work Package Description (WPD) 
 

Project AI4DROUGHT WP: 1000 
WP Title Problem formulation, State-of-the art and scientific 

gap analysis 
Sheet 1 of 1 

Participants  Lead: BSC, Contributor: LOB, EUT  Issue: 1 
WP Manager Albert Soret Date: 14/6/2021 
Effort 610 hours   
Start Event KO Planned Date: T0   
End Event PR2+1 Planned Date: T0 + 5   
Inputs:  
- Statement of work 
- Raw seasonal forecasts and associated hindcast from Climate Data Store (CDS) 
- ERA5 reanalysis and E-OBS for ECV such as temperature and precipitation 
- CCI EO datasets 
- Bibliography, state-of-the art publications 
 
Tasks: 
Task 1.1. Challenge formulation: skill in seasonal forecasting can be improved with the 
integration of EO data (L: BSC; P: LOB) [M0-M3].  
The aim of this task is two-fold. First, the formulation of a range of AI methods for blending 
seasonal climate predictions with EO, based on the available state-of-the-art scientific 
publications on the topic, to explore the frontiers of weather conditions affecting drought 
management for future months. Second, the establishment of a skill benchmark for seasonal 
climate prediction variables, based on current statistical methods, that will be used for 
comparison in WP4 (T4.1). Definition of the Scientific Report complete structure and 
fulfillment of the first section “Problem Formulation” 
 
Task 1.2. Digital EO Services and gap analysis (L: LOB; P: BSC, EUT) [M0-M5].  
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This task aims to lay the foundation of the data-intensive analysis needed to investigate the 
relationship between the essential climate variables from EO (LOB), modeled observations 
(reanalyses) (LOB and BSC), seasonal forecast (BSC and LOB) and the identification and 
selection of relevant variables and indexes to categorise climate hazardous events at different 
scales and temporalities. Moreover, this task will also design the digital architecture to store 
and expose the predictions and AI driven model results (e.g. SOA, REST) 
 
Outputs: 

- D1. Problem formulation (M2) BSC 
- D2. SoA and gap analysis (M5) LOB 
- SR - Science Report with (living document updated quarterly with input along the 

project) 
 
 

Project AI4DROUGHT WP: 2000 
WP Title Requirements Baseline  Sheet 1 of 1 
Participants  Lead: LOB, Contributor: BSC, EUT  Issue: 1 
WP Manager Guillermo Grau Date: 14/6/2021 
Effort 314 hours   
Start Event PR1 Planned Date: T0+2   
End Event PR2+1 Planned Date: T0 + 3   
Inputs: 
- Problem formulation 
- Architecture design and Requirements definition from proposal 
- State-of-the-art 
- Gap analysis 
Tasks: 

- Consolidation of scientific and technical requirements including infrastructure and 
their verification method, maintaining traceability to ESA AI4Science requirements 

- Definition of the technical REport complete structure and planned inputs along the 
project 

Outputs: 
- RB Requirements Baseline V1 - proposal, V2 - end of Task 2 
- TR - Technical Report V1 (living document updated quarterly) 
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Project AI4DROUGHT WP: 3000 
WP Title Design and Development Sheet 1 of 1 
Participants  Lead: BSC, Contributor: LOB, EUT  Issue: 1 
WP Manager Carlos Gómez Date: 14/6/2021 
Effort 3839 hours   
Start Event PR2 Planned Date: T0+4   
End Event QR3 Planned Date: T0+18   
Inputs: 
- Raw seasonal forecasts and associated hindcast from Climate Data Store (CDS) 
- ERA5 reanalysis and E-OBS for ECV such as temperature and precipitation 
- CCI EO datasets 
-D1. Problem formulation 
 
Tasks: 
Task 3.1. General System Design Architecture (ADD) (L: EUT; P: LOB, BSC) [M3-M8].  
This task will define and implement the digital system architecture for putting together the 
seasonal climatic models outputs, AI transfer functions, Explainable AI, hazardous knowledge 
graphs and AI models for cascading effects. For that, this task will analyse the needs identified 
under WP1000 and the requirements defined under WP2000. As an output of the task, a design 
document will be established according to software development standards (UML). 
 
Task 3.2. Data preparation (LOB; P: EUT, BSC) [M3-M12].  
As defined in section 1.5.1.2, input data will come from different sources (CDS-C3S, CCI, 
etc.) and are stored in different formats, following different standards and access procedures. 
The data will be made accessible through a data lake centralised repository, quality controlled  
and formatted to be integrated in the AI4DROUGHT digital architecture established on Task 
3. This task will provide an output to the AI4EU data store to drive the proposed innovations. 
Task 3.3. Methods (ATBD) (L: BSC; P: EUT, LOB) [M4-M18].  
This task will describe the algorithms to be implemented and evaluated in task 3.4.: AI 
Transfer Function (LOB), Explainable AI: causality, interpretability (EUT), Improved 
seasonal forecast (BSC) and cascading effects (EUT). 
 
Task 3.4. Implementation and results (L: LOB; P: EUT, BSC) [M5-M18].  
Implementation and execution of the algorithms in a self-cointained demonstration scenario 
will be uploaded to a cloud repository. 
Outputs: 

- D3. ADD (M8) EUT 
- D4. Data repository (M12) LOB 
- D5v1. ATBD (M12) EUT 
- D5v2.ATBD update (M18) EUT 
- D6. Software release (M18) LOB 
- SR update (BSC) 
- TR update (LOB) 
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Project AI4DROUGHT WP: 4000 
WP Title Testing and Validation Sheet 1 of 1 
Participants  Lead: EUT, Contributor: BSC, LOB Issue: 1 
WP Manager Aitor Corchero Date: 14/6/2021 
Effort 1823 hours   
Start Event MTR Planned Date: T0 + 12   
End Event FR Planned Date: T0 + 24   
Inputs:  
- Improved Seasonal Forecast 
- Explainable AI models 
- AI transfer function 
- Semantic Data Cube  
- Risk Assessment and AI driven model 
 
Tasks: 
Task 4.1. Comparison of improved forecast and observations (benchmark) (L: BSC; P: 
LOB; EUT)[M12-M18].  
The aim of this task is two-fold. First, the obtention of the forecast quality assessment of the 
results obtained from seasonal forecasts in T3.4 by a set of probabilistic metrics that evaluate 
the performance of the predictions against reanalyses and observational gridded datasets. 
Second, the comparison of the skill obtained for temperature, precipitation and drought index 
in the previous step with the skill benchmark obtained in T1.1. 
Task 4.2- Error Analysis and uncertainty in cascading effects (L: EUT; P: BSC; 
LOB)[M12-M24]. 
This task is mainly devoted to establishing a framework to analyse the errors caused by the 
hazardous events identification and  cascading effect tool. To establish the evaluation 
framework, first action will be focused on the selection of relevant extreme events to be 
assessed. This selection will be followed up by the preparation of evaluation datasets 
simulating similar patterns related to such events. Second action will be aimed at elaborating 
a blinded cross-validation technique in order to analyse the sensitivity of the algorithm. 
Outputs: 

- Comparison of improved forecasts and observations (BSC) 
- Sensitivity analysis over the risk assessment and cascading effects tool (EUT) 
- SR final version (BSC) 
- TR final version (LOB) 

 
 

Project AI4DROUGHT WP: 5000 
WP Title Scientific dissemination and outreach Sheet 1 of 1 
Participants  Lead: LOB, Contributor: BSC, EUT Issue: 1 
WP Manager Maria Jose Escorihuela Date: 14/6/2021 
Effort 439 hours   
Start Event KO Planned Date: T0   
End Event FR Planned Date: T0 + 24   



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  34 of 72 

 

Commercial in confidence 

Inputs:  
- RB 
- TR  
- SR  

Tasks:           
- Design and execute an outreach plan to ensure the results of the project reach related 

communities 
- Create a project web page 
- Coordinate AI4DROUGHT participation in relevant conferences 
- Provide user-oriented training   
- Prepare and submit two scientific papers about the methodology and the validation of 

the development 
- Provide recommendations for new activities     
- Identify potential collaborations  with the project 
- Document in detail the main achievements of the work carried in the study 

Outputs:     
- Project Web Page   
- Training materials  and presentations    
- Scientific Papers Publication 

 

1.10 BACKGROUND OF THE BIDDERS 
1.10.1 Lobelia Earth 
Lobelia Earth is an SME based in Barcelona, specialised in satellite technology, computational 
intelligence and data visualisation for climate action. Lobelia Earth was created in November 2018 
as the downstream-services unit of isardSAT Group, a consolidated science and technology SME 
specialising in the development of algorithms to process Earth Observation satellite data since 2006.  
 
Lobelia recently spun-off becoming a linked third-party. 
 
Lobelia works for the private and public sectors in climate services. 
 
Lobelia develops applications and services for the exploitation of Earth Observation data.  Droughts, 
floods, atmospheric pollution and climate are activity domains tackled by Lobelia, devoted to 
climate action (more info at lobelia.earth). Both geospatial data and infrastructure-based services 
are supported by the organisation, that counts with a product development team specialized in data 
management and visualization, with scientists, engineering developers, designers, and business 
developers working hand by hand to provide valuable products in a timely and reliable manner.  
Lobelia has extensive experience in project management and technical coordination (see 
isardSAT’S group projects with the involvement of the Lobelia team at 
https://www.isardsat.cat/en/projects/). 
 
Lobelia has placed two products on the market: TeroMaps© technology, serving the visualisation 
of Copernicus and Sentinel data in the WEkEO DIAS cloud and CMEMS MyOcean Viewer, and 
the Lobelia Air© service, an operational air quality monitoring and forecasting prototype that has 
revolutionised air pollution action plans in Barcelona and Madrid, and was presented in COP25 
officially in favour of sustainability and smart mobility strategies. 
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Lobelia is an active partner of the CCRI (Coalition for Climate Resilient Investment), a UN COP26 
Flagship, where the company acts as a climate risk data provider to several end-to-end pilots 
addressing drought and extreme precipitation.  
 
Lobelia is a pioneering company that develops insightful platforms grounded on scientific 
knowledge and radically new software technologies, and paves the way towards a zero- carbon 
economy in the mass economy. 
 
Selected relevant projects: 
 
Digital Twin of the Ocean (ESA, 2020-2021): The project aims to develop a prototype of an instance 
of a Digital Twin Earth applied from Digital Twin Ocean precursor demonstrating the capability to 
visualize, monitor and forecast natural and human activity on the planet and proposes an end-2-end 
architecture for the Digital Twin Earth – Ocean precursor. Lobelia Earth is responsible for the 
development of the Globe Story Engine, a rotating, 3D digital globe that serves as a leitmotiv for 
stories on Earth sciences. The web-based visualization tool will allow the creation of interactive 
scenarios including the Ocean as their main character. 
 
WEkEO Data Discovery Platform (Mercator Océan and EUMETSAT, 2020): Project to develop 
and integrate the WEkEO Data Discovery Platform (DDP) within the WEkEO website and 
encompass the catalogue, viewer and subsetter functionalities. It consists of two independent but 
closely interrelated parts, the Back End and the Front End. It displays over 3700 layers of data, from 
Copernicus marine, Climate and Atmosphere services, and Sentinel 1, 2, 3 and 5P. Data can be 
discovered in time and space, downloaded and accessed through the Harmonised Data Access of 
the WEkEO service (https://wekeo.eu/) 
 
SnapEarth. H2020-SPACE-2019 
SnapEarth project is to foster the Market growth of COPERNICUS by instigating the development 
of new EO applications and to develop general public awareness to EO data. SnapEarth is to initiate 
the creation of a virtuous circle of innovation by providing to EO data users an innovative platform 
with leading edge EO segmented datasets, Neural Networks models and Cloud computing 
ecosystem. Lobelia and isardSAT are responsible for the Food security pilot development based on 
agricultural drought. 
 
Thermal Stress in the Climate Crisis (ECMWF 2020-2021).  
The goal of this Project is to exploit the wealth of data available in ECMWF’s Climate Data Store 
(CDS) to communicate how thermal stress is evolving under climate change conditions. The Project 
proposes a Story Hub for the communication of insights related to thermal stress/comfort, relevant 
to different fields (urbanism, energy, health, leisure, migration), aiming at wide swaths of the 
population, and creating fact-based and engaging experiences. 
 
SEEDS “Sentinel EO-Based Emission and Deposition Service” (H2020-SPACE-2020) 
The main objective of SEEDS is to develop a proof-of-concept for an add-on service to CAMS on 
pollutant emissions and depositions that will enhance the use of satellite observations and provide 
new products to boost European competitiveness and sustainability actions across a diversity of 
economic sectors while contributing to the protection of European citizens and ecosystems. 
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MIREIA “Marine Litter Signatures in Synthetic Aperture Radar Images” (ESA, 2020-2021). 
Lobelia at isardSAT coordinates project MIREIA, is a research project aiming at demonstrating the 
potential of Synthetic Aperture Radar (SAR) images for marine litter detection in combination with 
AI techniques. The proposed solution will be tested in the Balearic Islands, a hotspot area for plastic 
marine debris accumulation. The team at Lobelia designs the overall system, including the 
characterization and exploitation of different information gathered by radar sensors, large in-situ 
datasets and pattern recognition models, to identify marine debris. 
 
OceanScan (ESA ESTEC, 2020-2021) Satellite remote sensing has demonstrated great potential to 
become a breakthrough in the mapping of marine litter. One limiting factor for its full development 
is the access to reliable, extensive, and consistent ground truth of plastic occurrence in the ocean. 
Some of the best performing technologies for image analysis today were built using open labeled 
databases. In OceanScan, the team is responsible for the creation of an inclusive labeled global 
ocean plastic database and platform. Lobelia at isardSAT is the project coordinator and is 
developing a platform to explore and access matching ground truth to satellite experiments, with 
selectable baseline options in time, space and sensor type, and an app to input geolocalized and 
timestamped information, with options for pictures to facilitate the data labelling 
(https://www.oceanscan.org/). 
 
TEP Hydrology, ESA, 2014-2021, Lobelia at isardAST coordinates the Hydrology Thematic 
Exploitation Platform and is the provider of the operational water level service based on altimetry 
data, with enhanced functionalities due to the integration with a hydrological model and a flood 
monitoring service with SAR. Through this workspace platform, isardSAT is in contact with a large 
user community, that is providing feedback on the service, and also offering offers support to those 
potential users wishing to upload their processing chains to the TEP cloud, and as well as ensures 
the successful execution of the water level service by pilot users.  
 
MyOcean Viewer (Mércator Océan, 2020): Development and operation of a new central tool for the 
Copernicus Marine service. MyOcean is a fast, intuitive, detailed, and accurate ocean viewer aimed 
to be used by all communities in various sectors, from citizens to students, policymakers, data 
scientists, business companies and start-ups. From temperature, currents, and waves to acidity and 
plankton, convenient ocean maps become readily available. It is entirely developed by Lobelia Earth 
and has already gained international reputation, it is free-of-use and accessed by thousands of users 
worldwide (https://cmems.lobelia.earth/) 
 
AirQast, H2020, 2017-2020, is a commercial platform providing operational Air Quality services 
using Earth Observation data. These services provide updated emissions inventories, advanced 
forecasting systems and decision making tools to manage air quality events in order to reduce their 
economic and social impact. The platform covers pollutants having a higher economic and social 
impact such as PM2.5, PM10, SO2, NO2 and CO. Lobelia at isardSAT is the coordinator and 
provider of the API and tools. 
 
C3S_SMHI_Lot1, ECMWF, C3S (Copernicus Climate Change Service), 2017-2019. The 
GLORIOUS-project brings together excellence in climate sciences, impacts modelling, and 
technical expertise to develop a new operational service together with a global user community. The 
aim is to ensure user uptake of relevant high-impact climate information from the C3S Climate Data 
Store, addressing sectors such as food security, natural hazards, health, transport and biodiversity. 
isardSAT is the climate change knowledge purveyor and provides extreme events analysis with 
Artificial Intelligence and Machine Learning for global users (UN-HABITAT, PwC and OXFAM) 
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within Copernicus services to ECMWF as well as its application to downscaling and bias correction 
methodology to generate high-resolution, locally-adapted data describing the future climate in the 
target cities. 
 
EO Clinic: Rapid-Response EO-Based Solutions to Development Aid Project Requests, European 
Space Agency (2019-2020). The objective is to produce EO products and solutions that respond to 
the specified user requirements, but that can be more innovative and exploratory in nature providing 
information that is further down the value chain, and closer to decision-making levels. Such 
solutions may be experimenting with innovative methodologies, combining EO-derived information 
with other, non-EO data sources related to socioeconomic and environmental parameters and 
indicators. Lobelia supports two out of the ten thematic groups within the EO Clinic Framework, 
namely climate change and water resources management. 
 

1.10.2 BSC 
The Barcelona Supercomputing Center-Centro Nacional de Supercomputación (BSC), created in 
2005, has the mission to research, develop and manage information technology to facilitate scientific 
progress. At BSC, more than 700 people from 50 different countries perform and facilitate research 
in Computer Sciences, Life Sciences, Earth Sciences, and Computational Applications in Science 
and Engineering. The BSC is one of the four hosting members of the European PRACE Research 
Infrastructure. The Center houses MareNostrum, one of the most powerful supercomputers in 
Europe, and has been one of the top eight Spanish centres awarded the ‘Severo Ochoa Centre of 
Excellence’ Accreditation by the Spanish Government. 
The department involved in this proposal is the Earth Sciences Department of the BSC (ES-BSC) 
which was established to carry out research on Earth system modelling. The department focuses on 
multiscale (global to urban) air quality and meteorological modelling, global and regional mineral 
dust modelling, and global and regional climate modelling. Over the years, the department has been 
active in numerous European projects, including in FP7 and H2020, not only as a partner, but also 
as coordinator of an H2020 project (S2S4E), a FP7 (SPECS) and a COST action (inDust). It is also 
currently involved in several ESA services (e.g. ESA/RFQ/3-15131/18/I-SBo CMUG-3-
TECHPROP, ESA AO/1-10546/20/I-NB, ESA AO/1-10548/20/I-NB, D/565/67238959), 
Copernicus Atmospheric Monitoring Services (e.g. CAMS_43, CAMS_50, CAMS_61 and 
CAMS_84) as well as in several Copernicus Climate Change Services (i.e. C3S_512, C3S_429g 
and C3S_34c), two of them coordinated by BSC.  
ES-BSC is structured around four groups: Climate Prediction, Atmospheric Composition, 
Computational Earth Sciences, and Earth System Services, with more than 100 employees, 
including researchers and technical staff. The Earth System Services group (ESS), the Climate 
Prediction (CP) group and Computational Earth Sciences (CES) group are the three groups that will 
contribute to AI4DROUGHT. 
The ESS group is specialised in the co-creation of climate and air quality services with a 
transdisciplinary approach where earth system modelling scientists and knowledge transfer experts 
engage with stakeholders to create user-driven services. 
The CP group aims at developing climate prediction capabilities on seasonal, decadal and multi-
decadal time scales. The CP group has a long experience in seasonal to decadal climate prediction, 
and in understanding changes in climate extremes and other impact-relevant climate events. 
The CES group is a multidisciplinary team with different IT profiles that interact closely with all 
the other groups of the Earth Sciences Department. The group provides help and guidance to the 
scientists with the technical issues relating to their work and develops a framework for the most 
efficient use of HPC resources. In order to improve the use of the variety of computing resources 
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available at the BSC and in other HPC institutions, a solid software development, profiling and 
optimisation area has been created for Earth system model codes towards exascale computing, and 
to provide feedback on this to modellers around Europe. 
Last but not least, the development of a framework to disseminate the outputs generated by the BSC 
among the research and service community has been established. This area takes advantage of the 
unique environment of the BSC where research in BigData and Artificial Intelligence is already a 
priority that will be extended in the next few years. 
 
Selected relevant projects: 
 
Coordination of the H2020 project S2S4E: Sub-seasonal to seasonal predictions for the energy 
sector (S2S4E-776787), which offers an innovative service to improve the management of 
renewable energy variability. The main result of the project is a Decision Support Tool 
(www.s2s4e.eu/dst), an operational climate service to enable renewable energy producers and 
providers, electricity network managers and policy makers to design better-informed strategies at 
sub-seasonal to seasonal timescales. 
 
Coordination of the C3S-512 contract (ECMWF): The Evaluation and Quality Control (EQC) 
function of the Copernicus Climate Change Service (C3S) has a critical role to ensure that the 
service meets the needs of a range of users for high-quality data and information, and in proposing 
the necessary evolution of the service itself, while shaping the research agenda to attend the most 
important challenges detected. The contract aims at developing a solution for the EQC function to 
respond to the needs identified in previous contracts using a continuous user-engagement process. 
 
ESA CMUG-CCI+ (Climate Model User Group-Climate Change Initiative+, 2018-2022): An ESA 
project specifically conceived to ensure that the ESA-CCI data products are developed and provided 
in a form most useful for climate analysis and modeling work and that they are widely promoted 
within the climate research community, with a special emphasis on the activities related to the 
Climate Model Intercomparison Project. The ES-BSC department is experienced in the use of 
satellite observations for climate modeling and forecasting purposes.  
 
H2020 project ESiWACE2 - Centre of Excellence in Simulation of Weather and Climate in Europe 
(ESiWACE2-823988). It will link, organise and enhance Europe's excellence in weather and climate 
modelling to (1) enable leading Europe a weather and climate models to leverage the performance 
of pre-exascale systems with regard to both compute and data capacity as soon as possible and (2) 
prepare the weather and climate community to be able to make use of exascale systems when they 
become available. 
 
H2020 project EUCP: The overarching objective of the European Climate Prediction (EUCP-
77661) system is to develop an innovative European regional ensemble climate prediction system 
based on a new generation of improved and typically higher-resolution climate models, covering 
timescales from seasons to decades initialised with observations, and designed to support practical 
and strategic climate adaptation and mitigation decision-taking on local, national and global scales. 
 
H2020 project PRIMAVERA: PRocess-based climate sIMulation: AdVances in high resolution 
modelling and European Climate Risk Assessment (PRIMAVERA-641727). The main objective is 
to develop a new generation of advanced and well-evaluated high-resolution global climate models 
capable of simulating and predicting regional climate with unprecedented fidelity, for the benefit of 
governments, business and society in general. PRIMAVERA developed and applied various 
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participatory approaches, including the User Interface Platform, and tested the latest scientific 
knowledge in case studies co-developed with key sectoral users. 
 
H2020 project MED-GOLD: Turning climate-related information into added value for traditional 
MEDiterranean Grape, OLive and Durum wheat food systems (MED-GOLD-776467), will develop 
novel pilot climate services focusing on three staples of the Mediterranean food system and water 
management.  
 
1.10.3 EURECAT 
Eurecat is the leading private Research and Technology Organization (RTO) in Catalonia (Spain) 
and the second largest private RTO in Southern Europe. In 2020 figures, Eurecat turnover was 50M€ 
and staff reached 650 professionals. Eurecat is a multi technology / multisector RTO with four major 
technological divisions devoted to industrial, digital, sustainability and biotech and works for both 
private and public markets.. Currently, Eurecat is involved in more than 200 R&D projects and has 
a customer portfolio of over 1.600 business clients, and participating in more than 60 EU funded 
collaborative projects, mainly in the Horizon 2020 Program. In addition to this wide experience at 
European level, Eurecat is also a strong player in the various R&D programs sponsored by the 
Spanish administration (mainly with CDTI).. Technology transfer is also an essential activity in 
Eurecat, with 36 international patents and 7 technology-based companies started-up from the 
center’s R&D activities. 
 
Eurecat’s Digital Technologies Division features 100 professionals with 20% holding a PhD degree. 
Data Science, Big Data technologies and Artificial Intelligence are amongst the main specialties 
developed in this Division, applied in multiple domains like Agriculture, Energy and Resources, 
Industry (I4.0), Digital Health and others. Eurecat also leads the Center for Innovation in Data 
Technologies and Artificial Intelligence (CIDAI, www.cidai.eu) which is a public-private 
association to promote and spread innovation based on AI and data technologies. BSC, one of 
AI4DROUGHT's partners, is also a CIDAI member. 
 
The Project tasks will be developed by the following two units within the Digital Technologies 
Division: 
 

- Applied Artificial Intelligence (AAI): this unit holds a sound and proven background on 
researching and tailoring advanced solutions based on Machine Learning and Artificial 
Intelligence for the different value chains and nexus components inside the water, 
environment and blue economy sectors. AAI has proven experience in data value chain 
management (collection-information-knowledge-intelligence) by means of research, design 
and development of solutions (algorithms, methodologies, modules, mobile apps, platforms) 
based on the combination of different technologies such as AI, machine learning, data 
analytics, optimization, and information and knowledge management. 
 

- Big Data & Data Science (BD&DS):   The unit has extensive experience in the application 
of Data Science and Artificial Intelligence techniques both for business applications and in 
the field of computational social science. Its most remarkable activity is focused on i) 
Natural language processing for text interpretation and classification of intends in the 
development of virtual assistants and ii) AI driven models of sales acceleration and the 
analysis and prediction of mobility models in both human field and transport areas. 
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Among its research areas, the most recent stand out is the development of algorithms 
without bias and the explainability of black box AI models. In addition, the unit holds 
specific knowledge in Big Data end-to-end process and architecture design ranging from 
data management and databases, distributed and parallelization systems, to real time and 
service orchestration. 

 
 
Selected relevant projects: 
 
SIM4NEXUS (EU H2020). Development of  innovative methodologies to address these barriers, 
by building on well-known and scientifically established existing “thematic” models, simulating 
different components/“themes” of the Nexus and by developing: (a) novel complexity science 
methodologies and approaches for integrating the outputs of the thematic models; (b) a Geoplatform 
for seamless integration of public domain data and metadata for decision and policy making; (c) a 
Knowledge Elicitation Engine for integrating strategies at different spatial and temporal scales with 
top down and bottom up learning process, discovering new and emergent knowledge, in the form 
of unknown relations between the Nexus components and policies/strategies; (d) a web-based 
Serious Game for multiple users, as an enhanced interactive visualisation tool, providing an 
immersive experience to decision- and policy-makers. 
 
FIWARE4WATER (EU H2020).  The project intends to link the water sector to FIWARE 
(European open source framework for smart applications) by demonstrating its capabilities and the 
potential of its interoperable and standardised interfaces for both water sector end-users (cities, 
water utilities, water authorities, citizens and consumers), and solution providers (private utilities, 
SMEs, developers). 
 
VITIGEOS (EU H2020): this project uses satellite imagery (Copernicus) and on-field sensor data 
to increase resolution and reliability of satellite information applied to all aspects of viticulture and 
specific wine-business operations. 
 
STOP-IT (EU H2020). This project focuses on developing new technologies for protection of 
critical infrastructures- STOP-IT solutions are based on: a) mature technologies improved via their 
combination and embedment (incl. public warning systems, smart locks) and b) novel technologies 
whose TRL will be increased (incl. cyber threat incident services, secure wireless sensor 
communications modules, context-aware anomaly detection technologies; fault-tolerant control 
strategies for SCADA integrated sensors, high-volume real-time sensor data protection via 
blockchain schemes; authorization engines; irregular human detection using new computer vision 
methods and WiFi and efficient water contamination detection algorithms). 
 
PATHOCERT (EU H2020). The project aims at strengthening the coordination capability of first 
responders in emergency events were they have to act in places with a high risk of contamination 
through water. Within this scope, the project develops pathogen contamination emergency response 
technologies, tools and guidelines to be validated by first responders, helping them to detect 
pathogens quickly and to better control emergency situations. 
 
SCOREWATER (EU H2020). The project SCOREwater develops and tests three large-scale 
demonstration pilots cases for collecticollecting, computing and presenting various data generated 
in the city’s sewage system. The Barcelona’s pilot, currently in progress, is focused on a new domain 
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referred as “sewage sociology”, whose purpose is to derive from these sewage data meaningful 
biomarkers of community-wide lifestyle habits.  from sewage. 
 
PROCEED (commissioned by Spanish CDTI). PROCEED’s objective is to implement a data-driven 
model to forecast SARS-COVID-2 outbreaks. The model is based on clinical data augmented with 
mobility, environmental, sewage and social media data related to the pandemics. 
 
SATELIOT IoT and IA Platform: project commissioned by SATELIOT, a New Spacea company 
that is building a constellation to provide IoT and 5G services. Eurecat is developing a platform 
featuring  BD, ML and DL modules to support EO use cases analysis. 
 
1.11 RESOURCES 

1.11.1 Lobelia Earth 
Lobelia is located at the Barcelona Technology Research Park, with access to ultra-wide Internet 
access, conference facilities, and meeting rooms. Using the resources shared by the companies 
located at the park, Lobelia has immediate access to video conference rooms, an auditorium of 500 
m2 hosting up to 240 people equipped with projector, video and audio recording, 8 spaces for 
press and possibility of simultaneous translation system, etc. 
 
Lobelia owns two dedicated data processing multi-core Linux workstations, custom-designed to 
solve the computing needs of EO projects and web services. It also owns a 28-TB NAS server, as 
well as the software and licences needed to perform its research activities. A high-speed internal 
network provides access to services such as name resolution, user database, disk storage, 
application server, code versioning, dependency management, documentation management tools, 
system backup. VPN is available for remote access to network resources by employees. The 
company provides resources on commercial cloud platform providers for publicly available 
services. Its also owns personal workstations running macOS, Linux and Windows operating 
systems, several printers and photocopiers, fax machines, and several external backup hard drives. 
 
Lobelia also owns an in-house solution for unified data access named TeroData, which allows 
querying and downloading heterogeneous datasets, both for prototyping and large-scale 
processing, with bindings for Python, JavaScript and MATLAB, TeroMaps as an integrated fast 
rendering and maping engine –including 3D layouts, and TeroBot for the monitoring of systems. 
 
1.11.2 BSC 
BSC is the National Supercomputing Facility of Spain and hosts a range of HPC systems including 
MareNostrum IV. The new supercomputer will be 12.4 times more powerful than the current 
MareNostrum 3 that will have a performance capacity of 13, 7 Petaflop/s. The general purpose 
element will have 48 racks with more than 3,400 nodes with next generation Intel Xeon processors 
and a central memory of 390 Terabytes. The second element of MareNostrum 4 will be formed of 
clusters of three different technologies that will be added and updated as they become available. 
These are technologies currently being developed in the US and Japan to accelerate the arrival of 
the new generation of pre-exascale supercomputers. The BSC is a key element of and coordinates 
the Spanish Supercomputing Network, which is the main framework for granting competitive HPC 
time to Spanish research institutions. Furthermore, BSC is one of six hosting nodes in France, 
Germany, Italy and Spain that form the core of the PRACE network. PRACE provides competitive 
computing time on world-class supercomputers to researchers in the 25 European member countries. 
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1.11.3 Eurecat 
Eurecat holds 11 operative branches spread throughout the Catalan region. The BD&DS unit is 
located at Eurecat’s Headquarters in Barcelona and the AAI unit is located at the PCITAL, the 
agrotech cientific park in the city of Lleida.  
 
Eurecat, being a multidisciplinary RTO, holds several laboratory facilities, (e.g. plastronics pilot 
plant, robotics and drone lab, EV battery lab, cybersecurity lab, blockchain infrastructure, ect.). 
Specifically for the purpose of this project, Eurecat has an Inference lab used for R&D projects 
requiring a high computational demand (deep learning, reinforcement learning, ect.). The lab 
consists of a Service Platform with automatic Big Data tools provisioning, able to deliver many 
different Big Data technologies for storing, processing, and analyzing large volumes of data. This 
platform, internally named as DATURA, consists of 528 CPU and 40.960 GPU cores, respectively. 
with 5.5 TB RAM, and 4 PB storage distributed in 8 computational nodes plus a RedHat Open Stack 
for resource virtualization.  
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2 MANAGEMENT PROPOSAL 

2.1 TEAM ORGANISATION AND PERSONNEL 
2.1.1 Proposed team 

The Consortium presented in the framework of this project groups together a super computing 
research infrastructure and a research centre (BSC), a research and technology organization 
(EURECAT) and a company (Lobelia Earth). The team is highly qualified and includes scientific 
expertise on climate modelling, artificial intelligence techniques and state-of-art in Earth 
Observation services 

Lobelia Earth (LOB) is the prime contractor and the main interface with ESA at the contractual and 
project management. 
2.1.1.1 Overall team composition, key personnel 
Table 6 Key personnel 

Key Personnel Name Institution/ 
Company 

Role Dedication 

Laia Romero LOB Project Manager 30% 
Maria José Escorihuela LOB WP5000 Leader 

Earth observation for hydrology and 
agriculture Senior Researcher 

36% 

Jesús Peña Izquierdo LOB Task 1.2 Leader 
AI and climate expert 
Senior researcher  

40% 

Melissande Machefer LOB Task 3.2 Leader 
AI and EO expert 
Applied researcher 

60% 

Guillermo Grau LOB WP2000 Leader 
Task 3.4 Leader 
Senior Telecommunications and SW 
engineer 

50% 

Albert Soret BSC WP1000 Leader 
Task 1.1 Leader 
Established researcher 

15% 

Carlos Gómez BSC WP3000 Leader 
Task 3.3 Leader 
Recognised researcher 

15% 

Markus Donat BSC  
Leading researcher 

7,5% 

Nube González BSC Recognised researcher 7,5% 
Llorenç Lledó BSC Recognised researcher 7,5% 
Lluís Palma BSC Junior research engineer 50% 
Lali Soler EUT Senior engineer 

eXplainable AI expert 
1,2% 

Xavier Domingo  EUT Leading engineer 1,2% 
Aitor Corchero EUT WP4000 Leader 

Task 4.2 Leader 
50% 
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Senior engineer 

Project main actors and their relationships: 

• Project Coordinator: She will lead the project and will be responsible for the technical 
implementation of the project. She will also be the main line of communication with 
ESA regarding all technical, administrative, financial and contractual issues. 

• WP leaders: The Project and Scientific Coordinators are also responsible for the 
coordination of technical and scientific activities at the work package level. 

• Task leaders: They will be responsible for the execution of key tasks assigned 
according to the work packages description. 

• Coordination Support Team: They will assist the Project on administrative, 
contractual and financial tasks. 

 

2.2 CURRICULA VITAE 
 
2.2.1 Lobelia 

 
Name: Laia Romero 
Role: Project Manager Dedication 30% 
Qualifications and experience of interest for this proposal: 
Laia Romero is isardSAT Group Director of Operations and Strategy, and Managing 
Director of Lobelia Earth. MSc in Physical Oceanography from the Polytechnic University 
of Catalonia (UPC), she is responsible for systems development and operational services. 
Over the last 15 years she has worked extensively in Earth Observation with radar 
technologies, in the development and procurement of geoinformation systems, deployment 
and execution of services. Before joining isardSAT Group, Laia was Director of New 
Business and Innovation at Altamira Information (CLS Group), where she managed the 
division of R&D and Data Management Solutions. Prior to that, she held the position of 
Information Systems Manager, in which she managed the development life cycle of 
operational contracts such as the Copernicus Marine Service (CMEMS) and commercial 
international contracts involving the development, integration, verification, and operations of 
large information systems, in tight collaboration with dedicated technical teams. Laia has 
solid experience in project management and technical coordination in numerous ESA 
contracts, bringing together large research entities and companies in tight collaboration. She 
is a member of the International Ocean-Colour Coordinating Group (IOCCG) on Remote 
Sensing for Marine Litter and is co-charing a special issue on this topic, for which she 
organised a successful phi week event in 2020. She has vast experience with Copernicus data 
and Information, and cloud infrastructure services, such as the TEPs and the WEkEO DIAS. 
She conducts technical project management and coordination of strategic projects for the 
development of new lines of work. 
Relevant publications: 

● Savastano, S; Cester, I. and Romero, L. A first approach to the automatic detection of 
marine litter in SAR images using artificial intelligence. IGARSS 2021 
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● Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; 
Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; Echevarría, F.; Galgani, F.; Garaba, 
S.P.; Goddijn-Murphy, L.; Lebreton, L.; Leslie, H.A.; Lindeque, P.K.; Maximenko, 
N.; Martin-Lauzer, F.-R.; Moller, D.; Murphy, P.; Palombi, L.; Raimondi, V.; 
Reisser, J.; Romero, L.; Simis, S.G.H.; Sterckx, S.; Thompson, R.C.; Topouzelis, 
K.N.; van Sebille, E.; Veiga, J.M.; Vethaak, A.D. Measuring Marine Plastic Debris 
from Space: Initial Assessment of Observation Requirements. Remote Sens. 2019, 
11, 2443. https://doi.org/10.3390/rs11202443 

● Romero, L. “Web application for fast visualization and advanced analysis of millions 
of entries from remote sensing data” ESA Living Planet Symposium, Prague, 2016 

● G. Griffiths, J. Blower, A. López, I. Polo, L. Romero, T. Loubrieu, S. Brégent, 
“Recent innovations in using Web Map Services to display gridded and non-gridded 
ocean data”, EGU General Assembly 2014, Geophysical Research Abstracts, Vol. 
16, EGU2014-15086, 2014 

● Romero, Laia & Motte, Erwan & Egido, Alejandro & Reppucci, Antonio & 
Fernandez, Bonifacio & Castro, Lina & Caparrini, Marco. (2012). Streamflow 
prediction based on satellite and in situ measurements for hydro studies in central 
Chile. International Journal on Hydropower and Dams. 19. 54.  

 
Name: Maria Jose Escorihuela 
Role: WP5000 Scientific dissemination and Outreach leader 

Earth Observation Senior Scientist specialised on 
hydrology and agriculture 

Dedication 36% 

Qualifications and experience of interest for this proposal: 
Maria José received an Engineering degree in electronics and telecommunications from the 
Universitat Politècnica de Catalunya (UPC) in 1996 and the Ph. D. degree in Environmental, 
Space and Universe Sciences from the 'Institut National Polytechnique' in Toulouse (France) 
in 2006. 
Maria José joined isardSAT in January 2008. Her responsibilities include technical lead of 
several R&D projects with a budget of over a million euros, development and validation of 
models and algorithms to retrieve geophysical variables from satellite data. Her scientific 
fields of interest are the application of passive and active microwave remote sensing to 
hydrology and climate change studies. She is appointed reviewer for several peer-review 
journals. 
Relevant publications: 

● Escorihuela et al., SMOS based high resolution soil moisture estimates for desert 
locust preventive management, Remote Sensing Applications: Society and 
Environment, https://doi.org/10.1016/j.rsase.2018.06.002   

● Piou, C., Gay, P. E., Benahi, A. S., Babah Ebbe, M. A. O., Chihrane, J., Ghaout, S. & 
Escorihuela, M. J. (2019). Soil moisture from remote sensing to forecast desert locust 
presence. Journal of Applied Ecology, 56(4), 966-975. 

● Escorihuela and Quintana-Seguí, Comparison of remote sensing and simulated soil 
moisture datasets in Mediterranean landscapes, Remote Sensing of Environment, 
DOI: 10.1016/j.rse.2016.02.046. 

● Escorihuela et al., Effective soil moisture sampling depth of L-band radiometry: A 
case study, Remote Sensing of Environment 
https://doi.org/10.1016/j.rse.2009.12.011 
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● Escorihuela et al., A Simple Model of the Bare Soil Microwave Emission at L-Band, 
IEEE Transactions on Geoscience and Remote Sensing, DOI: 
10.1109/TGRS.2007.894935. 

 
Name: Guillermo Grau 
Role: Tech Lead and responsible for Task 3.2 Data 

preparation and data lake set-up 
Dedication 50% 

Qualifications and experience of interest for this proposal: 
Guillermo Grau is Co-founder and Technical Lead at Lobelia. He obtained his MSc. in 
Electrical Engineering from the Polytechnic University of Valencia (UPV), after presenting 
his Master Thesis in the Leibniz Universität Hannover. He has extensive experience in 
various branches of the aerospace sector including navigation, communications and Earth 
Observation. His main expertise is in systems engineering, having participated in multiple 
projects for ESA, EUMETSAT and the European Commission during his stint for Indra 
Espacio (2001-2017) and later at Lobelia (2017-). His hands-on approach has gained him 
experience in multiple fields, such as digital signal processing, leading the simulation and 
real-time implementation of the Galileo Search and Rescue processor; remote-sensing data 
management and visualisation, co-leading the Tero line of products and tools; database 
design and management, shipping tools that are used daily in the healthcare sector. As a 
software engineer, Guillermo enjoys developing complex and performant platforms with 
flexible APIs and highly-usable front ends. He has recently created the CMEMS MyOcean 
Viewer, where he onboarded early feedback from the Client as well as from end users as part 
of the continuous improvement practice that he has always pursued. Guillermo has also 
created open-source software libraries and tools with more than 1 million downloads/week, 
and has contributed to many other open-source projects. 
Relevant publications: 

● CMEMS MyOcean Viewer 
● WEkEO Data Discovery Platform 
● Thermal Stress Story Hub 
● Lobelia Air  

 
Name: Melissande Machefer 
Role: EO Applied Research Scientist Dedication 60% 
Qualifications and experience of interest for this proposal: 
Melissande Machefer is a double degree M.Sc. in Earth and Space Observation and 
Mathematical Modelling with Engineering Management. As an Earth Observation (EO) 
Applied Research Scientist, she is in charge of processing remote sensing imagery and 
ancillary environmental data and developing algorithms to extract intelligence from these 
data. She graduated in 2018 and has worked on several projects allying EO and Data Science 
for different companies (Thales Alenia Space, DHI Gras, Hummingbird Technologies).  
Among these, she had the opportunity to work on super resolution and semantic 
segmentation from optical satellite imageries and several algorithms for precision agriculture 
products (canopy coverage, plant counting, soil type detection, weed detection)  using drone 
and Sentinel 2 imagery.  She joined isardSAT/Lobelia in 2019 and is now in charge of 
scientific data science supervision and algorithms development for applications such as 
water level, water bodies identification, soil moisture,  coastal erosion, plastic detection 
based on EO data. 
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Relevant publications: 
● Machefer, M.; Lemarchand, F.; Bonnefond, V.; Hitchins, A.; Sidiropoulos, P. Mask 

R-CNN Refitting Strategy for Plant Counting and Sizing in UAV Imagery. Remote 
Sens. 2020, 12, 3015. https://doi.org/10.3390/rs12183015 

● Machefer, M.; Escorihuela , M.J.;  Romero, L. High resolution soil moisture retrieval 
from multi spatio-temporal scales Earth Observation data-driven models – 2020 Phi 
Week. https://www.youtube.com/watch?v=QLqDGt3mh0c 

● Machefer, M.; Pattle, M.; Garcia-Mondejar, A;. Romero L.; Beck A.L.; Hennen M. 
Large-scale coastal erosion monitoring from SAR imagery over a 25-year time span 
– 2020 Phi Week. https://www.youtube.com/watch?v=LS5HP7BRbuQ 

● Machefer, M.; Brun A.; Romero L. Situated knowledge and climate services: 
miscellaneous scales and levels of interpretation, using physical observations and 
data science – Virtual Workshop at ETH Zurich Data Science in Climate and Climate 
Impact Research 2020 

 
Name: Jesús Peña-Izquierdo 
Role: Senior Climate Data Scientist Dedication 40% 
Qualifications and experience of interest for this proposal: 
Jesús Peña-Izquierdo is a Climate Data Scientist. Graduated in Physics, MSc and PhD in 
Physical Oceanography, he has 10 years of experience in climate science research having 
worked in 4 different international institutions (ICM, SCRIPPS-SIO, UNSW-CCRC, BSC), 
co-authored 10 peer-reviewed papers and 3 book chapters. He has extensive expertise 
working with both in-situ and numerical models data. During his early years as researcher he 
participated in 4 oceanographic cruises, being the physical oceanographer leader of one of 
them, collecting, processing and analysing different sources of experimental data. In 2015 he 
published a climatology of the Tropical Atlantic with more than 40,000 historical 
observations after developing exhaustive quality controls and statistical analysis. He has 
combined observational data with numerical models, specially Lagrangian simulations where 
the trajectories of millions of virtual floats are computed and analysed to estimate ocean 
circulation patterns and their corresponding transport of heat and nutrients. All this expertise 
working with different types of data led him to work within one of the first international 
attempts of establishing a standardized quality control framework for the massive and 
heterogeneous collection of datasets included in the Copernicus Climate Data Store. He was 
the leader of the evaluation team of the reanalysis datasets (which includes popular products 
such as ERA5 or UERRA). He has been progressively interested in applied science, so he 
firmly decided to extend his data analysis skills with several training in Machine Learning 
which he successfully applied in weather nowcasting and downscaling of seasonal forecasts. 
With this spirit, he joined the Lobelia Earth team in 2020 aiming to apply his scientific 
experience to solve real-world problems transforming data into actionable insights. 
Relevant publications 

• Orúe-Echevarría, D., Pelegrí, JL., Alonso-González, I., Benítez-Barrios, VM., De La 
Fuentea, P., Emelianova, M., Gassera, M., Herrero, C., Isern-Fontaneta, J., Peña-
Izquierdo, J., Ramírez- Garrido, S., Rosell-Fieschi, M., Salvador, J., Saraceno, M., 
Valla, D., Vidale, M., (2019), Dataset on the TIC-MOC cruise onboard the R/V 
Hespérides, March 2015, Brazil-Malvinas Confluence. Data in Brief, 22, 185-194. 
doi.org/10.1016/j.dib.2018.12.004 
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• Llanillo, P., Pelegrí JL., Talley L., Peña-Izquierdo J., Cordero R. (2017), Oxygen 
pathways and budget for the eastern South Pacific Oxygen Minimum Zone. J. 
Geophys. Res. Oceans, 123. doi: 10.1002/2017JC013509 

• Peña-Izquierdo, J., van Sebille E., Pelegrí JL., Mason E., Sprintall J., Llanillo P., 
Machín F. (2015), Water mass pathways to the North Atlantic Oxygen Minimum 
Zone. J. Geophys. Res. Oceans, 120, 3350–3372, doi:10.1002/2014JC010557. 

• Benazzouz A., Pelegrí JL., Demarcq H., Machín F.,Mason E., Orbi A., Peña-
Izquierdo J., Soumaya M. (2014), On the temporal memory of coastal upwelling off 
NW Africa. J. Geophys. Res. Oceans, 119, doi:10.1002/ 2013JC009559. 

• Peña-Izquierdo, J., Pelegrí JL., Pastor M.V., Castellanos P., Emelianov M., Gasser 
M., Salvador J., & Vázquez-Domínguez E. (2012), The continental slope current 
system between Cape Verde and the Canary Islands. Scientia Marina, 76(S1): 65-78 
doi: 10.3989/scimar.03607.18C.  

 

2.2.2 BSC 
 

Name: Albert Soret 

Role: Climate services expert 
Leader of WP1000 Problem formulation and state of 
the art  

Dedication: 15% 

Qualifications and experience of interest for this proposal: 
Dr. Albert Soret holds a PhD in Environmental Engineering from the Polytechnic University 
of Catalonia (Barcelona). He is the head of the Earth System Services group at the Earth 
Sciences Department of the BSC. The group hosts ~28 research engineers, physicists, social 
scientists, economists, communication experts, and air quality/climate researchers who try to 
bring the latest developments in Earth sciences to the society. He is a postdoc researcher with 
15 years of experience in the areas of Air Quality and Climate. His main expertise includes 
emission, meteorological and air quality modelling, and climate services. His research 
facilitates technology transfer from local and national to international levels to advance 
sustainable development in key sectors such as urban development, infrastructure, energy, 
transport, health, and agriculture and water management. He is the principal investigator of 
the S2S4E project (EC-H2020), a member of the External Advisory Board of Clim2Power 
(ERA4CS), and Work Package leader within Clim4Energy (Copernicus), VISCA (H2020) and 
MAGIC (Copernicus). Dr Soret is also involved in several EC-FP7 and H2020 projects, and 
CAMS contracts: NEWA, EUPORIAS, SPECS, IMPREX, PRIMAVERA, CAMS95 and 
APPRAISAL. 
 
Selected publications: 

• Torralba, V., N. Gonzalez-Reviriego, N. Cortesi, A. Manrique, L. Lledó, R. 
Marcos, A. Soret and F.J. Doblas-Reyes (2020). Challenges in the selection of 
atmospheric circulation patterns for the wind energy sector International Journal 
of Climatology, doi:10.1002/joc.6881 

• Ramon, J., Ll. Lledó, V. Torralba, A. Soret and F.J. Doblas-Reyes (2019). What 
global reanalysis best represents near-surface winds? Quarterly Journal of the 
Royal Meteorological Society, 145, 3236-3251, doi:10.1002/qj.3616 

• Soret, A., V. Torralba, N. Cortesi, I. Christel, L. Palma, A. Manrique-Suñén, Ll. 
Lledó, N. González-Reviriego and F.J. Doblas-Reyes (2019). Sub-seasonal to 
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seasonal climate predictions for wind energy forecasting. Journal of Physics: 
Conferences Series, 1222, 012009, doi:10.1088/1742-6596/1222/1/012009 

• Turco, M., A. Ceglar, C. Prodhomme, A. Soret, A. Toreti and F.J. Doblas-Reyes 
(2017). Summer drought predictability over Europe: empirical versus dynamical 
forecasts. Environmental Research Letters, 12, 84006, doi:10.1088/1748-
9326/aa7859. 

• The S2S4E Decision Support Tool (https://s2s4e-dst.bsc.es) is an operational 
climate service that assists decision-making for the energy sector by means of 
subseasonal and seasonal predictions tailored to user needs. 

 
 

Name: Carlos Gómez-Gonzalez 

Role: “Deep learning for climate science” expert 
Leader of WP3000 Design and Development  

Dedication: 15% 

Qualifications and experience of interest for this proposal: 
Dr. Carlos Gomez-Gonzalez is a STARS (MSCA-COFUND) postdoctoral fellow at the Earth 
Sciences department of the Barcelona Supercomputing Center (BSC-ES). He holds a Ph.D. in 
Science from the University of Liège (Belgium) where he carried out an interdisciplinary 
doctoral thesis at the interface of Computer Vision and Astrophysics. Before joining the BSC-
ES, he worked as a "junior research chair in Data Science for Earth and Space sciences" at the 
Université Grenoble Alpes (France). With his multidisciplinary background at the interface of 
software development, machine learning and scientific data science, he joined the 
Computational Earth Sciences group at the BSC-ES to establish a research line on Artificial 
Intelligence for Earth Sciences. This effort focuses on the development of machine and deep 
learning algorithms for topics, such as statistical downscaling and bias correction techniques, 
data-driven parameterisations, and the study of extreme climate events. 
 
Selected publications: 

● Gómez-Gonzalez, C. A., Palma Garcia, L., Lledó, L., Marcos, R., Gonzalez-Reviriego, 
N., Carella, G., and Soret Miravet, A.: Deep learning-based downscaling of seasonal 
forecasts over the Iberian Peninsula, EGU General Assembly 2021, online, 19–30 Apr 
2021, EGU21-12253, https://doi.org/10.5194/egusphere-egu21-12253, 2021. 

● Carella, G., Esters, L., Galí Tàpias, M., Gomez Gonzalez, C., and Bernardello, R.: 
Estimating the air-sea gas transfer velocity from a statistical reconstruction of ocean 
turbulence observations, EGU General Assembly 2021, online, 19–30 Apr 2021, 
EGU21-10045, https://doi.org/10.5194/egusphere-egu21-10045, 2021. 

● Gómez-Gonzalez, C., Serradell Maronda, K., & Donat, M., (2020). Learning to 
simulate precipitation with supervised and generative learning models. Presented at the 
Virtual Event: ECMWF-ESA Workshop on Machine Learning for Earth System 
Observation and Prediction, Zenodo. http://doi.org/10.5281/zenodo.4106514 

● Gómez-Gonzalez, C., Aceves Soley G., Serradell Maronda, K., Guevara Vilardell, M.,  
Identification of Wastewater CH4 Emission Sources with Computer Vision and 
Sentinel-2 Observations, Presented at the ESA Phi-week 2021 

● Gomez-Gonzalez, C., Absil, O., and Van Droogenbroeck, M., Supervised detection of 
exoplanets in high-contrast imaging sequences, A&A 613 A71 (2018), DOI: 
10.1051/0004-6361/201731961 
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Name: Markus Donat 

Role: Climate extremes expert Dedication: 7,5% 
Qualifications and experience of interest for this proposal: 
Dr. Markus Donat is co-leader of the Climate Prediction group at the BSC, and an 
internationally recognised expert in studying climate extremes and climate variability, and 
predictability. Markus has published more than 90 peer-reviewed journal articles since 2010, 
ten of these in Nature-family journals and 4 book chapters, he has contributed to the IPCC 5th 
Assessment Report and is contributing author to the IPCC 6th Assessment Report. Markus is 
an Associate Investigator with the Australian Research Council Centre of Excellence for 
Climate Extremes and was selected as a member of the World Meteorological Organization 
(WMO) Expert Team on Data Requirements for Climate Services. Based on his achievements 
he has been awarded the World Climate Research Program (WCRP) / Global Climate 
Observing System (GCOS) International Data Prize 2017. Markus has strong expertise in the 
analysis of climate extremes and their variability, predictability and drivers. Of particular 
relevance to the proposed work in this project is Markus’ expertise regarding the role of land-
atmosphere interactions in driving or amplifying heat and drought extremes. 

5 relevant publications:  

● Donat, M. G., A. J. Pitman, O. Angélil (2018), Understanding and reducing future 
uncertainty in midlatitude daily heat extremes via land surface feedback constraints, 
Geophysical Research Letters, 45, 10,627–10,636. 
https://doi.org/10.1029/2018GL079128 

● Donat, M. G., A. J. Pitman, and S. I. Seneviratne (2017), Regional warming of hot 
extremes accelerated by surface energy fluxes, Geophysical Research Letters, 44, 
7011–7019, doi:10.1002/2017GL073733. 

● Ukkola, A. M., A. J. Pitman, M. G. Donat, M. G. De Kauwe, O. Angélil (2018), 
Evaluating the contribution of land-atmosphere coupling to heat extremes in CMIP5 
models, Geophysical Research Letters, 45, 9003–9012. 
https://doi.org/10.1029/2018GL079102 

● Donat, M. G., A. D. King, J. T. Overpeck, L. V. Alexander, I. Durre, D. J. Karoly 
(2016), Extraordinary heat during the 1930s US Dust Bowl and associated large-scale 
conditions, Climate Dynamics, 46(1), 413-426, doi: 10.1007/s00382-015-2590-5 

● Donat, M. G., L. V. Alexander, N. Herold, A. J. Dittus (2016), Temperature and 
precipitation extremes in century-long gridded observations, reanalyses, and 
atmospheric model simulations, J. Geophys. Res. Atmos., 121, 11,174–11,189, 
doi:10.1002/2016JD025480 

 
Name: Nube Gonzalez-Reviriego 

Role: Climate service scientist Dedication: 7,5% 
Qualifications and experience of interest for this proposal: 
Dra. Nube Gonzalez-Reviriego (PhD) is the leader of the Climate Services team (consisting 
of 10 people) within the Earth System Services Group at Barcelona Supercomputing Center 
(BSC-CNS). She has 7 years of experience in the field of climate sciences and 7 years in the 
field of climate services research. Her expertise lies in sub-seasonal, seasonal and decadal 
climate predictions for the development of climate services tailored to sectoral needs of 
different sectors: agriculture, renewable energy, water management and retail. She is an expert 
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on co-development and capacity building in the context of climate services. She is the principal 
investigator at BSC-CNS of the European project MED-GOLD, and has participated in 10 
European projects (MED-GOLD, S2S4E, FOCUS, VITIGEOSS, EUCP, VISCA, INDECIS, 
IMPREX, SPECS and EUPORIAS), 6 Spanish projects, 1 cooperation project and 4 private 
contracts (C3S and private companies). She has supervised MSc and PhD students and has 
experience teaching at university. More than sixty research publications and thirty conferences 
in the last 5 years. Of particular relevance to the proposed work in this project is Nube’ 
expertise on predictions of drought indices such as SPEI based on seasonal and decadal 
predictions and their forecast quality assessment. 

5 relevant publications 
● Solaraju-Murali, B., Gonzalez-Reviriego, N., Caron, L. P., Ceglar, A., Toreti, A., 

Zampieri, M., Bretonnière, P., Samso, M. & Doblas-Reyes, F. J. (2021). Multi-annual 
prediction of drought and heat stress to support decision making in the wheat sector. 
npj Climate and Atmospheric Science, 4(1), 1-9. 

● Manrique-Suñén, A., Gonzalez-Reviriego, N., Torralba, V., Cortesi, N., & Doblas-
Reyes, F. J. (2020). Choices in the verification of S2S forecasts and their implications 
for climate services. Monthly Weather Review, 148(10), 3995-4008   
   

● Lee, D.Y., F.J. Doblas-Reyes, V. Torralba, and N. Gonzalez-Reviriego (2019) Multi-
model seasonal forecasts for the wind energy sector. Climate Dynamics, doi: 
10.1007/s00382-019-04654-y  

● Solaraju-Murali, B., Caron, L. P., Gonzalez-Reviriego, N., & Doblas-Reyes, F. J. 
(2019). Multi-year prediction of European summer drought conditions for the 
agricultural sector. Environmental Research Letters, 14(12), 124014. 

● Gonzalez-Reviriego, N., C. Rodriguez-Puebla and B. Rodriguez-Fonseca (2015) 
Evaluation of observed and simulated teleconnections over the Euro-Atlantic region 
on the basis of partial least squares regression. Climate Dynamics 44 (11-12): 2989-
3014 

 
 

Name: Lluís Palma 

Role: Climate services and machine learning scientist Dedication: 50% 
Qualifications and experience of interest for this proposal: 
Lluís Palma García is a Junior research engineer from the computational earth sciences group 
at the Barcelona Supercomputing Center (BSC). He holds a bachelor's degree in aerospace 
engineering from the Universitat Politècnica de Catalunya (UPC) and an MSc in Meteorology 
from the Universitat de Barcelona (UB). He joined the BSC in 2018, where he has worked 
applying statistical and machine learning techniques for the post-processing of sub-seasonal 
to seasonal (S2S) climate predictions. Following the same line, he has participated in several 
H2020 projects such as S2S4E, VISCA, MED-GOLD, or Vitigeoss, in which he has been 
mainly in charge of designing and implementing data pipelines retrieving and post-processing 
real-time forecasts. In addition, he holds relevant experience working with different prediction 
systems, applying multiple bias-adjustment techniques,  and working with traditional and 
machine learning downscaling methods. 
 
Selected publications: 
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• Palma, L., Manrique, A., Lledó, L., Nicodemou, A., Bretonnière, P.-A., Pérez-
Zanón, N., Ho, A., and Soret, A.: Lessons learned from the implementation of the 
near real-time S2S4E Decision Support Tool, EGU General Assembly 2021, 
online, 19–30 Apr 2021, EGU21-15537, https://doi.org/10.5194/egusphere-egu21-
15537, 2021. 

• Gómez-Gonzalez, C. A., Palma Garcia, L., Lledó, L., Marcos, R., Gonzalez-
Reviriego, N., Carella, G., and Soret Miravet, A.: Deep learning-based 
downscaling of seasonal forecasts over the Iberian Peninsula, EGU General 
Assembly 2021, online, 19–30 Apr 2021, EGU21-12253, 
https://doi.org/10.5194/egusphere-egu21-12253, 2021. 

• Martínez Botí, A., Palma, L., Roura, F., Manrique-Suñén, A., González-Reviriego, 
N., Marcos, R., González, S., López, A., and Soret, A.: Climate services for the 
retail sectors: the Filomena’s case, EGU General Assembly 2021, online, 19–30 
Apr 2021, EGU21-15813, https://doi.org/10.5194/egusphere-egu21-15813, 2021. 

• Soret, A., Torralba, V., Cortesi, N., Christel, I., Palma, L., Manrique-Suñén, A., 
Lledó, L., González-Reviriego, N., & Doblas-Reyes, F. J. (2019). Sub-seasonal to 
seasonal climate predictions for wind energy forecasting. Journal of Physics: 
Conference Series, 1222, 12009. https://doi.org/10.1088/1742-
6596/1222/1/012009 

 
Name: Llorenç Lledó 

Role: Downscaling and Bias adjustment expert Dedication: 7,5% 
Qualifications and experience of interest for this proposal: 
Dr. Llorenç Lledó holds a PhD in Physics from the Universitat de Barcelona and a MsC in 
Meteorology from the same university. He has 5 years of experience in co-producing climate 
services for the energy sector and has specialized in the downscaling, bias adjustment and 
post-processing of S2S dynamical predictions. Before joining the academia, he worked for ten 
years in the private sector developing applications of numerical weather prediction for short-
term wind power forecasting. He has participated in dozens of wind resource assessment 
studies for developing new wind farm projects. He has supervised MsC and PhD students and 
has received a “Personal Técnico de Apoyo” grant from the Spanish ministry of science. He 
has participated in many research projects such as H2020 S2S4E, FOCUS, VITIGEOSS, 
EUPORIAS, ERA4CS INDECIS and MEDSCOPE, Copernicus CLIM4ENERGY, Spanish 
Ministry RESILIENCE and other private contracts.  

• Ramon, J., Lledó, L., Bretonnière, P.-A., Samsó, M., & Doblas-Reyes, F. J. (2021). A 
perfect prognosis downscaling methodology for seasonal prediction of local-scale wind 
speeds. Environmental Research Letters, 16(5), 054010. https://doi.org/10.1088/1748-
9326/abe491 

• Lledó, Ll., Torralba, V., Soret, A., Ramon, J., & Doblas-Reyes, F. J. (2019). Seasonal 
forecasts of wind power generation. Renewable Energy, 143, 91–100. 
https://doi.org/10.1016/j.renene.2019.04.135   

• Ramon, J., Lledó, L., Torralba, V., Soret, A., & Doblas‐Reyes, F. J. (2019). What global 
reanalysis best represents near‐surface winds? Quarterly Journal of the Royal 
Meteorological Society, 145(724), 3236–3251. https://doi.org/10.1002/qj.3616  
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• Gómez-Gonzalez, C. A., Palma Garcia, L., Lledó, L., Marcos, R., Gonzalez-Reviriego, N., 
Carella, G., and Soret Miravet, A.: Deep learning-based downscaling of seasonal forecasts 
over the Iberian Peninsula, EGU General Assembly 2021, online, 19–30 Apr 2021, 
EGU21-12253, https://doi.org/10.5194/egusphere-egu21-12253, 2021. 

• Weigel, K., Bock, L., Gier, B. K., Lauer, A., Righi, M., Schlund, M., Adeniyi, K., Andela, 
B., Arnone, E., Berg, P., Caron, L.-P., Cionni, I., Corti, S., Drost, N., Hunter, A., Lledó, 
L., Mohr, C. W., Paçal, A., Pérez-Zanón, N., … Eyring, V. (2021). Earth System Model 
Evaluation Tool (ESMValTool) v2.0 – diagnostics for extreme events, regional and impact 
evaluation, and analysis of Earth system models in CMIP. Geoscientific Model 
Development, 14(6), 3159–3184. https://doi.org/10.5194/gmd-14-3159-2021   

1.1.1. EURECAT 
Name: Lali Soler 

Role: EO Data Scientist and Explainable AI Dedication: 1,2% 
Qualifications and experience of interest for this proposal: 

Director of the Big Data & Data Science unit at Eurecat. She holds a Mathematics degree from 
the University of Barcelona. She also holds a master's degree in computer Vision and Artificial 
Intelligence from the Center for Computer Vision of Catalonia and an MBA from ESADE 
Business School. She has more than 15 years of experience in data analysis and image 
processing. She led the Remote Sensing and Photogrammetry Unit at the Cartographic and 
Geological Institute of Catalonia (ICGC). Recently, she specialized in management of 
innovation in environmental business and, more specifically, in application of data mining 
techniques, and design, conceptualization and management of products and services. She has 
several publications in Earth Observation related disciplines and presented her work at the 
most important EO conferences such as ISPRSS and IGARSS. She is also a lecturer in Data 
Science in several masters and degrees at the Universitat Autònoma de Barcelona and ESADE 
Business School. 
Relevant publications: 

● J. Talaya, W. Kornus, R. Alamús, E. Soler, M. Pla, A. Ruiz Analyzing DMC 
Performance in a Production Environment. Commission IV, WG IV/9 ISPRS 2005 

● Kornus, W., Magariños, A., Pla, M., Soler, E., Pérez, F.  Photogrammetric 
processing using ZY-3 satellite imagery, ISPRS 2016 

 
 

Name: Xavier Domingo 

Role: AFLOU data scientist Expert Dedication: 1,2% 
Qualifications and experience of interest for this proposal: 

Director of the Applied Artificial Intelligence (AAI) unit at the Eurecat Technology Center. 
He is Diploma of Advanced Studies (DEA) in Artificial Intelligence by the University of 
Lleida (UdL) and Computer Engineer by the Polytechnic University of Catalonia (UPC). He 
has extensive experience in the application of Artificial Intelligence methodologies and 
techniques supported by hybrid IoT architectures with analytical capabilities for small / BIG 
data. Among them, smart platforms with Industry 4.0 technologies, solutions for predictive 
maintenance, planning and optimization of resources, monitoring and control of machinery, 
or traceability applied to the manufacturing industry, as well as applications in other sectors 
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such as resources (water and energy), aerospace, logistics, environmental, or agri-food. He 
collaborates as a senior consultant in companies related to workflow management, logistics 
optimization, fleet management, and personal and fleet security systems, with around 20 years 
of professional experience. He is a collaborator of ESADE and CIHEAM-IAMZ, and partial 
time lecturer in the Department of Informatics and Industrial Engineering (DIEI) at the 
University of Lleida (UdL). He has participated in multiple European research projects (FP7, 
H2020) such as FIWARE4WATER, VITIGEOSS, SESAME, REVAMP or SIM4NEXUS, as 
well as in others of national or regional scope, or technology transfer to the private sector. 
Relevant publications: 

● Sušnik, J., Mereu, S., Trabucco, A., Evans, B., Khoury, M., Luchner, J., Domingo, 
X., Vamvakeridou-Lyroudia, L. S., Chew, C., Savić, D. A., Laspidou, C., & 
Brouwer, F. (2018). Serious gaming to explore the water-energy-food-land-climate 
nexus with multi-stakeholder participation: The sim4nexus approach. 1st 
International WDSA / CCWI 2018 Joint Conference. 

● Sušnik, J., Chew, C., Domingo, X., Mereu, S., Trabucco, A., Evans, B., 
Vamvakeridou-Lyroudia, L., Savić, D. A., Laspidou, C., & Brouwer, F. (2018). 
Multi-stakeholder development of a serious game to explore the water-energy-food-
land-climate nexus: The SIM4NEXUS approach. Water (Switzerland), 10(2), 139. 
https://doi.org/10.3390/w10020139 

● Laspidou, C., Witmer, M., Vamvakeridou, L. S., Domingo, X., Brouwer, F., 
Howells, M., Susnik, J., Blanco, M., Bonazountas, M., Fournier, M., & 
Papadopoulus, M. P. (2017). The water-land-food-energy-climate Nexus for a 
resource efficient Europe The water-land-food-energy-climate Nexus for a resource 
efficient Europe. 15th International Conference on Environmental Science and 
Technology, September. 

● Evans, B., Vamvakeridou-Lyroudia, L., Susnik, J., Trabucco, A., Mereu, S., 
Domingo Albin, X., Chew, C., & Savic, D. (2018). SIM4NEXUS – Coupling a 
System Dynamic Model with Serious Gaming for Policy Analysis. HIC 2018, 3, 
676–667. https://doi.org/10.29007/w5vl 

● Brouwer, F., Giampietro, M., Anzaldi, G., Blanco, M., Bukkens, S., Castro, B., 
Domingo, X., Fournier, M., Funtowicz, S., Kovacic, Z., Laspidou, C., Martínez, P., 
Matthews, K., Munaretto, S., Romanovska, L., Schmidt, G., Serrano, T., Strand, R., 
Vamvakeridou-Lyroudia, L., & Witmer, M. (2017). The Nexus : efficient 
approaches. Pan European Networks: Science & Technology, 25, 1–4. 
http://edition.pagesuite-
professional.co.uk/html5/reader/production/default.aspx?pubname=&edid=c780812e
-ef43-4ea4-bf5a-7c8f0cfe1e7d 

 
 

Name: Aitor Corchero 

Role: Semantic and Interoperability Data Science Expert  Dedication: 50% 
Qualifications and experience of interest for this proposal: 

Senior researcher and R+D project manager in the Applied Artificial Intelligence R&D Group 
of Eurecat Technology Centre. He studied Computer Science Engineering at the University of 
Mondragon (MUN) and also obtained the MSc degree in computer science at University of 
Lleida. He has more than 10 years of experience as data scientist and semantic web. 
Specifically, he has experience on semantic web technologies, data analytics (machine 
learning/data mining and deep learning), decision support systems (rule based reasoning and 
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case-based reasoning) and cognitive AI for a broad of domains including water management, 
building energy efficiency management and physical and logical security systems (Botnet 
detection and remediation systems). Moreover, he is involved in Water domain (OGC®, 
ICT4Water Cluster), semantic web (IoT Schema.org) and IoT associations (AIOTI, BDVA). 
Currently, he is chair of the water management action group of the AIOTI and also, chair of 
the "standardization and Interoperability" action group of the ICT4WATER cluster. Moreover, 
Aitor has been involved and leading from EUT side more than 20 EU projects covering FP7, 
H2020 and LIFE projects. 
Relevant publications: 

● E. Rubión, A. Corchero, X. Domingo, L. Echeverria and G. Anzaldi, “Towards an 
Open, Low Cost and Enhanced Standards-Based IoT Architecture for Autonomous 
and Smart Water Quality Control and Monitoring” in 17th International Computing 
& Control for the Water Industry Conference, Exeter, Sep. 2019. 

● A. Corchero, L. Echeverria, E. Westerhof, S. Masia, G. Anzaldi, X. Domingo, E. 
Rubion, J. Susnik, R. García, C. Laspidou, L. Vamvakeridou-Lyroudia and F. 
Brouwer, “A nexus Ontology to Support the Generation of cross domain policies,” in 
17th International Computing & COntrol for the Water Industry Conference, Exeter, 
Apr. 2019. 

● G. Anzaldi, E. Rubion, A. Corchero, and R. Sanfeliu, “Towards an enhanced 
knowledge-based decision support system (DSS) for integrated water resource 
management (IWRM),” Procedia, 2014.  

● D. Sancho et al., “UrbanWater And WatERP: Decision Support Systems For 
Efficient And Integrated Water Resources Management,” 2014, 

● A. Corchero, X. Domingo, and R. García, “Semantic sensor web data exploration 
and visualization for intelligent decision support: position paper,” Proceedings of the 
3rd International, 2013, [Online]. Available: 
https://dl.acm.org/citation.cfm?id=2479831. 
 

 
 
 
 
 
 
 

2.3 Management Plan 
The general purpose of the project management is to coordinate the consortium to achieve the 
project objectives and to control progress for each work package, co-ordination of different 
activities and implementation of quality control mechanisms by issuing appropriate project 
standards. Project management will cover administrative, financial and quality. 

The project will be performed under the responsibility of Lobelia. As Project Manager, TBD will 
be the main communication point both within the AI4DROUGHT project team, and externally 
with ESA. 

Individual work package leaders will be responsible for controlling and monitoring the progress 
of their work packages while they are active. This includes the active soliciting of input from all 
contributors to deliverable items. The WP leader shall monitor progress against the Project 
Schedule. Any problems or schedule slippage shall be reported to the Project Manager at the 
earliest opportunity. The Project Manager and Work Package leader shall devise a recovery plan. 
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L.Romero  will be in direct communication with the sub-contractor and they will report to each 
other any problems or considerations. Technical communications among the project team will be 
handled through the scheduled project meetings and through emails, phone calls or skype. 

The following tools and procedures for managing the subcontractor will be employed: 

1. Strong communication between the subcontractor and the Project manager, ensuring that 
customer requirements are fulfilled and progress is properly communicated. 

2. Use of a project schedule that establishes schedule constraints and includes relevant 
project milestones. 

3. Regular progress reporting on schedule, budget and risks. This will be done on a monthly 
basis and included in the summary progress reports. 

4. An acceptance process of each of the deliverables from the subcontractor. This will be 
managed by TBD and will involve checking for completeness of the document, verifying 
coverage of the applicable technical and scientific requirements and reviewing results 
with the subcontractor (if applicable). 

Suitable dates for all project meetings shall be booked and agreed during the Kick-Off (KO) 
meeting. Progress meetings (PM), will take place every two months. The coordination of these 
meetings will be the responsibility of the coordinator organising the meeting. The Project 
Coordinator shall announce exact dates of the PM at least one month in advance. 

 

2.4 PLANNING 
2.4.1 Gantt chart 

 

2.4.2 Proposed Schedule 
We foresee a KO meeting by October 2021. 
The complete meeting calendar is provided. The Final meeting could be held in October 2023. 

Figure 7 Gantt Chart 
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2.4.3 Meeting and Travel Plan 
Table 7 Meeting and travel plan 

Meeting Milestone 
acronym Purpose Attendees Dates Location WP or 

Milestone 

Kick-off KO Contract KO All T0 Video-
conference KO 

Progress 
Meeting 1 PM1 Progress 

Review All T0 + 2 Video-
conference WP1 

Progress 
Meeting 2 PM2 Progress 

Meeting All T0 +  Video-
conference WP1 

First 
Quarterly 
Review 

QR Progress 
Review All T0 + 6 Video-

conference WP3 

Progress 
Meeting 3 PM3 Progress 

Meeting All T0 + 8 Video-
conference WP1 

Progress 
Meeting 4 PM4 Progress 

Meeting All T0 + 10 Video-
conference WP1 

Mid-term 
Review MTR Progress 

Review All T0 + 12 Lobelia MTR 

Progress 
Meeting 5 PM5 Progress 

Meeting All T0 + 14 Video-
conference WP1 

Progress 
Meeting 6 PM6 Progress 

Meeting All T0 + 16 Video-
conference WP1 

Third 
Quarterly 
Review  

QR Progress 
Meeting All T0 + 18 Video-

conference WP1 

Progress 
Meeting 7 PM7 Progress 

Meeting All T0 + 20 Video-
conference WP1 

Progress 
Meeting 8 PM8 Progress 

Meeting All T0 + 22 Video-
conference WP1 

Final 
Review FR Final Review All T0+24 ESA-ESRIN FR 

 

2.5 DELIVERABLE ITEMS 
2.5.1 Deliverables 
 
Table 8 Deliverables List 

ID Title Milestone Description 

D1*  Problem 
formulation 

end of Task 1.1 Problem formulation (D1 will be integrated as 
a section in RB) 

D2*  SoA and gap 
analysis 

end of Task 1.2 Statement of the art and gap analysis (D2 will 
be integrated as a section in RB) 

D3*  ADD end of Task 3.1 ADD (D3 will be integrated in TR) 
System architecture design 
Internal and external interfaces 
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Dependencies 

D4 Data 
repository 

end of Task 3.2 Cloud repository with data bucket ready-to-
use, accessible by the 3 partners 

D5 ATBD V1 at MTR 
V2 at QR3 

Algorithm Theoretical Basis Documents for 
the 4 developments: 
AI transfer Function (Lobelia) 
Explainable AI: causality, interpretability 
(Eurecat) 
Improvement of seasonal forecast (BSC) 
Cascading effects (Eurecat) 

D6 SW Release QR3 SW Package including input and output data 
enabling executions of the algorithm 
demonstrators 
A user manual to such demonstrator and full 
documentation will be found in the Scientific 
Report (SR) 

RB  Requirements   
Baseline 

V1 – proposal  
V2 - End of   
Task 2 

Report detailing the problem formulation, 
state-of-the art and gap analysis,  scientific and 
technical requirements, including foreseen 
infrastructure  

TR  Technical 
Report  

V1 – End of   
task 2, 
updated  quarterl
y 

Living document, updated quarterly, including: 
scientific, experimental and  technical setup  
system design  
system architecture 
test flow 
system testing  
validation 

SR  Science 
Report  

V1 – End of   
Task 1, 
updated  quarterl
y 

Living document, updated quarterly, consisting 
of a well-defined and self contained scientific 
study in a demonstration scenario, with 
replicable  methodology and technical 
approaches; final version of the Science 
Report  includes a scientific roadmap with the 
remaining open questions, scientific  gaps and 
proposed ways forward. 

PR  Progress 
Report  

Monthly  Living document updated monthly, recording 
the project backlog. Includes  progress, 
pending items, challenges and actions;  

MTR  Mid term 
Review  Repor
t  

Mid-term   
Review 

Summary of main activities, progress and 
issues outstanding. It includes 
the  corresponding TR and SR iterations 

FR  Final Report  Final Review  Summary of main activities, results and 
conclusions of the project, including  an 
executive summary 

SCP  Scientific   
Communicatio
n   
Package 

 Publications in peer-reviewed publications, 
digitally accessible at the time of  publication 
or within a reasonable time period after 
publication; the proposal  shall include a 
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preliminary identification of targeted peer-
reviewed journals;  this package includes full 
versions of publications (published or accepted 
for  publishing) 

MP  Media 
Package  

Final Review  Communication materials including web page 
(with public access to datasets  generated 
during the contract), project multimedia, 
scientific publications,  social media (including 
analytics), and web story 

CCD  Contract 
Closure  Docu
mentation  

Contract   
Closure 

 

FP  Final 
Presentation  

Final Review  
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3 FINANCIAL PROPOSAL 

3.1 PRICE QUOTATION FOR THE CONTEMPLATED CONTRACT 
 

The total price for this proposal is 399,508.00 €. The validity of this proposal is 4 months. 

The type of price is Firm Fixed Price (FFP) in Euro, delivery duty paid, exclusive of import duties 
and value added taxes in ESA Member States, etc., in pursuance of the pricing conditions fixed in 
the “Draft Contract” included in the ITT. 

3.2 DETAILED PRICE BREAKDOWN 
3.2.1 PSS costing forms 
The following PSSs are included as Annex to this proposal, for the Prime contractor (Lobelia 
Earth) and for the subcontractors (BSC and EURECAT) as well as the Aggregated PSSs: 

• PSS A1 Company Cost Rates and Overheads 
• PSS A2 Company Price Breakdown Form 
• PSS A2 Exhibit B – Travel and subsistence plan 
• PSS A8 Person months & Price Summary per WP 
• PSS A15.1 Company price projection vs. payment plan 
• PSS A2, Exhibit B and PSS A8 are included as Annex to this proposal, both for the Prime 

contractor (isardSAT) and for the subcontractor (IRD). 
 

3.2.2 Milestone Payment Plan 
 

Milestone (MS) Description Schedule 
Date 

Payments from ESA to 
(Prime) Contractor 

(in Euro) 

Country 
(ISO code) 

Milestone 1 (including provision for 
advance payment as identified 
hereunder): Upon successful first 
quarterly review and acceptance of 
relevant deliverables 

T0+6 119,852€ 

ES 

Milestone 2: Upon successful Mid 
Term review and acceptance of relevant 
deliverables 

T0+12 79,902€ 

Milestone 3: Upon successful third 
quarterly review and acceptance of 
relevant deliverables 

T0+18 119,852€ 

FINAL: Upon successful completion of 
contract and acceptance of all 
deliverables including contract closure 
documentation 

T0+24 79,902€ 

TOTAL 399,508 €  
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Prime  
(P) 

Company 
Name 

ESA Entity 
Code 

Country 
(ISO 
code) 

Advance 
Payment 
(in Euro) 

Offset 
against1 

Offset by 
Euro 

Condition for 
release of the 

Advance Payment 

P 
Lobelia 

Earth SL 
1000034919 ES 44,800.00  € 100% MS-1 

25% MS-4 
Lobelia 

Earth SL 
1000034919 

 

3.2.3 Travel and subsistence plan 
Travel and subsistence plan is included in Exhibit B of the PSS A2 forms from Lobelia Earth, BSC 
and Eurecat 
  

 
COMMERCIAL IN CONFIDENCE 
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4 CONTRACTUAL PROPOSAL 

4.1 Intellectual Property Rights 
 

4.1.1 Background Intellectual Property 
In line with Article 6.3 of the Draft Contract, no Background Intellectual Property will be 
incorporated in the deliverables. 

4.1.2 Foreground Intellectual Property and IP ownership 
Algorithms developed in the frame of the AI4DROUGHT project, as well as software 
implementing those algorithms and programs later developed which include these algorithms will 
be open source. 

4.2 Specification of all inputs to enter into blanks existing in the 
draft contract 

All correspondence for the Contractor shall be addressed as follows: 

a) for technical matters as follows: 

 
 To With copy to: 
Name Laia Romero Jesús Peña Izquierdo 
Telephone No. +34 933 505 508 +34 933 505 508 
e-mail address laia.romero@lobelia.earth jesus.pena@lobelia.earth 

b) for contractual and administrative matters as follows: 

c)  
 To With copy to: 
Name Lluís Vinyals Giulia Galante 
Telephone No. +34 933 505 508 +34 933 505 508 
e-mail address administration@lobelia.earth giulia.galante@lobelia.earth 

4.3 Other remarks on the Draft Contract 
The proposed contract duration is 24 months 
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ANNEX 1: PSS FORMS  

Annex 1: Lobelia Earth SL PSSs 
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Annex 1: Barcelona Supercomputing Center PSSs 
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Annex 1: Eurecat PSSs 
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Annex 1: Aggregated PSSs 

  



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  67 of 72 

 

Commercial in confidence 

Annex 2. References 
 

Alessandrini, S., Sperati, S., & Pinson, P. (2013). A comparison between the ECMWF and 
COSMO Ensemble Prediction Systems applied to short-term wind power forecasting on 
real data. In Applied Energy (Vol. 107, pp. 271–280). Elsevier Ltd. 
https://doi.org/10.1016/j.apenergy.2013.02.041 

Bauer, P., Stevens, B., & Hazeleger, W. (2021). A digital twin of Earth for the green 
transition. In Nature Climate Change (Vol. 11, Issue 2, pp. 80–83). Nature Research. 
https://doi.org/10.1038/s41558-021-00986-y 

Baugh, C., de Rosnay, P., Lawrence, H., Jurlina, T., Drusch, M., Zsoter, E., & Prudhomme, 
C. (2020). The Impact of SMOS Soil Moisture Data Assimilation within the Operational 
Global Flood Awareness System (GloFAS). Remote Sensing, 12(9), 1490. 
https://doi.org/10.3390/rs12091490 

Belle, V., & Papantonis, I. (2020). Principles and Practice of Explainable Machine Learning. 
http://arxiv.org/abs/2009.11698 

Bergeron, J. M., Trudel, M., & Leconte, R. (2016). Combined assimilation of streamflow and 
snow water equivalent for mid-term ensemble streamflow forecasts in snow-dominated 
regions. Hydrology and Earth System Sciences, 20(10), 4375–4389. 
https://doi.org/10.5194/hess-20-4375-2016 

Brock, A., De, S., Smith, S. L., & Simonyan, K. (n.d.). High-Performance Large-Scale 
Image Recognition Without Normalization. Retrieved June 14, 2021, from 
https://github.com/deepmind/ 

Brunner, M. I., Slater, L., Tallaksen, L. M., & Clark, M. (2021). Challenges in modeling and 
predicting floods and droughts: A review. WIREs Water, 8(3), e1520. 
https://doi.org/10.1002/wat2.1520 

Brunner, M. I., Viviroli, D., Sikorska, A. E., Vannier, O., Favre, A., & Seibert, J. (2017). 
Flood type specific construction of synthetic design hydrographs. Water Resources 
Research, 53(2), 1390–1406. https://doi.org/10.1002/2016WR019535 

Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2020). Explainable AI in Fintech 
Risk Management. Frontiers in Artificial Intelligence, 3, 26. 
https://doi.org/10.3389/frai.2020.00026 

Cai, Y., Zheng, W., Zhang, X., Zhangzhong, L., & Xue, X. (2019). Research on soil moisture 
prediction model based on deep learning. PLoS ONE, 14(4), e0214508. 
https://doi.org/10.1371/journal.pone.0214508 

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., & Zagoruyko, S. (2020). End-
to-End Object Detection with Transformers. http://arxiv.org/abs/2005.12872 

Chen, Z., Liu, H., Xu, C., Wu, X., Liang, B., Cao, J., & Chen, D. (2021). Modeling 
vegetation greenness and its climate sensitivity with deep-learning technology. Ecology 
and Evolution, 00(1), 1–11. https://doi.org/10.1002/ece3.7564 



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  68 of 72 

 

Commercial in confidence 

Cohen, J., Coumou, D., Hwang, J., Mackey, L., Orenstein, P., Totz, S., & Tziperman, E. 
(2019). S2S reboot: An argument for greater inclusion of machine learning in 
subseasonal to seasonal forecasts. In Wiley Interdisciplinary Reviews: Climate Change 
(Vol. 10, Issue 2, p. e00567). Wiley-Blackwell. https://doi.org/10.1002/wcc.567 

Council, N. R. (2012). A National Strategy for Advancing Climate Modeling. National 
Academies Press. https://doi.org/10.17226/13430 

de Brito, M. M. (2021). Compound and cascading drought impacts do not happen by chance: 
A proposal to quantify their relationships. Science of the Total Environment, 778, 
146236. https://doi.org/10.1016/j.scitotenv.2021.146236 

Doblas-Reyes, F. J., García-Serrano, J., Lienert, F., Biescas, A. P., & Rodrigues, L. R. L. 
(2013). Seasonal climate predictability and forecasting: Status and prospects. Wiley 
Interdisciplinary Reviews: Climate Change, 4(4), 245–268. 
https://doi.org/10.1002/wcc.217 

Donnelly, C., Greuell, W., Andersson, J., Gerten, D., Pisacane, G., Roudier, P., & Ludwig, F. 
(2017). Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean 
global warming above preindustrial level. Climatic Change, 143(1–2), 13–26. 
https://doi.org/10.1007/s10584-017-1971-7 

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., 
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. 
(2020). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. 
http://arxiv.org/abs/2010.11929 

Enenkel, M., Brown, M. E., Vogt, J. V., McCarty, J. L., Reid Bell, A., Guha-Sapir, D., 
Dorigo, W., Vasilaky, K., Svoboda, M., Bonifacio, R., Anderson, M., Funk, C., Osgood, 
D., Hain, C., & Vinck, P. (2020). Why predict climate hazards if we need to understand 
impacts? Putting humans back into the drought equation. Climatic Change, 162(3), 
1161–1176. https://doi.org/10.1007/s10584-020-02878-0 

Escorihuela, M. J., Quintana-Seguí, P. Q., Stefan, V., & Gaona, J. (2020). Drought 
monitoring in the Ebro basin: comparison of Soil Moisture and Vegetation anomalies. 
EGU General Assembly 2020. https://doi.org/10.5194/egusphere-egu2020-11120 

Foley, C. J., Vaze, S., Seddiq, M., Unagaev, A., & Efremova, N. (n.d.). SMARTCAST: 
PREDICTING SOIL MOISTURE INTERPO-LATIONS INTO THE FUTURE USING 
EARTH OBSERVA-TION DATA IN A DEEP LEARNING FRAMEWORK. Retrieved 
June 14, 2021, from www.deepplanet.ai 

Gerber, N., & Mirzabaev, A. (2017). Integrated Drought Management Programme Working 
Paper No. 1 Benefits of action and costs of inaction: Drought mitigation and 
preparedness-a literature review. https://www.gfdrr.org/post-disaster-needs-assessments 

Grönquist, P., Yao, C., Ben-Nun, T., Dryden, N., Dueben, P., Li, S., & Hoefler, T. (2020). 
Deep Learning for Post-Processing Ensemble Weather Forecasts. Philosophical 
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 
379(2194). https://doi.org/10.1098/rsta.2020.0092 



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  69 of 72 

 

Commercial in confidence 

Jocher, G., Stoken, A., Borovec, J., NanoCode012, Chaurasia, A., TaoXie, Changyu, L., V, 
A., Laughing, tkianai, yxNONG, Hogan, A., lorenzomammana, AlexWang1900, Hajek, 
J., Diaconu, L., Marc, Kwon, Y., oleg, … Ingham, F. (2021). ultralytics/yolov5: v5.0 - 
YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations. 
https://doi.org/10.5281/ZENODO.4679653 

Kakogeorgiou, I., & Karantzalos, K. (2021). Evaluating Explainable Artificial Intelligence 
Methods for Multi-label Deep Learning Classification Tasks in Remote Sensing. 
http://arxiv.org/abs/2104.01375 

Kemter, M., Merz, B., Marwan, N., Vorogushyn, S., & Blöschl, G. (2020). Joint Trends in 
Flood Magnitudes and Spatial Extents Across Europe. Geophysical Research Letters, 
47(7), e2020GL087464. https://doi.org/10.1029/2020GL087464 

Klingmüller, K., & Lelieveld, J. (2021). Climate model-informed deep learning of global soil 
moisture distribution. Geoscientific Model Development Discussions, 1–17. 
https://doi.org/10.5194/gmd-2020-434 

Kraft, B., Jung, M., Körner, M., Requena Mesa, C., Cortés, J., & Reichstein, M. (2019). 
Identifying Dynamic Memory Effects on Vegetation State Using Recurrent Neural 
Networks. Frontiers in Big Data, 2, 31. https://doi.org/10.3389/fdata.2019.00031 

Li, Z., Zhang, Z., & Zhang, L. (2021). Improving regional wheat drought risk assessment for 
insurance application by integrating scenario-driven crop model, machine learning, and 
satellite data. Agricultural Systems, 191, 103141. 
https://doi.org/10.1016/j.agsy.2021.103141 

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable ai: A review of 
machine learning interpretability methods. In Entropy (Vol. 23, Issue 1, pp. 1–45). 
MDPI AG. https://doi.org/10.3390/e23010018 

Liu, Y., & Gupta, H. V. (2007). Uncertainty in hydrologic modeling: Toward an integrated 
data assimilation framework. In Water Resources Research (Vol. 43, Issue 7, p. 7401). 
John Wiley & Sons, Ltd. https://doi.org/10.1029/2006WR005756 

Marie Demajo, L., Vella, V., & Dingli, A. (2020). EXPLAINABLE AI FOR 
INTERPRETABLE CREDIT SCORING. 185–203. 
https://doi.org/10.5121/csit.2020.101516 

Masmoudi, M., Lamine, S. B. A. Ben, Zghal, H. B., Archimede, B., & Karray, M. H. (2021). 
Knowledge hypergraph-based approach for data integration and querying: Application 
to Earth Observation. Future Generation Computer Systems, 115, 720–740. 
https://doi.org/10.1016/j.future.2020.09.029 

McGovern, A., Lagerquist, R., Gagne, D. J., Jergensen, G. E., Elmore, K. L., Homeyer, C. 
R., & Smith, T. (2019). Making the black box more transparent: Understanding the 
physical implications of machine learning. Bulletin of the American Meteorological 
Society, 100(11), 2175–2199. https://doi.org/10.1175/BAMS-D-18-0195.1 



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  70 of 72 

 

Commercial in confidence 

Mishra, N., Prodhomme, C., & Guemas, V. (2019). Multi-model skill assessment of seasonal 
temperature and precipitation forecasts over Europe. Climate Dynamics, 52(7–8), 4207–
4225. https://doi.org/10.1007/s00382-018-4404-z 

Moradkhani, H., Hsu, K. L., Gupta, H., & Sorooshian, S. (2005). Uncertainty assessment of 
hydrologic model states and parameters: Sequential data assimilation using the particle 
filter. Water Resources Research, 41(5), 1–17. https://doi.org/10.1029/2004WR003604 

Noura, H. N., Salman, O., & Sider, A. (2021). A DEEP LEARNING OBJECT DETECTION 
METHOD FOR AN EFFICIENT CLUSTERS INITIALIZATION A PREPRINT. 
https://arxiv.org/pdf/2104.13634.pdf 

Papoutsis, I., Baglatzi, A., Touloumtzi, S., Reichstein, M., Carvalhais, N., Gans, F., Camps-
Valls, G., Piles, M., Kakantousis, T., Dowling, J., Koubarakis, M., Bilidas, D., Pantazi, 
D.-A., Stamoulis, G., Demange, C., Journel, L.-G., Bianchi, M., Gervasi, C., Rucci, A., 
… Paschalis, A. (n.d.). DEEPCUBE: EXPLAINABLE AI PIPELINES FOR BIG 
COPERNICUS DATA. Retrieved June 14, 2021, from https://deepcube-h2020.eu/ 

Peng, B., Guan, K., Pan, M., & Li, Y. (2018). Benefits of Seasonal Climate Prediction and 
Satellite Data for Forecasting U.S. Maize Yield. Geophysical Research Letters, 45(18), 
9662–9671. https://doi.org/10.1029/2018GL079291 

R.K. Pachauri, L. A. M. (2014). Climate Change 2014: Synthesis Report. In IPCC,Geneva, 
Switzerland (Vol. 218). 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., & 
Prabhat. (2019). Deep learning and process understanding for data-driven Earth system 
science. Nature, 566(7743), 195–204. https://doi.org/10.1038/s41586-019-0912-1 

Requena-Mesa, C., Benson, V., Denzler, J., Runge, J., & Reichstein, M. (2020). 
EarthNet2021: A novel large-scale dataset and challenge for forecasting localized 
climate impacts. http://arxiv.org/abs/2012.06246 

Rudd, A. C., Kay, A. L., & Bell, V. A. (2019). National-scale analysis of future river flow 
and soil moisture droughts: potential changes in drought characteristics. Climatic 
Change, 156(3), 323–340. https://doi.org/10.1007/s10584-019-02528-0 

Sachan, S., Yang, J. B., Xu, D. L., Benavides, D. E., & Li, Y. (2020). An explainable AI 
decision-support-system to automate loan underwriting. Expert Systems with 
Applications, 144, 113100. https://doi.org/10.1016/j.eswa.2019.113100 

Salcedo-Sanz, S., Ghamisi, P., Piles, M., Werner, M., Cuadra, L., Moreno-Martínez, A., 
Izquierdo-Verdiguier, E., Muñoz-Marí, J., Mosavi, A., & Camps-Valls, G. (2020). 
Machine learning information fusion in Earth observation: A comprehensive review of 
methods, applications and data sources. Information Fusion, 63, 256–272. 
https://doi.org/10.1016/J.INFFUS.2020.07.004 

Soret, A., Torralba, V., Cortesi, N., Christel, I., Palma, L., Manrique-Suñén, A., Lledó, L., 
González-Reviriego, N., & Doblas-Reyes, F. J. (2019). Sub-seasonal to seasonal climate 
predictions for wind energy forecasting. Journal of Physics: Conference Series, 1222(1), 
012009. https://doi.org/10.1088/1742-6596/1222/1/012009 



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  71 of 72 

 

Commercial in confidence 

Thi Thanh Hang, P., & Hang, P. T. T. (2019). Applying the Distributed Hydrological Model 
for Tropical Monsoon Basins by Using Earth Observation Data (Case Studies: Kone and 
Ba River Basins). Journal of Geoscience and Environment Protection, 07(01), 23–37. 
https://doi.org/10.4236/gep.2019.71003 

Torralba, V., Doblas-Reyes, F. J., MacLeod, D., Christel, I., & Davis, M. (2017). Seasonal 
climate prediction: A new source of information for the management of wind energy 
resources. Journal of Applied Meteorology and Climatology, 56(5), 1231–1247. 
https://doi.org/10.1175/JAMC-D-16-0204.1 

Tsagkatakis, G., Aidini, A., Fotiadou, K., Giannopoulos, M., Pentari, A., & Tsakalides, P. 
(2019). Survey of deep-learning approaches for remote sensing observation 
enhancement. In Sensors (Switzerland) (Vol. 19, Issue 18). MDPI AG. 
https://doi.org/10.3390/s19183929 

Ukkola, A. M., De Kauwe, M. G., Pitman, A. J., Best, M. J., Abramowitz, G., Haverd, V., 
Decker, M., & Haughton, N. (2016). Land surface models systematically overestimate 
the intensity, duration and magnitude of seasonal-scale evaporative droughts. 
Environmental Research Letters, 11(10), 104012. https://doi.org/10.1088/1748-
9326/11/10/104012 

Vicente-Serrano, S. M., Lopez-Moreno, J. I., Beguería, S., Lorenzo-Lacruz, J., Sanchez-
Lorenzo, A., García-Ruiz, J. M., Azorin-Molina, C., Morán-Tejeda, E., Revuelto, J., 
Trigo, R., Coelho, F., & Espejo, F. (2014). Evidence of increasing drought severity 
caused by temperature rise in southern Europe. Environmental Research Letters, 9(4), 
044001. https://doi.org/10.1088/1748-9326/9/4/044001 

Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., 
Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial 
intelligence in achieving the Sustainable Development Goals. In Nature 
Communications (Vol. 11, Issue 1, pp. 1–10). Nature Research. 
https://doi.org/10.1038/s41467-019-14108-y 

Walz, M. A., Donat, M. G., & Leckebusch, G. C. (2018). Large-Scale Drivers and Seasonal 
Predictability of Extreme Wind Speeds Over the North Atlantic and Europe. Journal of 
Geophysical Research: Atmospheres, 123(20), 11,518-11,535. 
https://doi.org/10.1029/2017JD027958 

Wang, L., & Yan, J. (2020). Stewardship and analysis of big Earth observation data. Big 
Earth Data, 4(4), 349–352. https://doi.org/10.1080/20964471.2020.1857055 

Wilhite, D. A. (2000). Chapter 1  Drought as a Natural Hazard: Concepts and Definitions. 
http://digitalcommons.unl.edu/droughtfacpubhttp://digitalcommons.unl.edu/droughtfacp
ub/69 

Zsoter, E., Cloke, H., Stephens, E., de Rosnay, P., Muñoz-Sabater, J., Prudhomme, C., & 
Pappenberger, F. (2019). How Well Do Operational Numerical Weather Prediction 
Configurations Represent Hydrology? Journal of Hydrometeorology, 20(8), 1533–1552. 
https://doi.org/10.1175/JHM-D-18-0086.1 



Ref.: LOBELIA_AI4DROUGHT_PRO_31 
Issue: 1.0 
Date: 14 June 2021 
Page:  72 of 72 

 

Commercial in confidence 

 
 
 
 

[End of the document] 
 
 
 

 


