How to source functions from
non-public GitLab repositories?

5th May 2022 by Victoria Agudetse

Sourcing functions in R

In an R script or session, we can import code written in other files that we want to
use (e.g. a function) using source().

Sometimes, when we are working with GitlLab, it is more practical to source the
files from the online repository, rather than from our own local copy.

Sourcing functions from a public GitLab repository is very simple! We just need the
URL to the ‘raw’ file:

> source(‘https://earth.bsc.es/gitlab/external/cstools/-/raw/master/

R/s2dv_cube.R")

" . Open =

However, when we try to source from an internal or private -
: : . e, ¢

repository, things get complicated... = B 1=

Sourcing from a non-public repository

For example, let’s try to source the function get regrid params.R from the
CSOperational repository:

> source("https://earth.bsc.es/gitlab/external/cstools/-/raw/master/R/s2dv _cube.R")
no problem!

> source("https://earth.bsc.es/gitlab/es/csoperational/-/raw/master/R/
get regrid params.R")

Error in source("https://earth.bsc.es/gitlab/es/csoperational/-/raw/master/R/
get regrid params.R")

https://earth.bsc.es/gitlab/es/csoperational/-/raw/master/R/get regrid params.R:1:1:
unexpected '<'

e "

A

What happened!?

The GitLab API: Repository Project ID

GitLab is not returning the raw version of the file! Non-public files can only be
downloaded or sourced using the GitLab API. The way to access a file through the
APl is a little different...

First of all, to access any repository through the API, we need its ID number.

We can open our browser and find the repository Project ID right underneath its
name on GitlLab:

@® Earth Sciences > € CSOperational

o@w CSOperational ©

Project ID: 851

-0- 6 Commits § 1Branch ¢ 0Tags [}) 328 KB Files

The GitLab API: File (“blob”) SHA

According to the GitLab APl documentation, we can access a certain file through its
unique SHA (Simple Hashing Algorithm). An SHA is an alphanumeric string that
identifies the file.

Raw blob content

Get the raw file contents for a blob by blob SHA. This endpoint can be accessed without authentication if the repository is publicly accessible.

GET /projects/:id/repository/blobs/:sha/raw

Supported attributes:
Attribute Type Required Description

id integer or string yes The ID or URL-encoded path of the project owned by the
authenticated user.

sha string yes The blob SHA.

https://docs.gitlab.com/ee/api/repositories.html

How to get your file SHA (l)

We can see the top level files and directories in the repository tree on our browser
by typing:

https://earth.bsc.es/gitlab/api/v4/projects/<project_id>/repository/tree

If we add “?path=<path _to directory>" at the end of above URL, we will get the
contents of our target directory. In this example, the file we want is under a
directory named “R”:

@ Google Chrome ¥ 20 Apr 11:11
@ https://earth.bsc.es/gitl: x EEY

&« > C @ earth.bsc.es/gitlab/api/v4/projects/851/repository/tree?path=R

[{"id":"fdf60922acb873b827a5f7e8db5b13d6c461b3cO", "name": "drop na dim.R","type":"blob","path":"R/drop na dim.R", "mode":"100644"},
{"id":"743ec387fe27873406a0eabd92f63975f1cl5a3a", "name" I "get regrid params. R"} "type":"blob","path":"R/get regrid params.R","mode":"100644"}]

How to get your file SHA (ll)

Files will have the "type":"blob" key-value pair. The value of the "id" key is our file
SHA. In this case:

"id":"743ec387fe27873406a0eabd92f63975f1c15a3a"

Alternative: If you have a local copy of the repository, you can skip this process,
open your terminal and simply cd to the folder where your file is and type the
command git Is-files -s:

/esarchive/scratch/vagudets/repos/csoperational/R> git ls-files -s
100644 fdf60922ach873b827a5f7e8db5b13d6c461b3¢cO 0 drop na dim.R
100644 743ec387fe27873406a0eabd92f63975f1cl5a3a 0 get regrid params.R

The GitLab API: Personal Access Tokens

The last thing you need to do is generate a Personal Access Token (PAT). You can do
this from your GitLab profile following the steps in this tutorial. Choose either ‘api’
or ‘read_api’ (more secure if you only need read access).

Once you have your PAT, you can build your URL by replacing the relevant bits. In
summary:

https://earth.bsc.es/gitlab/api/v4/projects/<project_id>/repository/blobs/<file_id>
/raw?ref=<branch>&private_token=<api_ token>

<project_id>: Repository “Project ID” number
<file_id>: File SHA
<branch>: The name of the branch you want, e.g. ‘master’

<api_token>: Personal Access Token for the GitLab API

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

