
Create R package
in BSC-ES

An-Chi Ho 26/05/2023

Department R Packages Review

Package name Short description Link to CRAN and GitLab

Data loading
and
manipulation

easyNCDF Read/write netCDF files into/from multidimensional
R array.

https://CRAN.R-project.org/package=easyNCDF
https://earth.bsc.es/gitlab/es/easyNCDF

startR Data retrieval and processing tools https://CRAN.R-project.org/package=startR
https://earth.bsc.es/gitlab/es/startR

multiApply Apply functions to multiple multidimensional arrays
or vectors allowing parallel computation

https://CRAN.R-project.org/package=multiApply
https://earth.bsc.es/gitlab/ces/multiApply

Analysis and
processing

s2dv Functions for Forecast Verification and visualization https://CRAN.R-project.org/package=s2dv
https://earth.bsc.es/gitlab/es/s2dv

CSTools Methods for forecast calibration, statistical and
stochastic downscaling, optimal forecast
combination and tools to obtain tailored products.

https://CRAN.R-project.org/package=CSTools
https://earth.bsc.es/gitlab/external/cstools

Climate
indicators

CSIndicators Sectorial Indicators for Climate Service https://CRAN.R-project.org/package=CSIndicators
https://earth.bsc.es/gitlab/es/csindicators

ClimProjDiags Climate extreme indices, evaluation of the
agreement between models, weight and
combination functions.

https://CRAN.R-project.org/package=ClimProjDiag
s
https://earth.bsc.es/gitlab/es/ClimProjDiags

★ Functions are split on packages depending on their objective
★ Functions from different packages (including external packages) can be used to perform analyses or obtain

climate service products

BSC-ES R packages

https://cran.r-project.org/package=easyNCDF
https://earth.bsc.es/gitlab/es/easyNCDF
https://cran.r-project.org/package=startR
https://earth.bsc.es/gitlab/es/startR
https://cran.r-project.org/package=multiApply
https://earth.bsc.es/gitlab/ces/multiApply
https://cran.r-project.org/package=s2dv
https://earth.bsc.es/gitlab/es/s2dv
https://cran.r-project.org/package=CSTools
https://earth.bsc.es/gitlab/external/cstools
https://cran.r-project.org/package=CSIndicators
https://earth.bsc.es/gitlab/es/csindicators
https://cran.r-project.org/package=ClimProjDiags
https://cran.r-project.org/package=ClimProjDiags
https://earth.bsc.es/gitlab/es/ClimProjDiags

4

startR
retrieve data
and parallel
distributed
processing

CSTools
Climate Services Tools -

MEDSCOPE Toolbox
MEDiterranean Services Chain based On

Climate PrEdictions

THREDDS

CSIndicators
Climate Indicators for Impact

Analysis

s2dv

multiApply paradigm

BSC-ES R packages

New methods and packages for different needs are being developed continuously.

Important features in our tools:

LOADING

● Input data format: netCDF

● Different datasets to be loaded

➢ Data loading flexibility required

ANALYZING

● Accepted R object type by functions:

Named multi-dimensional array mainly

● Different forecast horizons and frequency to

be analyzed

➢ Function flexibility required

● Multiple-core/node and parallel computation

on HPCs

➢ use package “multiApply”

Function structure: From a developer’s view

A typical in-house function would be like:

Header: Documentation following Roxygen2
convention

Function: Work with named multi-dimensional
array, with multiple cores option

Sanity check: First step in the function. Check
all the input parameters

Computation: Usually short, use
multiApply::Apply to allow flexible dimensions
and multiple cores.

Atomic function: Work with fixed essential
dimensions, store the main analytical code.
Non-exported (i.e., no documentation needed)

(Bias.R from s2dv)

Function structure: From a developer’s view
(CST_BiasCorrection.R from CSTools)

A CST prefix function would be like:
Same but with a top level CST_* function

CST Function: Work with s2dv_cube, a
wrapper of without CST prefix function

Sanity check: For s2dv_cube object

Call function: Call without prefix function,
inputs are assigned from the s2dv_cube

The rest part is the same as previous slide.

Build an R Package in BSC-ES

Start on GitLab: Create a new project

Full explanation from GitLab official:
https://docs.gitlab.com/ee/user/project/

https://earth.bsc.es/gitlab/projects/new#blank_project
https://earth.bsc.es/gitlab/projects/new#blank_project
https://docs.gitlab.com/ee/user/project/

Start on GitLab: Create a new project

Under which group should this package be?

slug: the project name in URL (auto-filled by “Project name”)

Choose the suitable visibility level (internal or public)

Choose the project name and slug wisely since the change afterward may cause
much inconvenience. Other details can be further modified without problem.

Start on GitLab: Create a new project

Once clicking “Create project” in the previous
page, you’ll land on the project main page.

Clone the project to your repository
(recommended path: under
/esarchive/scratch/<userID>/)
> git clone <HTTPS URL>

Now, you can start building the package both
on GitLab and with git.

https://earth.bsc.es/gitlab/projects/new#blank_project
https://earth.bsc.es/gitlab/projects/new#blank_project

Build the R package structure

—— DESCRIPTION Fundamental information about the package

—— NAMESPACE Imports and Exports. Automatically generated by roxygen2.

—— R/ Store the .R files, i.e., R functions.

—— man/ Store the .Rd files. Automatically generated by roxygen2.

—— NEWS.md News for each release (optional)

—— tests/ Unit test (optional)

—— vignettes/ To demonstrate the usage of the package (optional)

First level of the package:

Build the R package structure

—— .gitignore Folders and files to ignore when git push to GitLab.(ref)

—— .gitlab-ci.yml Run GitLab CI/CD pipeline.

—— .Rbuildignore Folders and files to ignore when R package is built (ref)

First level of the package — helper files:

Too many things to build?
→ Take the files from the existing R packages and modify them for your need.

https://git-scm.com/docs/gitignore
https://r-pkgs.org/structure.html#sec-rbuildignore

Recommended package: roxygen2

● An R package to make documenting the code as easy as possible.

● Automatically generating .Rd files under folder man/ and file NAMESPACE, and
will manage the Collate field in DESCRIPTION.

How to run it:
 Under the git repo of the package, run devtools::document() in R session.

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

Recommended package: testthat

● An R package to build unit tests for R functions.

● Under folder test/, folder testthat/ to store the unit test file for each function;
file testthat.R to run the tests.

How to run it:
- Under the git repo of the package, run devtools::test() in R session.
- library(testthat) then source the function and unit test file.
- etc.

https://testthat.r-lib.org/

R CMD build and check

● To build a package from the git project, go one layer above the git folder, and run
R CMD build <folder name>. A .tar.gz file will be generated.

● To check if the package is accepted by CRAN, run R CMD check --as-cran
<.tar.gz file>. You should get 0 error and a couple of acceptable warnings
due to our system environment.

● The .tar.gz file is the one to be submitted to CRAN and/or be installed as a
package.

How to start? Some tips…

1. Get familiar with one BSC package, understand the function usage and structure.
a. How to choose the package?

i. Need to use s2dv_cube (functions with “CST” prefix): CSTools,
CSIndicators

ii. No need to use s2dv_cube: s2dv, ClimProjDiags
b. Read function documentation: On CRAN and on GitLab
c. Read and run the vignettes: On CRAN and/or on GitLab

2. Create a GitLab project
Choose one existing package similar to your new one, copy the folder
structure and some files. Modify based on them.

3. Create R functions
Based on one function you’ve been familiar with, mimic its structure (header,
sanity check, atomic function, etc.)

QUESTIONS?

