
R user meeting

An-Chi Ho and Eva Rifà

contributor: Victòria 03/11/2022

1. Ice-breaker: package “clock”
2. News

○ General R
○ s2dv
○ startR
○ CSIndicators
○ CSTools

3. User presentation: log4r [Victòria]
4. Q&A

○ Does Apply() use multiple nodes? [An-Chi]
○

Agenda

3

Ice-breaker

Package description: “Provides a comprehensive library for date-time manipulations

using a new family of orthogonal date-time classes (durations, time points, zoned-times,

and calendars) that partition responsibilities so that the complexities of time zones are

only considered when they are really needed. Capabilities include: date-time parsing,

formatting, arithmetic, extraction and updating of components, and rounding.”

CRAN: https://cloud.r-project.org/web/packages/clock/index.html

Introduction: https://clock.r-lib.org/

Function reference: https://clock.r-lib.org/reference/index.html

Package “clock”

https://cloud.r-project.org/web/packages/clock/index.html
https://clock.r-lib.org/
https://clock.r-lib.org/reference/index.html

- base: class “Date”, “POSIXct”

- lubridate: https://lubridate.tidyverse.org/ Deal with R’s native date (Date) and

date-time (POSIXct) classes

- clock: Deal with R’s two date classes plus provide entirely new date-time types

- PCICt: Deal with different calendar types (e.g., 365 days, 360 days)

Some examples:

https://earth.bsc.es/gitlab/aho/aho-testtest/-/blob/master/helper_script/test_clock.R

date-time manipulation tools

https://lubridate.tidyverse.org/
https://earth.bsc.es/gitlab/aho/aho-testtest/-/blob/master/helper_script/test_clock.R

6

General R

In theory,

● Eva: CSTools, CSIndicators

● An-Chi: startR, s2dv, ClimProjDiags, and the rest of the packages.

● We still share the workload and know each other’s tasks

→ If you want to ask questions/discuss things outside of GitLab or user

meeting, contact the corresponded maintainer first.

→ If you open an issue or merge request on GitLab, feel free to tag both of us

(at least the key maintainer must be tagged.)

Maintainers’ job distribution

Use --exclusive to prevent instability.

#!/bin/bash

#SBATCH --cpus-per-task 16

#SBATCH --ntasks 1

#SBATCH --time 10:00:00

#SBATCH --exclusive

#SBATCH --job-name rstudio-server

#SBATCH --output rstudio-server-%J.out

#SBATCH --error rstudio-server-%J.err

● Try not to ask for highmem at the same time. You can use medmem: #SBATCH

--constraint=medmem
● Don't use multiple ntasks (--n); use multiple cpus (--c) instead: #SBATCH --ntasks 8

First time and need template? https://earth.bsc.es/wiki/doku.php?id=tools:Rtools&s[]=Rtools#rstudio-server

Slurm documentation: https://slurm.schedmd.com/sbatch.html

Open RStudio on Nord3v2

https://earth.bsc.es/wiki/doku.php?id=tools:Rtools&s[]=Rtools#rstudio-server
https://slurm.schedmd.com/sbatch.html

We’re going to give the annual PATC tutorial next Thursday (10th November). If you’re

learning our tools (startR, CSTools, CSIndicators, s2dv), you can check the materials we

prepared. We will put the slides and hands-on on Earth wiki and GitLab.

First peek:

https://earth.bsc.es/gitlab/es/startR/-/tree/develop-PATC2022/inst/doc/tutorial/PATC2

022

PATC 2022: R tools hands-on

https://earth.bsc.es/gitlab/es/startR/-/tree/develop-PATC2022/inst/doc/tutorial/PATC2022
https://earth.bsc.es/gitlab/es/startR/-/tree/develop-PATC2022/inst/doc/tutorial/PATC2022

10

s2dv

Next step: plotting function improvement

New release 1.3.0

status Fixed and in master branch

Due to a bug in the function, the significance test (RandomWalkTest) input had only one

value, so the result was always insignificance.

Source the function from gitlab master branch if you need to use this function.
source(“https://earth.bsc.es/gitlab/es/s2dv/-/raw/master/R/AbsBiasSS.R”)

Bug: AbsBiasSS() significance test

The function Season() does not return any error or warning when out-of-range

parameters are provided. Check issue https://earth.bsc.es/gitlab/es/s2dv/-/issues/81

status Not improved yet

Season() poor sanity checks

https://earth.bsc.es/gitlab/es/s2dv/-/issues/81

[Corr() & other appliable functions]

● Parameter alpha is numeric (0.05 by default), replacing conf.lev

● Outputs are corr, p.val, conf.lower, conf.upper, sign

● Flag parameters pval = TRUE, conf = TRUE, sign = FALSE --> If TRUE, return the

corresponding value.

[DiffCorr() / ResidualCorr()]

● Parameter alpha is numeric (0.05 by default); cannot be NULL

● Outputs are diff.corr/res.corr, p.val, sign

● Flag parameters pval = TRUE, sign = FALSE --> If TRUE, return the corresponding value.

status Not improved yet

See issue https://earth.bsc.es/gitlab/es/s2dv/-/issues/79

Unify the structure of functions with significance test

https://earth.bsc.es/gitlab/es/s2dv/-/issues/79

15

CSIndicators

● Changes:

○ Revise examples using s2dv::InsertDim in MergeRefToExp().

○ Sanity check correction in CST_ functions.

○ Corrected documentation.

○ Changed examples to avoid import data from CSTools: lonlat_prec and

lonlat_temp.

→ Future development:

- Add real sample data

- New vignettes

- Threshold functions to allow between thresholds or equal

- Correct figures of EnergyIndicators vignette

- s2dv_cube object development for CST_ functions

New release 0.0.2

● In CSIndicators: ‘start’ and ‘end’ parameters are used to subset the data with

specific dates range.
CST_PeriodAccumulation <- function(data, start = NULL, end = NULL,

 time_dim = 'ftime', na.rm = FALSE,

 ncores = NULL)

→ Requirement to subset: dates array dimensions have to match with data array.

→ If dimensions don’t match all data is used and a warning appears:

warning("Dimensions in 'data' element 'Dates$start' are missed and ",

 "all data would be used.")

Sanity check correction in CST_ functions

Note: All functions work better if dimensions and dimension names are provided for all objects
(data, exp, obs, dates…).

Format requirements:

● Documentation format with roxygen2:

write .Rd files in the man/ directory

with devtools::document().

● Line breaks at 80 characters

● Elements: description, inputs, param,

examples in order

Examples requirements:

● Useful use cases that work perfectly

● Fast run

● Avoid using data from other functions

Corrected documentation

19

CSTools

New features:

● Dependency on package 's2dverification' is changed to 's2dv'

● CST_BiasCorrection new parameters 'memb_dim', 'sdate_dim', 'ncores'

● CST_Calibration is able to calibrate forecast with new parameter 'exp_cor'

● CST_QuantileMapping uses cross-validation and provides option to remove NAs; new parameters

'memb_dim', 'sdate_dim', 'window_dim' and 'na.rm'; 'sample_dim' and 'sample_length' are removed

● s2dv_cube() new parameter 'time_dim'

Fixes:

● as.s2dv_cube() detects latitude and longitude structure in startR_array object

● Data correction: 'lonlat_data' is renamed to 'lonlat_temp'; 'lonlat_prec' is corrected by one-day shift

● Typo and parameter correction in vignette 'MostLikelyTercile_vignette'

● Figure and result correction in vignette 'RainFARM_vignette'

● PlotMostLikelyQuantileMap() works with s2dv::PlotLayout

New release 4.1.0

● CST_BiasCorrection(): memb_dim does not function well

○ Corrected ‘memb_dim’ parameter.

if (dim(obs$data)['member'] != 1) → (dim(obs)[memb_dim] != 1)
○ Added initial checks for BiasCorrection().

● CST_QuantileMapping: New function

○ New parameters:

■ sdate_dim (default 'sdate')

■ memb_dim (default 'member')

■ window_dim (default NULL)

■ na.rm (default FALSE)

Improvements

○ New development:

■ Cross-validation

■ NA functionality

■ Work with dimension names

When parameter “obsVar” is used, The array is not subsetted properly to the best

analogs due to a bug in Subset() usage.

dim(res)

nAnalogs lat lon

 10 3 3

“nAnalogs” is the same as input “time” dimension.

status Not solved yet

Check issue: https://earth.bsc.es/gitlab/external/cstools/-/issues/105

Bug in CST_Analogs

https://earth.bsc.es/gitlab/external/cstools/-/issues/105

23

User presentation:
Logging in R: The log4r package

[Victòria]

A log is a recording (generally stored in a file) of display messages that describe events

that occur when a software runs.

Logs are helpful for software development, debugging, or simply to keep information

about a particular run or experiment that we might want to recover later.

One way to achieve this in an R script is to simply print the terminal output to a file with

a function like cat(), sink() or capture.output().

But these have their limitations, and can be dangerous sometimes.

Logging in R

https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/cat
https://www.rdocumentation.org/packages/base/versions/3.6.2/topics/sink
https://www.rdocumentation.org/packages/utils/versions/3.6.2/topics/capture.output

Luckily, there are “proper” ways to do this. Several packages in R provide specific

functions to create and manage logs.

For example, let’s take a look at the ‘log4r’ package:

CRAN: https://CRAN.R-project.org/package=log4r

From the log4r documentation:

“The log4r package is meant to provide a fast, lightweight, object-oriented approach to

logging in R based on the widely-emulated 'log4j' system and etymology.”

The log4r package

https://cran.r-project.org/package=log4r

The basics of generating a log with log4r are quite simple: We need to create a logger

object, to which we can assign the path to the log file and a priority threshold, among

other things.

The places where we want the messages to be logged is assigned through the

‘appenders’. E.g. console_appender() for the console, or file_appender() for a file.

There are 5 priority levels:

- DEBUG (1), INFO (2), WARN (3), ERROR (4), and FATAL (5).

Each level corresponds to a different type of message. When we assign a threshold to

the ‘logger’ object, only the messages that are the same level or higher will be printed.

The default is “INFO”.

Logging with log4r

> library(log4r)
We create a logger object with the logger() function.
> logger <- logger(threshold = 'INFO', appenders = file_appender("test.log"))

Now let's log some messages
> debug(logger, "Stuff only developers care about")
> info(logger, "I'm printing to a log file!")
> warn(logger, "Are you sure you wanna do this...?")
> error(logger, "Something went wrong.")
> fatal(logger, "Self-destructing in 3, 2, 1...")

We set the log level to 'INFO': only messages above this threshold will be printed.
If we check the log file, we should not see the DEBUG message:
> readLines("test.log")
[1] "INFO [2022-10-28 11:44:03] I'm printing to a log file!"
[2] "WARN [2022-10-28 11:44:07] Are you sure you wanna do this...?"
[3] "ERROR [2022-10-28 11:44:12] Something went wrong."
[4] "FATAL [2022-10-28 11:44:16] Self-destructing in 3, 2, 1..."

Logging with log4r: A simple example

We can also create a logger object that appends to a file and to the console
> logger <- logger(threshold = "INFO",
> appenders = list(file_appender("test.log"),
> console_appender()))
> info(logger, "Messages will now be appended to the console")
INFO [2022-11-02 11:40:41] Messages will now be appended to the console

And we can use the level() function to change the log threshold on the fly:
> level(logger) <- "DEBUG"
> debug(logger, "Another message only devs want to read.")
DEBUG [2022-11-02 11:43:40] Another message only devs want to read.

Logging with log4r: Another simple example

Log4r pros:

- Good performance [See: Comparison with other similar packages]

- Relies on an object of class ‘logger’, which can be modified, passed on and returned

from functions, etc.

- Provides some more ‘fancy’ built-in layout formats (JSON, logfmt) [See: Structured

Logging] and appenders to write to other connections [See: Logging Beyond Local

Files]

- Users can make custom layouts and appenders

Cons:

- No easy way (that I have found…) to properly format complex multi-line outputs

and evaluate expressions [Possible work-arounds: combining log4r with sink() or the

‘evaluate’ package]

The pros and cons of log4r

https://cran.r-project.org/web/packages/log4r/vignettes/performance.html
https://cran.r-project.org/web/packages/log4r/vignettes/structured-logging.html
https://cran.r-project.org/web/packages/log4r/vignettes/structured-logging.html
https://cran.r-project.org/web/packages/log4r/vignettes/logging-beyond-local-files.html
https://cran.r-project.org/web/packages/log4r/vignettes/logging-beyond-local-files.html

Example: Logging the summary() of an array
> my_array <- rnorm(300)
> dim(my_array) <- c(time = 3, latitude = 10, longitude = 10)
> summary(my_array)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
-4.107477 -0.768419 -0.005368 -0.048431 0.585346 2.324948

Trying to log the output of summary(my_array) results in a disaster
> info(logger, summary(my_array))
INFO [2022-11-02 12:08:58]

-4.10747739703713-0.768419321756904-0.00536806011248123-0.04843144461472020.585346303843

5652.32494802664473

The pros and cons of log4r

Other packages make this easier
> library(logger) # Not installed in WS or HPC machines
> log_appender(appender_file("logger.log"))
> log_eval(summary(my_array), multiline = TRUE, level = INFO)
> readLines("logger.log")
[1] "INFO [2022-11-02 12:46:57] Running expression: ===================="
[2] "INFO [2022-11-02 12:46:57] summary(my_array)"
[3] "INFO [2022-11-02 12:46:57] Results: ==============================="
[4] "INFO [2022-11-02 12:46:57] Min. 1st Qu. Median Mean 3rd Qu. Max. "
[5] "INFO [2022-11-02 12:46:57] -4.10747 -0.76841 -0.00536 -0.04843 0.58534 2.32494 "
[6] "INFO [2022-11-02 12:46:57] Elapsed time: 0 sec"

Trying the same with a different package

32

Q & A

Anyone has experience to share? When submitting a job with multiple nodes and use

`ncores > 1` in functions using Apply(), do you notice the better efficiency?

```

#!/bin/bash

#SBATCH -N 2

#SBATCH -c 16

#SBATCH -n 2

```

Does Apply() use multiple nodes?

34

Thanks for joining

Next meeting: 1st Dec. 2022 (4 pm)

