

New tools for daily data

C. Prodhomme

Informal presentation, IC3, Barcelona, 2nd October

Why creating a new tool especially for daily and 6hourly data?

- <u>Huge files</u>: Between 30 and 120 times bigger than monthly files
 - → s2dverification is not yet ready for treating this kind of data
- Need of statistics over longer period
 (season, multi-years season, years,
 climatology over the full period) => even bigger files
- Work on extremes, intra-seasonal variability, daily index:
 - need of daily climatology, anomalies, filtered data, index calculated from more than one variable....

Requirements

Efficiency

Flexibility:

- → be able to work on different kind of data
 - observations, different model sources, type of files, frequency, grb/ncdf, ncdf4
- → be able to work on different time period: season, multi-years, full period, few weeks, days....
- → be able to perform different statistics: Sd, number of days under/over threshold, number of days under/over climatology, percentile, calculation of index, anomalies, filtering, climatology

User Friendly:

→ Many potential users

Why python instead of bash?

Against:

→ need to learn a new language for some users

For (compared to bash):

- → Easier modularisation
- → Many useful libraries (date, ncdf...) and type of object (dict, list...)
- → Object oriented programming
- → Better security checks
- → Easy file handling for cdo and nco (issue with /tmp to be solved)
- → More efficient to call cdo from python
- → module for ncdf4 (not yet installed)
- → Direct manipulation of numpy array
- → Easy way to create, read and write ncdf

Class Data

Data object:

dataname: b0cm

varname: tas

inputdir: /cfunas/exp/ecearth/b0cm/daily grb/tas

outputdir: /cfunas/exp/ecearth/b0cm/monthly statistics/

filelist: [tas 19810501.grb, tas 19820501.grb.....]

sdates: [date(1981,5,1), date(1982,5,1)....]

filetype: "grb"

freq: 6hourly (timedelta)

nmenber: 10

select leadtime:

select the time period between leadtime1 and leadtime2 in all files of the Data object

set_outputdirAuto:

set the output directory

format file nc: Set files for cdo

ready:

statistics

Make the data

ready to calculate

monthly_percentile

Constructor:

exp=Data("b0cm", "tas")

Set and get to access all Variables:

set filelist(filelist) get_filelist()

see

To print the object

duplicate

To create a new object with the same variables. except sdates and filelist

copy

Copy the variable of an object in an other object

Class DataMod(Data)

DataMod object:

dataname: b0cm

varname: tas

inputdir: /cfunas/exp/ecearth/b0cm/daily grb/tas

outputdir: /cfunas/exp/ecearth/b0cm/monthly_statistics/

filelist: [tas_19810501.grb, tas_19820501.grb.....]

sdates: [date(1981,5,1), date(1982,5,1)....]

filetype: "grb"

freq: 6hourly (timedelta)

nmenber: 10

set files:

Look for the file between year1 and year2 for a given startdate

create_monthly_list:
create a list of
DataMod object
containing only one month

duplicate

To create a new object with the same variables, except sdates and filelist

And all functions of Data!

write_output:

Write the output files with the right format

Class DataObs(Data)

DataMod object:

dataname: b0cm

varname: tas

inputdir: /cfunas/exp/ecearth/b0cm/daily grb/tas

outputdir: /cfunas/exp/ecearth/b0cm/monthly_statistics/

filelist: [tas_19810501.grb, tas_19820501.grb.....]

sdates: [date(1981,5,1), date(1982,5,1)....]

filetype: "grb"

freq: 6hourly (timedelta)

nmenber: 10

set files:

Look for the file between year1 and year2 for a given startdate

write_output:

Write the output files with the right format

duplicate

To create a new object with the same variables, except sdates and filelist

And all functions of Data!

set_InpudirAuto:

Set the input directory according to the observation name

monthly_nbdays

list_season_obs(dataname, varname, sdates1, sdates2, seaslen)

Class DataENS(DataMod) and DataEC23(DataMod)

DataMod object:

dataname: b0cm

varname: tas

inputdir: /cfunas/exp/ecearth/b0cm/daily grb/tas

outputdir: /cfunas/exp/ecearth/b0cm/monthly_statistics/

filelist: [tas_19810501.grb, tas_19820501.grb.....]

sdates: [date(1981,5,1), date(1982,5,1)....]

filetype: "grb"

freq: 6hourly (timedelta)

nmenber: 10

set_inputdirAuto: Look for the inputdir

format_file_nc: transform the grb or nc file into ncdf file readable for cdo

copy

To create a new object with the same variables, except sdates and filelist

And all functions of Data and DataMod!

Different!

ready:

Make the data ready to calculate statistics

Auxiliary Function

get_last_date

settimeaxis

concat_monthly_data

get_freq

write_time

ponderate_mean

quit_leadtime

write_realization

diff_month

write_lonlat

set_output_name

write_insti

write_id

write_source

Future works

Revise the code:

- Complete documentation
- see if some optimization could be done
- implement the standard output convention name
- bugfixes?

Include new statistics:

- standard deviation
- onset, mjo, weather regime...

-.....

Write documentation on the wiki

- tutorial needed?

Put the code on gitlab

Other suggestions and comments are welcome !!!!

Suggestion of name convention

Name of variables: var_leadtime1-leadtime2_stat_sd1-sd2

-monthly_statistics

tasmax_q90_sdate.nc tasmax_nbdays_q90_19810601-20100831_sdate.nc

-seasonal_statistics

tasmax_01-04_q90_sdate.nc tasmax_01-04_nbdays_q90_19810601-20100831_sdate.nc

-subseas statistics

tasmax_0000-0050_sd_sdate.nc tasmax_0000-0050_nbdays_q90_19810601-20100831_sdate.nc

-climatologies

clim_tasmax_0000-0050_nbdays_q90_19810601-20100831.nc