



# R user meeting

05/02/2026

Victòria A., Ariadna B., Theertha K.

# Agenda

1. Ice-breaker: CRAN Task Views
2. News
  - General
  - s2dv
  - CSTools
  - CSIndicators
  - esviz
  - SUNSET
3. User presentation: Alberto Bojaly
4. Q&A

# Ice-breaker: How do you find R packages?: CRAN Task Views



**Barcelona  
Supercomputing  
Center**

*Centro Nacional de Supercomputación*

# How do you find R packages?

## Question 1: How do you find new R packages to use?

- Google/another search engine
- I ask Generative AI for recommendations
- I ask my colleagues for recommendations
- Other: ...

## Question 2: Do you know about CRAN Task Views?

# CRAN Task Views

**CRAN Task Views** are online repositories which compile lists of CRAN R packages. They “aim to provide guidance which packages on CRAN are relevant for tasks related to a certain topic”.

CRAN Task Views are available online through the CRAN website, and also on the terminal via the dedicated [“ctv” R package](#):

```
install.packages("ctv")
ctv::install.views("Econometrics") # Installs all packages in the "Econometrics" view
ctv::update.views("Econometrics") # Updates packages in the "Econometrics" view
ctv::ctv("Econometrics") # Gives information about the "Econometrics" view
ctv::available.views() # Shows all available task views
```

# CRAN Task Views

Each task view is a document containing different subtopics, which sentences briefly explaining how each package relates to them.

Task views are not only helpful for finding new functions; they can also give your package greater visibility and support! They are hosted on GitHub and accept contributions from the community:

- You can propose to [add new packages to existing task views](#).
- You can [create and propose new task view topics](#).

# General



**Barcelona  
Supercomputing  
Center**  
*Centro Nacional de Supercomputación*

# R TOOLS ROADMAP 2026

## Reasons to plan a release

### User needs

### Tool needs

### Project needs

### Reverse dependency break

#### General Direction

Q1 2026

Q2 2026

Q3 2026

Long term

|                                                              |                                                                                                                                                                                                       | User needs                                                                       | Tool needs                                                             | Project needs                                                                   | Reverse dependency break                  |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------|
| <b>s2dv</b><br>(v2.2.1)                                      | Enhance statistical methods                                                                                                                                                                           | Include new statistical methods and improve the existing ones                    |                                                                        |                                                                                 | Efficiency improvement                    |
| <b>startR</b><br>(v3.0.0)                                    | - Maintain the flexibility while improving user experience<br>- Focus on expanding and improving the documentation                                                                                    | - Update use cases and documentation<br>- Improve dependencies                   | - Improve the use of Compute()<br>- Explore GRIB loading               | - Load and interpolate irregular grid<br>- Multiple steps<br>- Code refactoring |                                           |
| <b>CSTools</b><br>(v5.3.0)                                   | Increase the general methods and enhance the relevance of the s2dv_cube                                                                                                                               | - Include new methods for s2dv_cube<br>- Improve forecast calibration methods    |                                                                        | - Enhance unit tests<br>- Add new use cases                                     | Convert s2dv_cube to xarray/other objects |
| <b>CSIndicators</b><br>(v1.1.3)                              | Facilitate the calculation of new indicators through existing functionalities                                                                                                                         | - Health Indicators integration<br>- Add use cases                               | Add new functions and vignettes for bioclimatic and drought indicators | Improve existing methods and metadata handling                                  |                                           |
| <b>esviz</b><br>(v0.0.1)                                     | Add new features and improve package maintainability                                                                                                                                                  | - Reduce external dependencies<br>- Add new types of visualization               | - Reduce device dependency<br>- Improve handling of shapefiles         | - Improve different projections<br>- Explore ggplot2 integration                |                                           |
| <b>ClimProjDiags</b><br><b>multiApply</b><br><b>easyNCDF</b> | No planned development. Only maintenance.                                                                                                                                                             | New documentation, use cases and training materials to help users and developers |                                                                        |                                                                                 |                                           |
| <b>General</b>                                               | User meetings, user support, shiny server maintenance<br>While developing the packages for SUNSET or any specific project, it's important to keep the packages as general and individual as possible. |                                                                                  |                                                                        |                                                                                 |                                           |

# R TOOLS ROADMAP 2026

## Reasons to plan a release

User needs

Tool needs

Project needs

Reverse dependency break

General Direction

Q1 2026

Q2 2026

Q3 2026

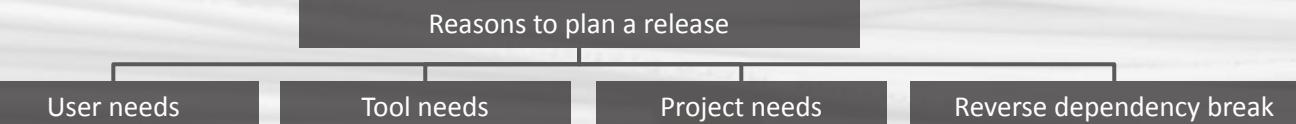
Long term

**CSDownscale**  
(v0.0.1)

Ensure the package includes state-of-the-art downscaling methods

- Improvements needed for the SUNSET Downscaling module, such as multiple predictor variables

- Add new vignettes  
- Improve existing downscaling methods


Include more downscaling methods

General

User meetings, user support, shiny server maintenance

While developing the packages for SUNSET or any specific project, it's important to keep the packages as general and individual as possible.

## R TOOLS ROADMAP 2026



|                    | General Direction                                                                                      | Reasons to plan a release                      |                                                                 |                                                                                |                                               |
|--------------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------|
|                    |                                                                                                        | User needs                                     | Tool needs                                                      | Project needs                                                                  | Reverse dependency break                      |
| <b>GHExplore</b>   | Extend package capabilities and improve code structure                                                 | Add epiweeks functions and refactoring         | Add animation and cross-correlation functions                   | Add time series decomposition functions                                        | Expand according to the group needs           |
| <b>GHRmodel</b>    | Extend package capabilities and improve code structure                                                 | Code refactoring and bug fixes                 | Add functions for semi-supervised model selection               | Add support for binomial and gaussian distributions                            | Support for projections and attribution       |
| <b>GHRpredict</b>  | Publish on CRAN and test in several use cases                                                          | Finish development, code review and publishing | Fix post-release bugs and roadmap for future development        | Test in several use cases across different projects                            | Expand cross-validation strategies            |
| <b>data4health</b> | First publication on CRAN, implementing new features based on first users, extend package capabilities | Finish development, code review and publishing | Fix post-release bugs and roadmap for future development        | Add vignettes for new use cases, prepare teaching material                     | Expand capabilities based on feedback in Peru |
| <b>clim4health</b> | Publish on CRAN and test in several use cases                                                          | Finish development, code review and publishing | Fix post-release bugs and define roadmap for future development | Test in several use cases across different projects, prepare teaching material | Expand data sources according to group needs  |

Unified dissemination strategy: webinars, youtube videos, website, workshops

# s2dv



**Barcelona  
Supercomputing  
Center**  
*Centro Nacional de Supercomputación*

# New function: DieboldMarianoTest()

- Compares the skill of two forecasts (A vs B) over time with respect to a common observational reference.
- Based on Diebold and Mariano (2012). Developed by Núria Pérez-Zanón.

## Inputs:

- `skill_A` , `skill_B` : arrays of the time series of the scores
- `time_dim` : Dimension along which the test is applied.
- `test.type` :
  - `"two.sided"` : any significant difference.
  - `"one.sided"` : A significantly better than B.
- `alpha` : any significant difference: significance level (default: 0.05).
- `N.eff` : Effective sample size.



**Output:** Logical array indicating the statistically significant differences.

merge request : [https://gitlab.earth.bsc.es/es/s2dv/-/merge\\_requests/203](https://gitlab.earth.bsc.es/es/s2dv/-/merge_requests/203)  
status: in branch dev\_diebold

# CSTools



**Barcelona  
Supercomputing  
Center**

*Centro Nacional de Supercomputación*

# Bugfix in CST\_BindDim()

- In the output of CST\_BindDim, the metadata in attrs was removed.
- The time\_bounds are not bound along the specified dimension, when using the time\_bounds stored in the attrs of an s2dv\_cube (data\$attrs\$time\_bounds).
- The function now checks whether the s2dv\_cubes have time\_bounds in attrs and checks whether it includes the target dimension. If so, binds the time\_bounds along the dimension stored in the attrs of an s2dv\_cube.

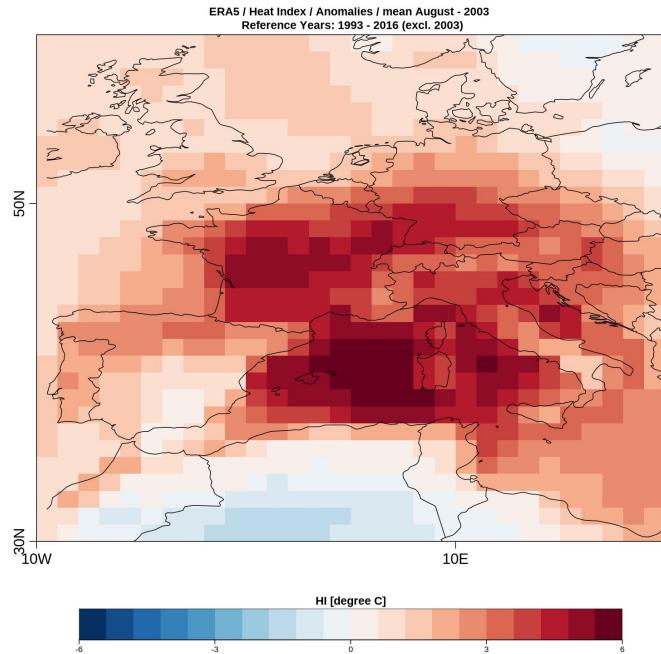
merge request : [https://gitlab.earth.bsc.es/external/cstools/-/merge\\_requests/234](https://gitlab.earth.bsc.es/external/cstools/-/merge_requests/234)  
status: in branch CSTBindDim\_attr

# New function CST\_ReorderDims()

- CST\_ReorderDims(), is a new function to act as an s2dv\_cube wrapper for the function s2dv::Reorder().
- It reorders the dimensions of an s2dv\_cube. The order can be provided either as indices or the dimension names.

merge request : [https://gitlab.earth.bsc.es/external/cstools/-/merge\\_requests/235](https://gitlab.earth.bsc.es/external/cstools/-/merge_requests/235)  
status: in branch dev-cst\_reorderdims

# CSIndicators




**Barcelona  
Supercomputing  
Center**  
*Centro Nacional de Supercomputación*

# Vignette for the HeatIndex function

- Heat Index computes the perceived temperature resulting from the combined effects of air temperature and relative humidity.
- Vignette shows:
  - Quick temperature overview
  - Heat Index computation
  - Visualisation

issue: <https://gitlab.earth.bsc.es/es/csindicators/-/issues/58>  
status: in master

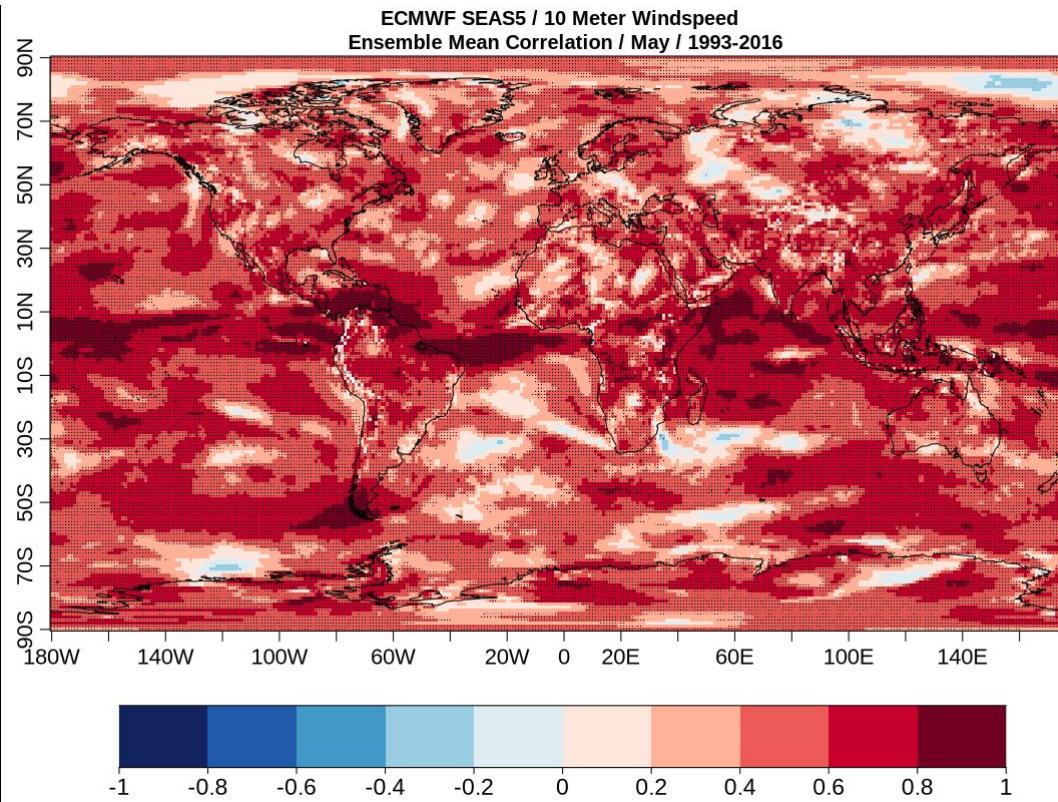


# esviz



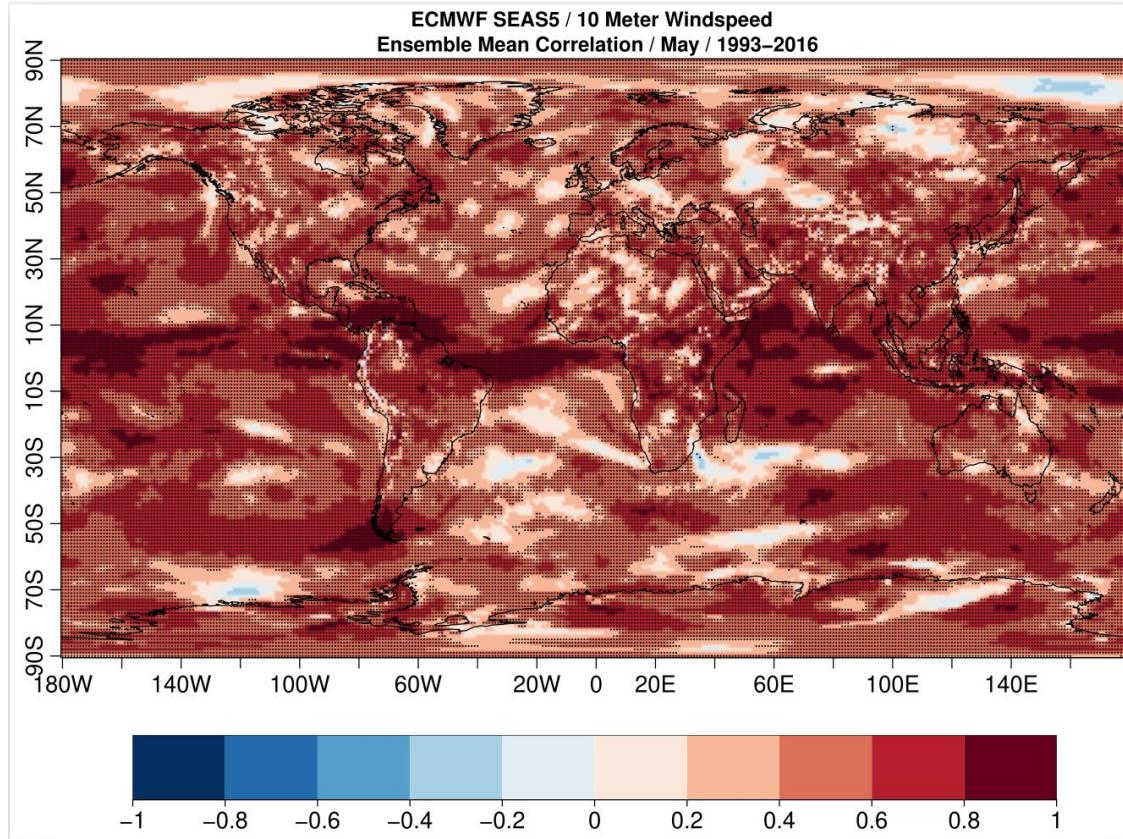
**Barcelona  
Supercomputing  
Center**

*Centro Nacional de Supercomputación*


# First release v0.0.1

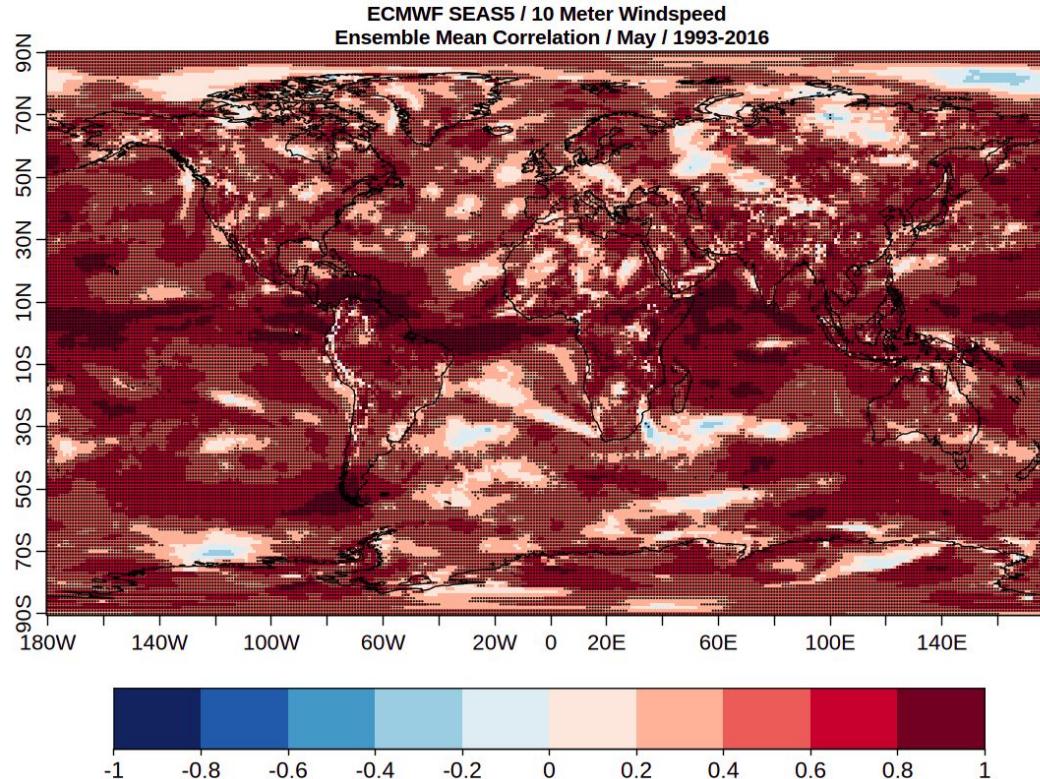
- R plotting package for climate science and services. It includes maps, time series, scorecards and diagnostic plots.
  - Functions adapted and extended from s2dv and CSTools.
- First public release: **esviz/0.0.1** is installed on all BSC machines.
- Minor release: **esviz/0.0.2** is already on CRAN and will be soon installed on all BSC machines.
  - Reduced dependencies.
  - Bugfix in BarPlotCat().




# Display of points in bitmap-type images

**Long-term known issue:** distortion in PNG and JPEG plots with dense points, where some of the points become transparent.




# Display of points in bitmap-type images

Vector-type image formats, such as PDF, don't have this issue:



# Display of points in bitmap-type images

We can solve this problem by changing the device used by `esviz` from `png()` to `CairoPNG()` from the `cairo` package for better results:



# Display of points in bitmap-type images

However, the results from `Cairo*()` are not always exactly the same as the ones in the original devices; things like dot size and other settings could change.

Options:

- ★ Replace current bitmap devices (`png()`, `jpeg()`) with cairo devices.
- ★ Add a new parameter `antialiasing = TRUE/FALSE`, to let the user use the Cairo device for high-density plots with aliasing problems.
- ★ Add a new parameter to let the user choose the device for problematic cases.

status: discussion

issue: <https://gitlab.earth.bsc.es/es/esviz/-/issues/34>

# SUNSET



**Barcelona  
Supercomputing  
Center**  
*Centro Nacional de Supercomputación*

# New release 3.1.0

A new release of SUNSET (v3.1.0) was merged to the production branch on January 27th. This version includes, among other features:

- ★ An updated conda environment with R/4.4.3 and CDO/2.5.0
- ★ Adjustment of seasonal daily metadata upon loading
- ★ Probabilities accept absolute thresholds. The threshold probabilities are visualized by extreme probabilities code
- ★ Bugfixes in NA handling and recipe splitting
- ★ ... and many more!

status: in production

release notes: <https://gitlab.earth.bsc.es/es/sunset/-/releases/v3.1.0>

# Visualization: crosses/dots on non-significant grid

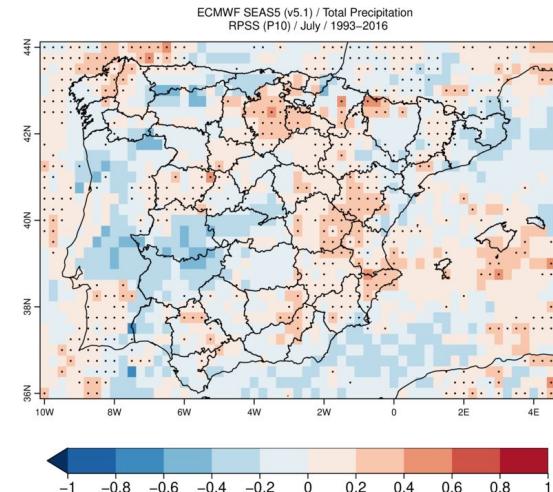
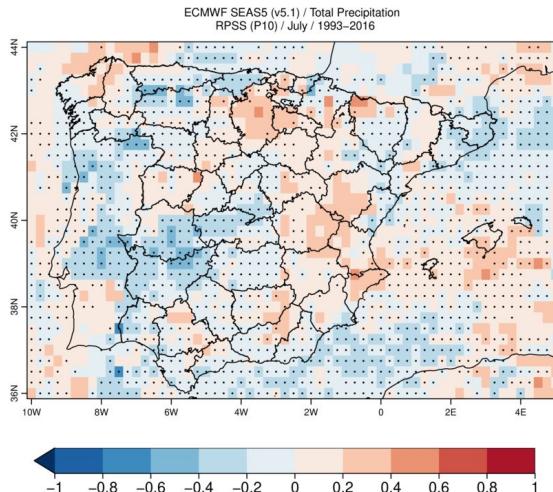
- New recipe parameters to configure grid-point marking, with caption support for single-panel plots.

```
• skill_metrics:

- significance: 'dots' # Type of mark for statistical non-significance/significance in plot_metrics.
- dots_on_points_significance: "non-significant" # Which grid points to dot in skill_metrics, if dots are requested. Either 'significant' or 'non-significant'. Requires 'significance' to be 'dots' or 'both'. Default is 'non-significant'.

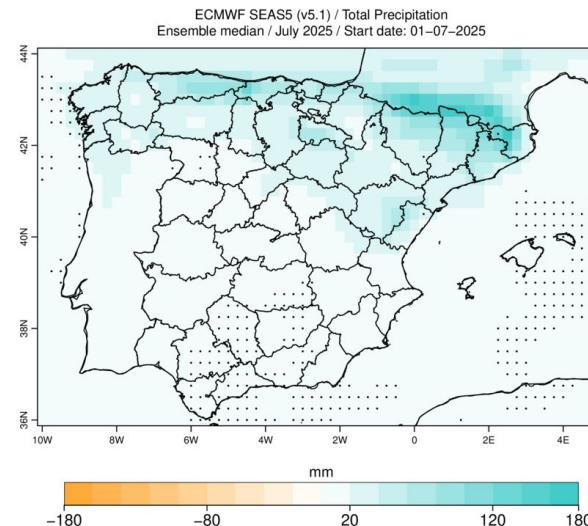
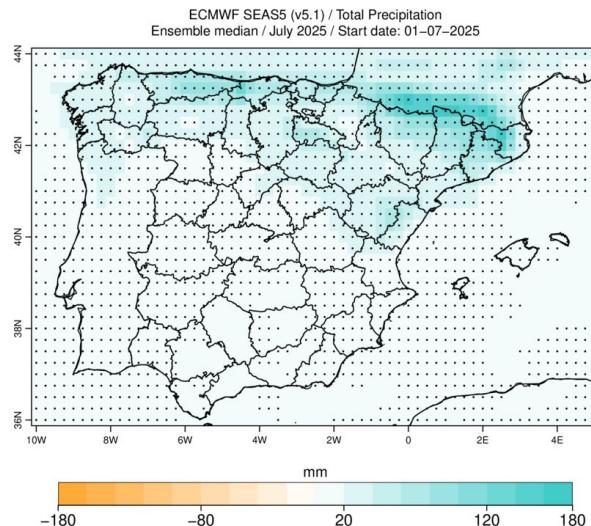
• forecast_map:

- mask_ens: no # Whether to mask the negatively correlated points in the forecast_map mean plot. yes/true, no/false or 'both'. Default is no/false. (Optional, str).
- dots_ens: no # Whether to dot the negatively/positively correlated points in the forecast_map plot. yes/true, no/false or 'both'. Default is no/false. (Optional, str)
- dots_on_points_ens: "negative" # Which grid points to dot by ensemble correlation in forecast_map. Either 'negative' or 'positive'. Requires 'dots_ens' to be true.



• most_likely_terciles and extreme_probabilities:

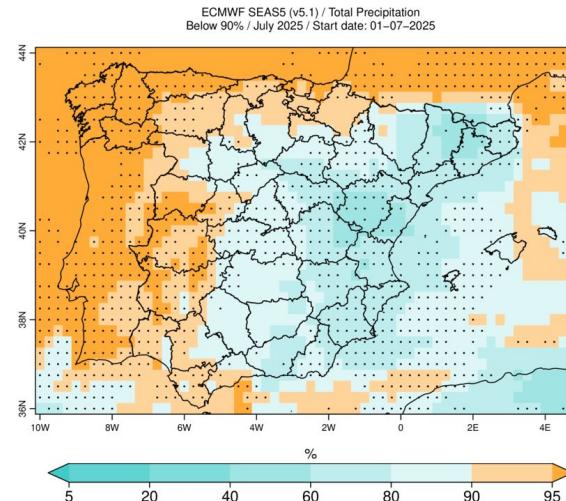
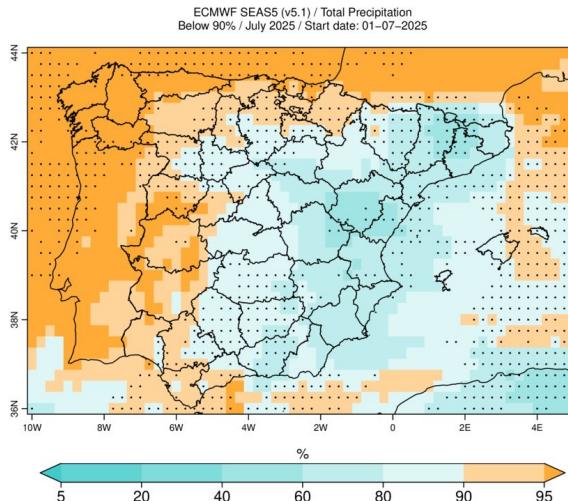
- mask_rpss: no # Whether to mask the negative rpss points in the most_likely_tercile and extreme_probabilities plots. yes/true, no/false or 'both'. Default is no/false. (Optional, str)
- dots_rpss: yes # Whether to dot the negative/positive rpss points in the most_likely_tercile and extreme_probabilities plots. yes/true, no/false or 'both'. Default is no/false. (Optional, str).
- dots_on_points_rpss: "negative" # Which grid points to dot by rpss in most_likely_terciles and extreme_probabilities. Either 'negative' or 'positive'. Requires 'dots_rpss' to be true.

```



# Visualization: crosses/dots on non-significant grid

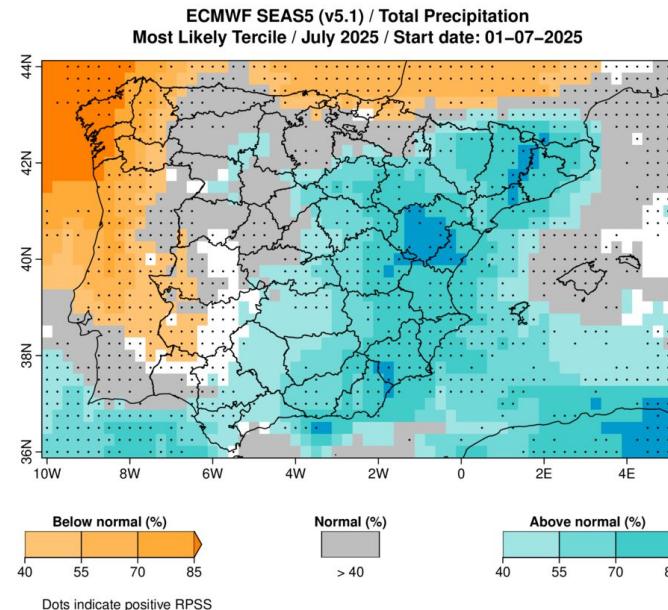
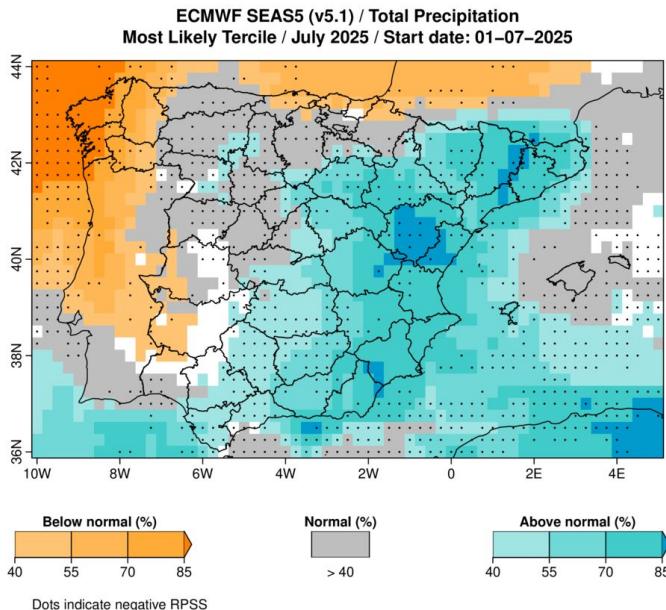
- `skill_metrics`:
  - `significance: 'dots'` # Type of mark for statistical non-significance/significance in `plot_metrics`.
  - `dots_on_points_significance: "non-significant"` # Which grid points to dot in `skill_metrics`, if dots are requested. Either 'significant' or 'non-significant'. Requires 'significance' to be `'dots'` or `'both'`. Default is 'non-significant'.





# Visualization: crosses/dots on non-significant grid

- **forecast\_map:**
  - `dots_ens: yes` # Whether to dot the negatively/positively correlated points in the `forecast_map` plot. `yes/true`, `no/false` or `'both'`. Default is `no/false`. (Optional, str)
  - `dots_on_points_ens: "negative"` # Which grid points to dot by ensemble correlation in `forecast_map`. Either `'negative'` or `'positive'`. Requires `'dots_ens'` to be `yes/true`.





# Visualization: crosses/dots on non-significant grid

- **most\_likely\_terciles** and **extreme\_probabilities**:
  - `dots_rpss: yes` # Whether to dot the negative/positive rpss points in the `most_likely_tercile` and `extreme_probabilities` plots. `yes/true`, `no/false` or `'both'`. Default is `no/false`. (Optional, str).
  - `dots_on_points_rpss: "negative"` # Which grid points to dot by rpss in `most_likely_terciles` and `extreme_probabilities`. Either `'negative'` or `'positive'`. Requires `'dots_rpss'` to be `yes`.



# Visualization: crosses/dots on non-significant grid

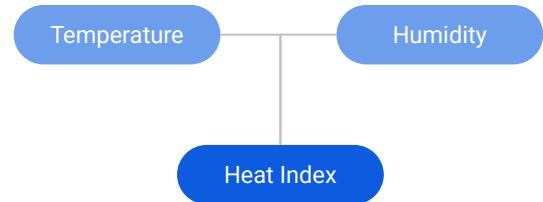
- **most\_likely\_terciles** and **extreme\_probabilities**:
  - `dots_rpss: yes` # Whether to dot the negative/positive rpss points in the `most_likely_tercile` and `extreme_probabilities` plots. `yes/true`, `no/false` or `'both'`. Default is `no/false`. (Optional, str).
  - `dots_on_points_rpss: "negative"` # Which grid points to dot by rpss in `most_likely_terciles` and `extreme_probabilities`. Either `'negative'` or `'positive'`. Requires `'dots_rpss'` to be `yes`.



# User Presentation (Alberto Bojaly)



**Barcelona  
Supercomputing  
Center**


*Centro Nacional de Supercomputación*

# CSIndicators - Heat Index

---

## What is the Heat Index?

The Heat Index is an estimate of the temperature **perceived by the human body**, combining **air temperature** and **relative humidity**. Relative humidity accounts for the reduced efficiency of **evaporative cooling through perspiration**.



## Where does it come from?

The Heat Index is developed by the **National Weather Service (NWS)** of the **National Oceanic and Atmospheric Administration (NOAA)**, based on the work of **Robert G. Steadman** and formally implemented in 1990 by **Lans P. Rothfusz**.



# CSIndicators - Heat Index

---

**Steadman (1979)** → physical & physiological model of perceived temperature

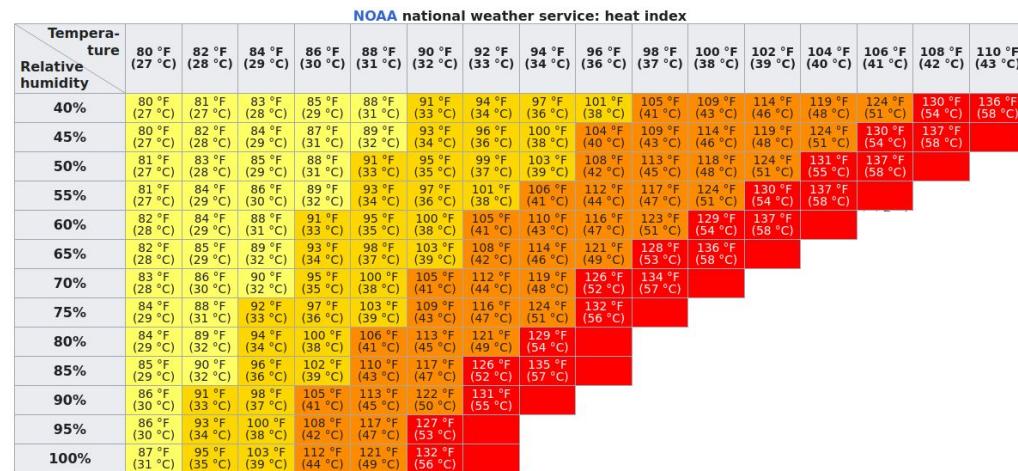
**Rothfusz (1990)** → regression-based polynomial approximation for operational use

Temperature in degrees Fahrenheit [°F]   
Relative Humidity in percent [%]

**Adjustments** depending on the values of temperature and relative humidity

$$\text{if } T > 80 \text{ [°F]} \rightarrow HI = -42.379 + 2.04901523 T + 10.14333127 RH - 0.22475541 T \cdot RH - 0.00683783 T^2 - 0.05481717 RH^2 + 0.00122874 T^2 \cdot RH + 0.00085282 T \cdot RH^2 - 0.00000199 T^2 \cdot RH^2$$

$$\text{if } T < 80 \text{ [°F]} \rightarrow HI = 0.5 * \{T + 61 + [(T - 68) * 1.2] + (RH * 0.094)\}$$


# CSIndicators - Heat Index

The Heat Index is a key indicator of heat stress in warm and humid conditions and is used to assess human exposure and health-related risks.

## Why use this indicator?

- Effective for public communication
- Directly linked to health risk categories
- Used by the NWS / NOAA for heat warnings

| WARNING                | HEAT INDEX | HEALTH IMPACT                                                                                                   |
|------------------------|------------|-----------------------------------------------------------------------------------------------------------------|
| <b>Safe</b>            | < 26       | No adverse effects expected due to heat                                                                         |
| <b>Caution</b>         | 27-32      | Fatigue possible with prolonged exposure and/or physical activity                                               |
| <b>Extreme Caution</b> | 33 - 40    | Heat stroke, heat cramps or heat exhaustion possible with prolonged exposure and/or physical activity           |
| <b>Danger</b>          | 41 - 51    | Heat cramps or heat exhaustion likely and heat stroke possible with prolonged exposure and/or physical activity |
| <b>Extreme Danger</b>  | 52 - 92    | Heat stroke highly likely                                                                                       |



Key to colors: █ Caution █ Extreme caution █ Danger █ Extreme danger

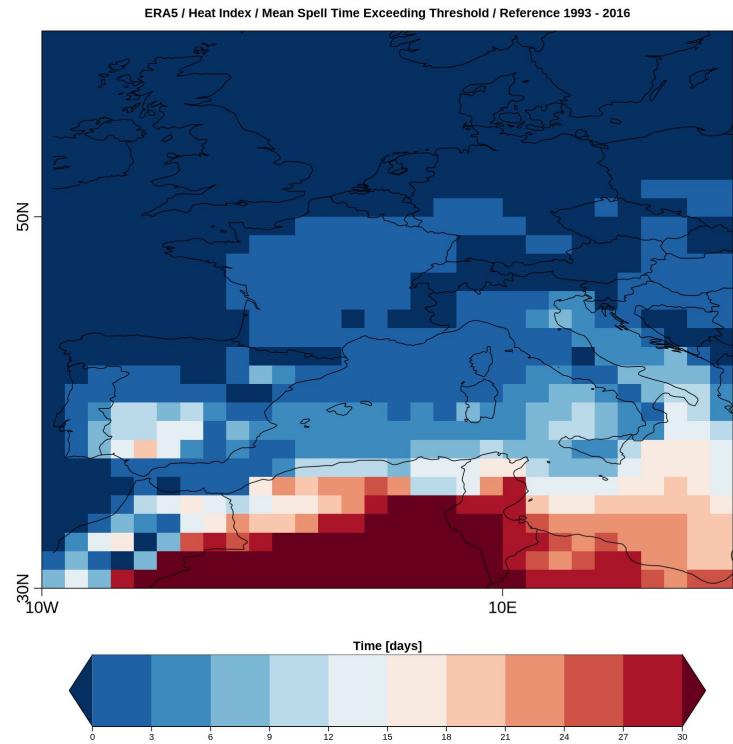
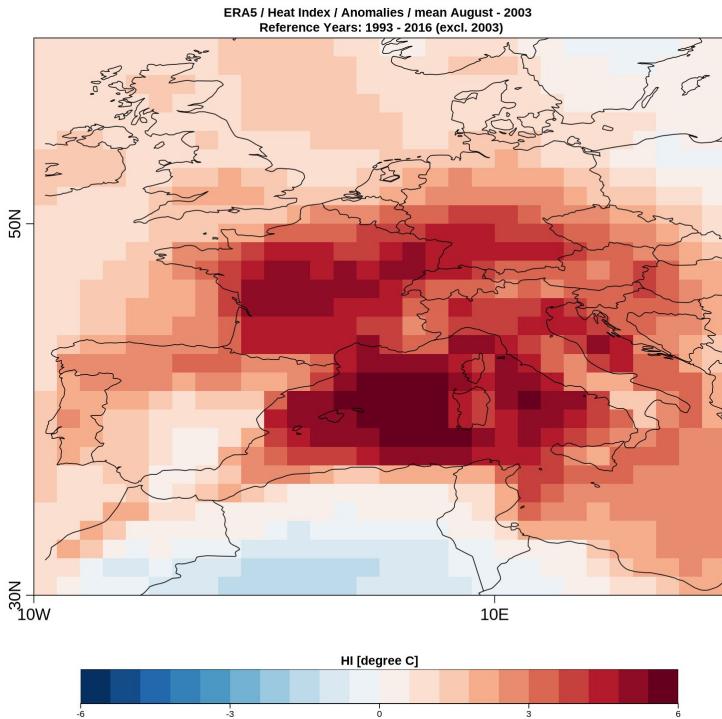
# CSIndicators - Heat Index

```
CST_HeatIndex <- function(temp, rh, start = NULL, end = NULL,  
  time_dim = 'time', temp_units_output = "C",  
  fun = mean, ncores = NULL, na.rm = FALSE, ...)
```

- **Ready-to-use functions:** [CST\\_HeatIndex\(\)](#) & [HeatIndex\(\)](#)

Only temperature and relative humidity are required.

- **Automatic unit conversions:** temperature and heat index works with °C, °F and K.
- **Integrated with CSIndicators:** compatible with other climate indicators and functions



Example with: [TotalSpellTimeExceedingThreshold.R](#)

## Limitations:

- Not optimal for **low-humidity conditions** (RH < 40%)
- **Does not include other factors** (radiation or wind effects)

# CSIndicators - Heat Index

Check the Vignette!



# Thanks for joining