

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

R user meeting

An-Chi Ho

contributor: Jaume Ramon

Agenda

- 1. Ice-breaker
- 2. News
 - o s2dv
 - ClimProjDiags
 - General R
- 3. User presentation: CSDownscale package [Jaume]
- 4. Q&A
 - 0

Ice-breaker

No ice-breaker today :(

IT periodic talk yersterday (1st June) https://earth.bsc.es/wiki/lib/exe/fetch.php?media=computing:it_periodic_talks_hpc_-01-06-2022.pdf

s2dv

MeanDims() efficiency improvement

s2dv::MeanDims is improved to have better efficiency.

Status: Master branch

!! Note that apply() could be very slow when operation is over large dimensions !!

exp <- array(rnorm(10000), dim = c(dat = 2, memb = 4, sdate = 120, lat = 90, lon = 60))
MeanDims(exp, c('dat', 'memb'))</pre>

	Code	File	Memo	Time (ms	
new s2dv::MeanDims	▼ MeanDims	s2 <expr></expr>	0	0	80
	aperm	MeanDims2.R	0	0	80
	Code File		Memor	Time (ms)	
old s2dv::MeanDims	▼ MeanDims1	<expr></expr>	-133.4	155.9	6180
	▼ apply	MeanDims1.R	-133.4	155.9	6180
	► FUN		-86.0	78.8	3770
	array		-24.3	45.1	1840
	aperm		0	0	80

MeanDims() efficiency improvement

The functions that use MeanDims() inside are more efficient now.

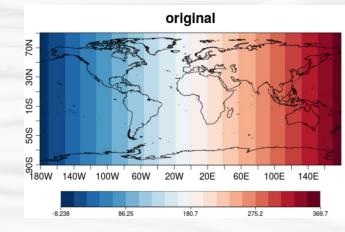
E.g., ACC()

```
exp <- array(rnorm(100000), dim = c(dataset = 1, lat = 30, lon = 20, member = 10, sdate
= 120))
obs <- array(rnorm(100000), dim = c(dataset = 1, lat = 30, lon = 20, member = 1, sdate =
120))
```

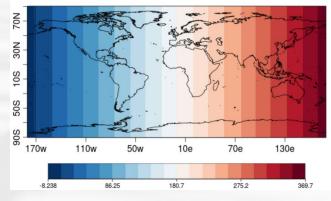
new s2dv::ACC	Code	File	Memory (MB)		Time (ms)	
	▼ ACC	<expr></expr>	0		38.2	480
	▼ compiler:::tryCmpfun	<expr></expr>	0	1	3.2	200
	tryCatch		0	1	38.2	200
	Apply			32.4	200	
	MeanDims		0	1	2.6	80

	Code	File	Memory (MB)		Time (ms)	
old s2dv::ACC	▼ ACC	<expr></expr>	-49.4		69.1	1370
	MeanDims		-49.4		54.2	1170
	Apply		0	1	14.9	200

PlotEquiMap new parameters


New parameters `xlabels`, `ylabels`, `xlonshft`, `ylatshft` to improve the tick labels, especially when longitudes and latitudes are shifted.

The default sets the first x tick label at 0 (left margin), and `**xlonshft**` shifts the ticks by the degrees specified, e.g. `xlonshft = 10` will shift the ticks by 10 degrees.

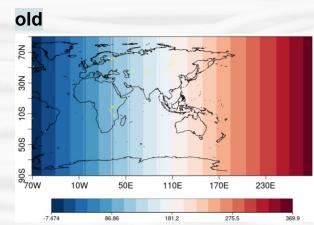

With 'xlabels', you can customize the value of longitude labels. The number of values depend on the parameter 'intxlon', which is the interval between longitudes to label. The main point of this parameter is to avoid the wrong labels (see plot a) when shifting the lons.

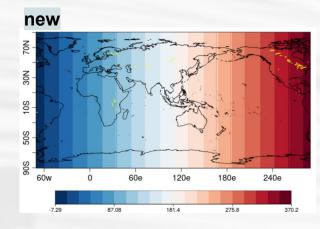
Status: https://earth.bsc.es/gitlab/es/s2dv/-/tree/develop_PlotEquiMap_

xlonshft=10,intxlon=60,xlabels=c(paste0(seq(170, 50, by = -60), 'w'), paste0(seq(10, 190, by = 60), 'e'))

custemized x-axis labels

PlotEquiMap shift map


The current PlotEquiMap() can only plot map with either [0, 360] or [-180, 180]. The new development allows flexible longitude range.


Status:

https://earth.bsc.es/gitlab/es/s2dv/-/tree/develop_PlotEquiMap

**Since the code of plotting map is changed quite a lot, it is recommended testing it with your script before it's officially included in the package.

```
data <- array(1:360, dim = c(lon = 360, lat = 181))
lon <- -180:179 + 110 #shift 110deg
lat <- -90:90
PlotEquiMap(data,lon,lat,filled.continents=F,
country.borders=F,filled.ocean=F,lake_color='yellow',
xlonshft=10,intxlon=60,
xlabels=c('60w','0',paste0(seq(60,300,by=60),'e')))</pre>
```


Load(): Bugfix for R_4.1.2

Load() returns error in R_4.1.2:

Error in prod(dim_exp) : invalid 'type' (list) of argument

Status: Master branch

- s2dverification won't be fixed. So it is only available for R < 4.0.0.
- CSTools::CS_Load uses s2dverification::Load for now. Before it is changed to s2dv, it can't perform well in R_4.1.2 either.

ClimProjDiags

WeightedMean() bugfix

dlon calculation correction

https://earth.bsc.es/gitlab/es/ClimProjDiags/-/issues/7

Status: Master branch

Use it now by

source("https://earth.bsc.es/gitlab/es/ClimProjDiags/-/raw/master/R/WeightedMean.R")

General R

General R

- Start using module R/4.1.2 on Workstation and Nord3v2, and report problems if found.
- RStudio on WS:

https://earth.bsc.es/wiki/doku.php?id=computing:workstations#using_rstudio-serv er_in_ws

RStudio should have the same environment (same modules loaded, same directories, etc.) as your workstation. If you find them different, restart RStudio by:

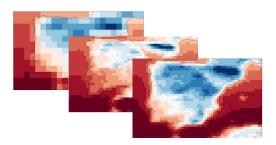
- Press command/ctrl + shift + F10 (with fn)
- Type `.rs.restartR()`

CSDownscale

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Statistical downscaling with CSDownscale

Jaume Ramon


With inputs from Llorenç, Carlos D., Lluís, Núria, Raül, An-Chi, Alba...

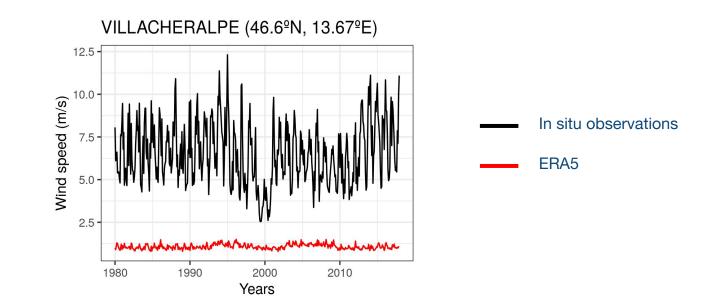
02/06/2022

R user meeting

CSDownscale

- Will be an open source R package.
- The user should be able to easily compare the performance of different downscaling methods.

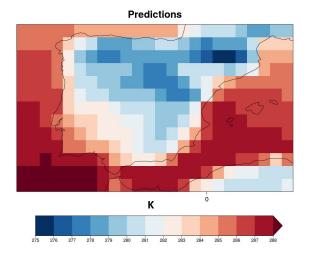
Downscaling methods

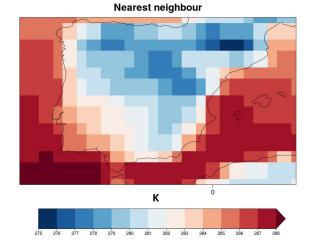

- 1) Interpolation
- 2) Interpolation plus bias adjustment
- 3) Interpolation plus linear regression
- 4) Large-scale predictors and local climate variables
- 5) Stencil
- 6) Analogs
- 7) Logistic regression

Why downscaling?

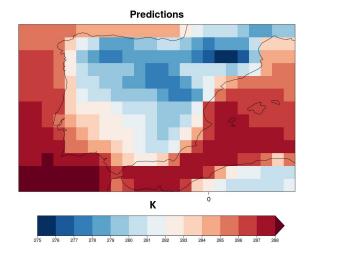
- Downscaling is any procedure to infer high-resolution information from low-resolution variables.
- Climate predictions are delivered on grids of thousands of square kilometres, which is little useful for local applications (e.g. predictions at a wind farm, river basin or mountain valley).
- ➢ Go from coarse to fine grids, or even to a **point scale**.

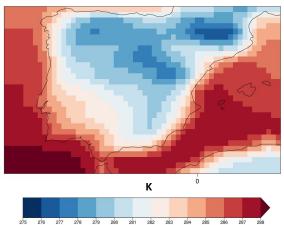
Why downscaling?



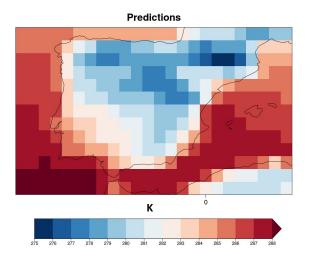

Functions in CSDownscale

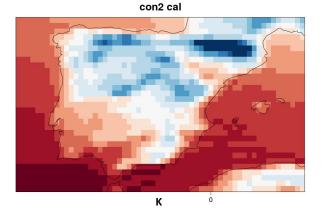
Interpolation(..., method = "nearest_neighbour")

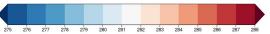

Regrid from coarse to fine grid.



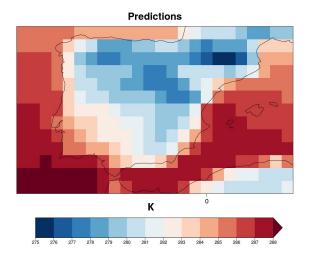
Interpolation(..., method = "bilinear")

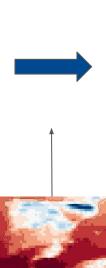



Intbc(..., bc_method = "calibration")


First, interpolate from coarse to fine grid. Then, do a bias adjustment.

High-res observations

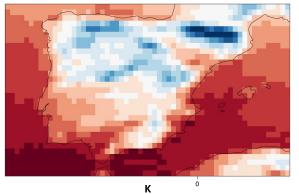




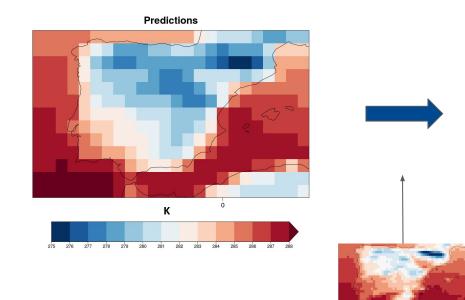
BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

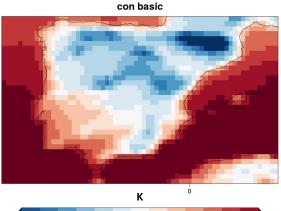
Intbc(..., bc_method = "quantile_mapping")

First, interpolate from coarse to fine grid. Then, do a bias adjustment.



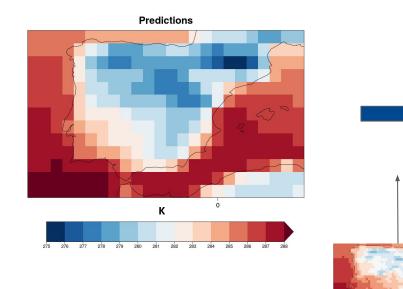
High-res observations

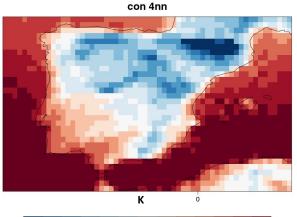

con qm

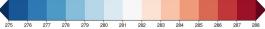


Intlr(..., lr_method = "basic")

First, interpolate from coarse to fine grid. Then, adjust the models with a point-wise linear regression with the high-res observations as predictands.

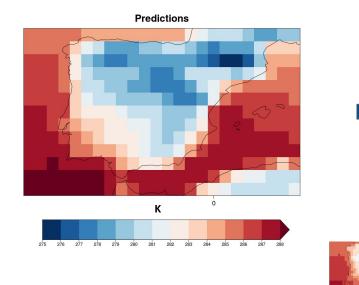


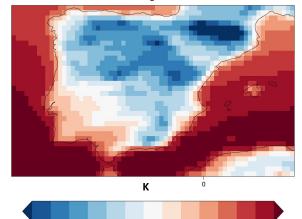




Intlr(..., lr_method = "4nn")

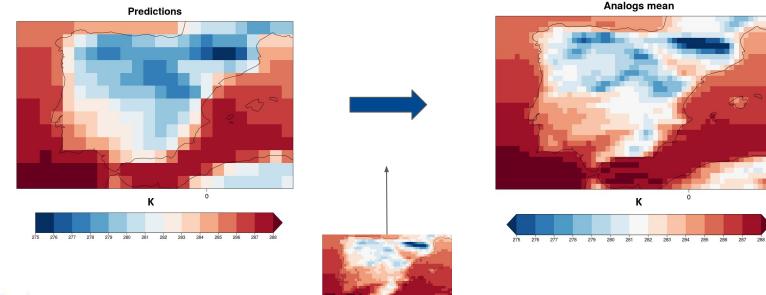
First, interpolate from coarse to fine grid. Then, adjust the models with a point-wise multi-linear regression with the four NN as predictors.





Intlr(..., lr_method = "large-scale")

First, interpolate from coarse to fine grid. Then, adjust the models with a point-wise multi-linear regression with large-scale predictors (e.g. teleconnection indices).


276 277 278 279 280 281 282 283 284 285 286

con large-scale

Analogs(..., nanalogs = 3, fun_analogs = 'mean')

Interpolate high-res observations to model grid. Then, compute the Euclidean distance between the model and observations' fields. Select the best analogs in the high-res observational fields.

BSC Barcelona Supercomputing Center Centro Nacional de Supercomputación

Q & A

Thanks for joining

Next meeting: 7th July 2022 (11 am)