
Module 6.2
How to run a test using a workflow manager

Workflow manager

Workflow manager

Manages experiments across different platforms

Automatic handling of job submission, dependencies, and error recovery.

Improves workflow scalability and traceability.

EDITO entrypoint to HPC clusters

Think workflow!

When solving big computational

problems, it is common to think of

your top-level main function as a

workflow that is run through a

workflow manager.

Think workflow!

When solving big computational

problems, it is common to think of

your top-level main function as a

workflow that is run through a

workflow manager.

def fetch_inputs():
 ...

def run_simulation():
 ...

def transfer_data():
 ...

def analyze_data():
 ...

def publish_paper():
 ...

def main():
 fetch_inputs()
 run_simulation()
 transfer_data()
 analyze_data()
 publish_paper()

if __name__ == "__main__":
 main()

Think workflow!

When solving big computational

problems, it is common to think of

your top-level main function as a

workflow that is run through a

workflow manager.

FETCH

RUN

TRANSFER

ANALYSIS

PUBLISH

def fetch_inputs():
 ...

def run_simulation():
 ...

def transfer_data():
 ...

def analyze_data():
 ...

def publish_paper():
 ...

def main():
 fetch_inputs()
 run_simulation()
 transfer_data()
 analyze_data()
 publish_paper()

if __name__ == "__main__":
 main()

EDITO Ecosystem

Jupyter Lab: service with a
notebook with Autosubmit
instance running, and access to
HPC

Autosubmit GUI: web app to
monitor Autosubmit
experiments

Domain
tools

DTO data

Model
+ AI

User
applications

GUIs

Data lake

Autosubmit

Experiment
configuration Workflow engine

Workflow
monitoring and

analysis

DEFINITION
PARAMETERIZATION

CONTROL
LOGGING

VISUALIZATION
STATISTICS

PERFORMANCE METRICS

Declarative

YAML

Validation

Inheritance

Imports

Declarative

YAML

Validation

Inheritance

Imports

Consistent

Start Dates

Members

Chunks

Job Splits

Variables

Declarative Consistent Composable

YAML

Validation

Inheritance

Imports

Start Dates

Members

Chunks

Job Splits

Variables

Standardised IDs

Create – Copy

Migrate – Monitor

Workflow ☇ model code

RO-Crate

Configuration

Workflow Dependencies

FETCH

RUN

TRANSFER

ANALYSIS

PUBLISH

JOBS:
 FETCH:
 FILE: Fetch.sh
 RUN:
 FILE: Run.sh
 DEPENDENCIES: FETCH
 TRANSFER:
 FILE: Transfer.sh
 DEPENDENCIES: RUN
 ANALYSIS:
 FILE: Chunk.py
 DEPENDENCIES: TRANSFER
 PUBLISH:
 FILE: Publish.sh
 DEPENDENCIES: ANALYSIS

jobs.yml

Workflow Dependencies

JOBS:
 FETCH:
 FILE: Fetch.sh
 PLATFORM: LOCAL
 RUN:
 FILE: Run.sh
 DEPENDENCIES: FETCH
 PLATFORM: REMOTE
 TRANSFER:
 FILE: Transfer.sh
 DEPENDENCIES: RUN
 PLATFORM: REMOTE
 ANALYSIS:
 FILE: Chunk.py
 DEPENDENCIES: TRANSFER
 PLATFORM: LOCAL
 PUBLISH:
 FILE: Publish.sh
 DEPENDENCIES: ANALYSIS
 PLATFORM: LOCAL

jobs.yml
FETCH

RUN

TRANSFER

ANALYSIS

PUBLISH

Workflow Platforms

PLATFORMS:
 REMOTE:
 USER: my-remote-user

~/platforms.yml
FETCH

RUN

TRANSFER

ANALYSIS

PUBLISH

Workflow Platforms

PLATFORMS:
 REMOTE:
 USER: my-remote-user

~/platforms.yml

PLATFORMS:
Host mn5login
 HostName glogin1.bsc.es
 User my-remote-user
 IdentityFile ~/.ssh/id_rsa
 ForwardX11 yes

~/.ssh/config

FETCH

RUN

TRANSFER

ANALYSIS

PUBLISH

JOBS:
 ONCE:
 FILE: Once.sh
 RUNNING: once
 DATE:
 FILE: date.sh
 DEPENDENCIES: once
 RUNNING: date
 MEMBER:
 FILE: Member.sh
 DEPENDENCIES: date
 RUNNING: member
 CHUNK:
 FILE: Chunk.py
 DEPENDENCIES: member
 RUNNING: chunk

Workflow Hierarchy

JOBS:
 ONCE:
 FILE: Once.sh
 RUNNING: once
 DATE:
 FILE: date.sh
 DEPENDENCIES: once
 RUNNING: date
 MEMBER:
 FILE: Member.sh
 DEPENDENCIES: date
 RUNNING: member
 CHUNK:
 FILE: Chunk.py
 DEPENDENCIES: member
 RUNNING: chunk

Workflow Hierarchy

JOBS:
 ONCE:
 FILE: Once.sh
 RUNNING: once
 DATE:
 FILE: date.sh
 DEPENDENCIES: once
 RUNNING: date
 MEMBER:
 FILE: Member.sh
 DEPENDENCIES: date
 RUNNING: member
 CHUNK:
 FILE: Chunk.py
 DEPENDENCIES: member
 RUNNING: chunk

Workflow Hierarchy

JOBS:
 ONCE:
 FILE: Once.sh
 RUNNING: once
 DATE:
 FILE: date.sh
 DEPENDENCIES: once
 RUNNING: date
 MEMBER:
 FILE: Member.sh
 DEPENDENCIES: date
 RUNNING: member
 CHUNK:
 FILE: Chunk.py
 DEPENDENCIES: member
 RUNNING: chunk

Workflow Hierarchy

Running

CREATE CONFIGURE PREPARE MONITORRUN

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit expid -H "local" -d "My new experiment"

CREATE NEW EXPERIMENT

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit expid -H "local" -d "My new experiment"

CREATE NEW EXPERIMENT

autosubmit expid -H "local" -d "My new copy" --copy a00x

COPY EXISTING EXPERIMENT

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit expid -H "local" -d "My new experiment"

CREATE NEW EXPERIMENT

autosubmit expid -H "local" -d "My new copy" --copy a00x

COPY EXISTING EXPERIMENT

OUTPUT: Experiment a01a created

CREATE CONFIGURE PREPARE MONITORRUN

 AUTOSUBMIT_DATA/a01a/

 ├ conf/ Experiment configuration
 │
 ├ proj/ Project (workflow scripts, config., …)
 │
 ├ plot/ Visualizations
 │
 ├ tmp/ Logs, templates
 │
 └ pkl/ Workflow database

CREATE CONFIGURE PREPARE MONITORRUN

 AUTOSUBMIT_DATA/a01a/

 ├ conf/ Experiment configuration
 │
 ├ proj/ Project (workflow scripts, config., …)
 │
 ├ plot/ Visualizations
 │
 ├ tmp/ Logs, templates
 │
 └ pkl/ Workflow database

In Autosubmit, the project is a code
base external to the experiment
configuration that contains the
workflow logic as external
resources that must be copied.

CREATE CONFIGURE PREPARE MONITORRUN

 AUTOSUBMIT_DATA/a01a/

 ├ conf/ Experiment configuration
 │
 ├ proj/ Project (workflow scripts, config., …)
 │
 ├ plot/ Visualizations
 │
 ├ tmp/ Logs, templates
 │
 └ pkl/ Workflow database

configuration files
namelists

YAML files
bash scripts
Python code

…

In Autosubmit, the project is a code
base external to the experiment
configuration that contains the
workflow logic as external resources
that must be copied.

CREATE CONFIGURE PREPARE MONITORRUN

CONFIG:
 AUTOSUBMIT_VERSION: “4.x.x”
DEFAULT:
 HPCARCH: “local” # -H “local”
PROJECT:
 PROJECT_TYPE: “local” # or git
 PROJECT_DESTINATION: “”

 AUTOSUBMIT_DATA/a01a/conf/minimal.yml

CREATE CONFIGURE PREPARE MONITORRUN

CONFIG:
 AUTOSUBMIT_VERSION: “4.x.x”
DEFAULT:
 HPCARCH: “local” # -H “local”
PROJECT:
 PROJECT_TYPE: “git”
 PROJECT_DESTINATION: “”
GIT: # Because PROJECT_TYPE is “git”
 PROJECT_ORIGIN: “https://gitlab.bsc.es/...”
 PROJECT_BRANCH: “v1.2.3”
 PROJECT_COMMIT: “123456…”

 AUTOSUBMIT_DATA/a01a/conf/minimal.yml

CREATE CONFIGURE PREPARE MONITORRUN

CONFIG:
 AUTOSUBMIT_VERSION: “4.x.x”
DEFAULT:
 EXPID: $expid # From `autosubmit expid`
 HPCARCH: “local” # -H “local”
 CUSTOM_CONFIG: “%PROJDIR%/” # Other files?
PROJECT:
 PROJECT_TYPE: “git”
 PROJECT_DESTINATION: “”
GIT: # Because PROJECT_TYPE is “git”
 PROJECT_ORIGIN: “https://gitlab.bsc.es/...”
 PROJECT_BRANCH: “v1.2.3”
 PROJECT_COMMIT: “123456…”

/appl/AS/AUTOSUBMIT_DATA/a01a/conf/minimal.yml

/appl/AS/AUTOSUBMIT_DATA/a01a/conf/minimal.yml

CREATE CONFIGURE PREPARE MONITORRUN

CONFIG:
 AUTOSUBMIT_VERSION: “4.x.x”
DEFAULT:
 EXPID: $expid # From `autosubmit expid`
 HPCARCH: “local” # -H “local”
 CUSTOM_CONFIG: “%PROJDIR%/” # Other files?
PROJECT:
 PROJECT_TYPE: “git” # or local, svn
 PROJECT_DESTINATION: “”
GIT: # Because PROJECT_TYPE is “git”
 PROJECT_ORIGIN: “https://gitlab.bsc.es/...”
 PROJECT_BRANCH: “v1.2.3”
 PROJECT_COMMIT: “123456…”

Autosubmit will try to load
other files located at the
CUSTOM_CONFIG value.

CREATE CONFIGURE PREPARE MONITORRUN

CONFIG:
 AUTOSUBMIT_VERSION: “4.x.x”
DEFAULT:
 EXPID: $expid # From `autosubmit expid`
 HPCARCH: “local” # -H “local”
 CUSTOM_CONFIG: “%PROJDIR%/” # Other files?
PROJECT:
 PROJECT_TYPE: “git” # or local, svn
 PROJECT_DESTINATION: “”
GIT: # Because PROJECT_TYPE is “git”
 PROJECT_ORIGIN: “https://gitlab.bsc.es/...”
 PROJECT_BRANCH: “v1.2.3”
 PROJECT_COMMIT: “123456…”

%PROJDIR% is a placeholder
variable. Autosubmit

replaces this by a value from
the workflow configuration.

/appl/AS/AUTOSUBMIT_DATA/a01a/conf/minimal.yml

Autosubmit will try to load
other files located at the
CUSTOM_CONFIG value.

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit create a01a

The first time, it copies the project content into

AUTOSUBMIT_DATA/a01a/proj/

Generates the experiment workflow

Generates

AUTOSUBMIT_DATA/a01a/plot/a01a_${timestamp}.pdf

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit run a01a

Runs the experiment.

Generates template logs for traceability

AUTOSUBMIT_DATA/a01a/tmp/LOG_a01a/

Expected output:

[local] Connection successful to host localhost

[local] Correct user privileges for host localhost

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit run a01a

NO HANG-UP MODE

nohup autosubmit monitor a01a &

tail -f nohup.out

Visualize console output:

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit monitor a01a

CREATE CONFIGURE PREPARE MONITORRUN

autosubmit monitor a01a

Monitoring

Autosubmit GUI

Autosubmit GUI

QUICK VIEW

TREE VIEW

Autosubmit GUI

GRAPH VIEW

Autosubmit GUI

CONFIGURATION

Autosubmit GUI

STATISTICS

Autosubmit GUI

PERFORMANCE

Autosubmit GUI

A comprehensive waypoint to the
Autosubmit persistence layer

Autosubmit API

Autosubmit API

GET /v3/expinfo/a75t

{
 "branch": "FORCeS-RaFSIPv2-DURF-MELUXINA",
 "chunk_size": 12,
 "chunk_unit": "month",
 "completed_jobs": 801,
 "db_historic_version": 18,
 "description": "[DURF] EC-Earth3-FORCeS AMIP-IFS-TM5 1850-2000 histSST BASELINE",
 "error": false,
 "error_message": "",
 "expid": "a75t",
 "hpc": "marenostrum5",
 "model": "https://earth.bsc.es/gitlab/es/auto-ecearth3.git",
 "owner": "mariag",
 "owner_id": 7464,
 "path": "/esarchive/autosubmit/a75t",
 "pkl_timestamp": 1718884227,
 "running": true,
 "time_last_access": "2024-06-20 02:04:43",
 "time_last_mod": "2024-05-09 13:40:29",
 "total_jobs": 1056,
 "updateTime": 10,
 "version": "3.15.14"
}

GET /v3/expinfo/a75t

Autosubmit API

RESTful Interface

Autosubmit API

Hands On

Step 1. Find the Autosubmit-demo service card in the Service Catalog

Step 2. Review your configuration (if desired) and click Launch.

Step 3. Wait until your new Autosubmit personal service is deployed

Jupyter Lab: service with a
notebook with Autosubmit
instance running, and access to
HPC

Autosubmit GUI: web app to
monitor Autosubmit
experiments

Step 4. On Jupyter Lab, you’ll have to use your access token from the previous page

Step 5. Find the "Autosubmit EDITO training" Trainings and Tutorials >
Discover the Virtual Ocean Model Lab >

Use Autosubmit in EDITO >
Autosubmit EDITO training

Step 6. Download the repository code in your preferred compression format and
decompress.

Step 7. Go to the Jupyter Lab open in Step 4, drag and drop the compressed Jupyter
Notebooks (.ipynb)

● LocalDummy.ipynb
● Monitor.ipynb
● RemoteDummy.ipynb*
● RemoteDummy-fakenode.ipynb
● RemoteTemplates.ipynb*
● RemoteTemplates-fakenode.ipynb

* only if HPC cluster available

Step 8. In the Service Catalog, launch the Autosubmit-computing-node-ssh

Step 9. Once the service is launched, take note of the HOST key.

Step 10. Follow the Jupyter Notebooks, changing the remote user, EDITO user and
hostname where needed.

Step 11. Go back to the Autosubmit-demo service, and open the Autosubmit GUI.

Step 12. Explore your active experiments. Notice the “Only active” switch.

• Autosubmit (AS)

○ Pip install and docs: https://autosubmit.readthedocs.io/en/master/installation/index.html

○ Repository: https://github.com/BSC-ES/autosubmit-gui

○ Contact: support-autosubmit@bsc.es

• Autosubmit GUI

○ Public mockup: https://earth.bsc.es/gitlab/wuruchi/autosubmitreact

○ Demo: https://autosubmitgui.bsc.es/presentation/

Useful links

https://autosubmit.readthedocs.io/en/master/installation/index.html
https://github.com/BSC-ES/autosubmit-gui
mailto:support-autosubmit@bsc.es
https://earth.bsc.es/gitlab/wuruchi/autosubmitreact
https://autosubmitgui.bsc.es/presentation/

