

Icebreaker

○
○
○
○

Package update

●

●

●

 t <- qt(conf.lev, eno - 2) # a number
 p.val[iexp, iobs] <- sqrt(t^2 / (t^2 + eno - 2))

●

○

○

●
→

●

→
* The time value of the request file is "2005-05-16 12:00:00 UTC"
repos_obs <- '/esarchive/obs/ukmo/hadisst_v1.1/monthly_mean/var/var_$date$.nc'
obs <- Start(dat = repos_obs,
 var = 'tos',
 date = '200505',
 time = as.POSIXct('2005-06-16 12:00:00', tz = 'UTC'),
 latitude = ‘all’,
 longitude = ‘all’,
 return_vars = list(latitude = NULL, longitude = NULL, time = NULL),
 retrieve = T)

! Warning: Date selectors have been provided for a dimension defined along a date
! variable, but no exact match found for all the selectors. Taking the
! index of the nearest values.

●

* The time value of the request file is "2005-05-16 12:00:00 UTC"
repos_obs <- '/esarchive/obs/ukmo/hadisst_v1.1/monthly_mean/var/var_$date$.nc'
obs <- Start(dat = repos_obs,
 var = 'tos',
 date = '200505',
 time = as.POSIXct('2005-06-16 12:00:00', tz = 'UTC'),
 time_tolerance = as.difftime(1, units = 'days'),
 latitude = ‘all’,
 longitude = ‘all’,
 return_vars = list(latitude = NULL, longitude = NULL, time = NULL),
 retrieve = T)

Error in Start(dat = repos_obs, var = "tos", date = "200505", time =
as.POSIXct("2005-06-16 12:00:00", :
 The selectors of time are out of range [2005-05-16 12:00:00, 2005-05-16 12:00:00].

●

repos_obs <- '/esarchive/obs/ukmo/hadisst_v1.1/monthly_mean/var/var_$date$.nc'
time_vector <- as.array(as.POSIXct(c('2005-05-16', '2005-06-16'), tz = 'UTC'))
time_array <- as.array(time_vector)
dim(time_array) <- c(date = 2, time = 1)

obs <- Start(dat = repos_obs,
 var = 'tos',
 date = c('200505', '200506'),
 time = time_vector,
 time_across = 'date',
 latitude = 'all',
 longitude = 'all',
 return_vars = list(time = 'date'),
 retrieve = T)

obs <- Start(dat = repos_obs,
 var = 'tos',
 date = c('200505', '200506'),
 time = time_array,
 latitude = 'all',
 longitude = 'all',
 return_vars = list(time = 'date'),
 retrieve = T)

●

●

★

★

http://etccdi.pacificclimate.org/

startR
retrieve data and

parallel
distributed
processing

CSTools
Climate Services Tools -

MEDSCOPE Toolbox
MEDiterranean Services Chain based On

Climate PrEdictions

THREDDS

CSIndicators
Climate Indicators for Impact

Analysis

s2dv

multiApply paradigm

GitLab repo
CSIndicators:

https://earth.bsc.e
s/gitlab/es/
csindicators

https://earth.bsc.es/gitlab/es/csindicators
https://earth.bsc.es/gitlab/es/csindicators
https://earth.bsc.es/gitlab/es/csindicators

Functions to be included in the first
version of the package

● One function can be used to compute more than
one sectorial indicator:

○ The names indicate which will be the
output given the calculation that the
function does

○ Explanations about how to get specific
indicators will be provided in the
documentation

○ The plan is test them for sub-seasonal,
seasonal, decadal forecast and also for
projections and time-series. Your
collaboration will be needed!

● The first functions selected correspond to the
ones used in MedGOLD project. For now, tests
for Seasonal forecast are the priority.

● Auxiliary functions SelectPeriodOnDates and
SelectPeriodOnData will require exhaustive
testing, but we think they would be extremely
useful even for other purpose different than
indicators computation.

IndexExceedingThershold <- function(data, dates, start, end,
time_dim, threshold, op = ‘<’, spell.length,...) {

1. Checks parameters

2. Select period if requested

3. Compute:
res <- Apply(list(data), target_dims = ftime_dim, fun = Atomic,
 …, na.rm = na.rm, ncores = ncores)$output1

Atomic <- function(x, y, …) {
 sum(x > y)
}

SelectPeriodOnDates()
SelectPeriodOnData()

1) Threshold() uses a reference dataset to obtain the corresponding values of a specific percentile. It

returns a grid of thresholds for each julian day. It is used in WSDI.
Reference {time, lat, lon...}, threshold = 85th percentile → result {... lat, lon}

X

2) The indices defined with absolute threshold can be reinterpreted using a reference:
a) On observations (no members): for each grid point on the dataset {time, lat, lon}, the

cumulative distribution function is used to calculate which value corresponds to the fix
absolute threshold

Relative_threshold[s, ftime, i, j...] = ECDF(data[-s, ftime, i, j]...)(absolute_threshold)

Absolute threshold

Corresponding
Probability =
relative
threshold

3) Once we have the relative threshold, we would like to compare it to the experiment. To do this, we need to
transform the experiment to its probabilities:

Exp_prob[m, s, ft, lat, lon...] = ECDF(exp[ALL, -s, ft, lat, lon...])(exp[m, s, ft, lat, lon...])

Single value of the
ensemble

Corresponding
Probability

● Exp_prob and
relative_trheshold can be
compared.

DST S2S4E

https://s2s4e-dst.bsc.es/

https://s2s4e-dst.bsc.es/

https://s2s4e-dst.bsc.es/

https://s2s4e-dst.bsc.es/

● S2S4E:
○ Seasonal (monthly) and subseasonal (weekly)
○ 7 ECVs (global + country aggregated)
○ 2 Hydrological variables
○ 5 energy indicators
○ Seasonal multi-model (Temp, sfcWnd)
○ .nc + DST

● Visca:
○ Seasonal (monthly and seasonal)
○ 2 ECVs (global and demosites)
○ .json + Platform

● Decathlon:
○ Seasonal (monthly + seasonal), subseasonal

(weekly)
○ 1 ECV (Spain grid + agg. regions)
○ .nc + PDF Outlook

● Vitigeoos, Med-gold, Focus...

Similar services but with differences

in the details:

● Systems and variables

● Forecast time & aggregation

● Spatial distribution

● Time frequency of the data

used.

● Outcome

Although some similarities could be

identified:

● Loading hcst, fcst and obs data

and interpolate

● Calibrate using obs data

● Compute probabilistic

information and skill metric

● Export the results

Config and load
(one per project)

Analysis
(shared core)

Export
(one per project)

main.R

https://earth.bsc.es/gitlab/es/S2S4E-backend-BSC/

https://earth.bsc.es/gitlab/es/S2S4E-backend-BSC/

.conf

.load

.load

The outcome is an array containing the essential dims for the analysis:

● dat: for different systems (multi-model)

● var: for different variables (indicators)

● member: ensemble dimension (probs)

● syear: Initialization year (verification and calibration)

● sday: Initialization window (Subseasonal calibration)

.analysis

.export

General wf in autosubmit

R

Gaussian Processes

What is a GP?
Given the observational model:

How do we capture complex functional behaviours?

● Polynomials → difficult to regularize their flexibility

● A GP defines probability distributions over function spaces directly

○ Infinite dimensional

○ Parametrized by

● Zero-mean GPs

● Covariance function:

○ Diagonal elements

→ marginal variations of function values

○ Off-diagonal elements

→ correlations between function values

● Typically assumed to be stationary and isotropic →

● Different choices of covariance functions: exponential, spherical, Matérn

Covariance functions

https://www.cs.toronto.edu/~duvenaud/cookbook/

GPs in practice
● We'll never be able to manipulate an entire sampled function

● Consider only the function values at a finite number of covariate values (grid)

● The function values over the grid follow a distribution specified by multivariate normal

● We can also generate predictions

● Inference: Maximum likelihood, Bayesian framework

● The curse of dimensionality: we need to compute the determinant and the inverse of the

covariance matrix which scales as → sparse methods, basis function approximations

GPs in practice

Applications
Spatial modelling
(2D interpolation)Time series modeling

(1D interpolation)

https://earth.bsc.es/gitlab/gcarella/gaussian-process-example-in-r

https://earth.bsc.es/gitlab/gcarella/gaussian-process-example-in-r

R packages to fit GP models
● RStan: R interface to the Stan programming language (C++ backend) for fitting Bayesian

hierarchical models (MCMC)

○ Very flexible ✔

○ Existing GP approximations for large datasets still too slow for large data and models

● INLA: R package (C++ backend) for Bayesian inference for Latent Gaussian Models (LGM)

○ Work well with large-hish data and models ✔

○ Spatio-temporal models for geostatistical data ✔

○ Limited to LGM and the Matèrn class of covariance functions

● gplite: R package

○ Easy syntax ✔

○ Simple models only

https://mc-stan.org/users/interfaces/rstan
https://arxiv.org/abs/2004.11408
https://www.r-inla.org/
https://cran.fiocruz.br/web/packages/gplite/gplite.pdf

R packages to fit GP models
● gstat: R package for spatio-temporal kriging

○ Ignore the uncertainty in the GP parameters (variogram)

○ Inefficient for large data

● FKR: R package for spatio-temporal kriging with large data

○ Ignore the uncertainty in the GP parameters (variogram)

○ Non-stationary covariance ✔

http://www.gaussianprocess.org/gpml/chapters/

https://becarioprecario.bitbucket.io/inla-gitbook/ch-spatial.html

https://mc-stan.org/docs/2_19/stan-users-guide/gaussian-process-regression.html

Other references

https://cran.r-project.org/web/packages/gstat/gstat.pdf
https://cran.r-project.org/web/packages/FRK/vignettes/FRK_intro.pdf
http://www.gaussianprocess.org/gpml/chapters/
https://becarioprecario.bitbucket.io/inla-gitbook/ch-spatial.html
https://mc-stan.org/docs/2_19/stan-users-guide/gaussian-process-regression.html

Q & A

Next meeting: 5th Mar. 2021 (Friday 4pm)

