
R user meeting

An-Chi Ho, Eva Rifà, Victòria Agudetse

contributor: Eva01/06/2023

Agenda

1. Ice-breaker: Introduction to S3 and S4
2. News

○ General R
○ s2dv
○ startR
○ multiApply
○ CSTools
○ CSIndicators
○ SUNSET

3. Q&A

Ice-breaker

Functional Programming (FP):

● A functional language is centred on functions

● Pure functions are when the output only

depends on the inputs and without

side-effects

Functional vs Object-Oriented Programming

Object-Oriented Programming (OOP):

● Programming paradigm that organizes

code around objects

● It enables you to define classes, create

objects, implement methods

Generally in R, FP is much more
important than OOP. We typically
solve complex problems by
decomposing them into simple
functions, not simple objects.

There are multiple OOP systems to

choose from. The most importance are:

S3, R6, and S4. S3 and S4 are provided by

base R.

Reference: https://adv-r.hadley.nz/oo.html

https://adv-r.hadley.nz/oo.html

Definition

● In R, everything is an object, not everything is object-oriented. We need to distinguish between

base objects and OO objects

● The difference is that only OO objects have a “class” attribute, every object has a base type

● There are 25 base types; vectors: NULL, logical, integer, double, complex, character, list, and raw

Functions

● The function class() is safe to apply to S3 and S4 objects, but it returns misleading results when

applied to base objects

● The function typeof() determines the base type of any object

Base type

attr(1:10, "class")
#> NULL

class(CSTools::lonlat_prec)
#> [1] "matrix" "array"

typeof(1:10)
#> [1] "integer"

S3 is R’s first and simplest OO system: we can’t take away any part of it and still have a useful OO

system. It is used in the base and stats packages, also most used in CRAN packages and R tools.

● Class (S3): Defined by having attribute called "class" in an object. It determines the behavior and

method dispatch for the object.

● Generic (S3): It refers to a function that has multiple methods associated with it. The generic

function acts as a placeholder or template for the methods. When a generic is called, the method

dispatch mechanism identifies the appropriate method for that specific object's class.

● Method (S3): A method is a specific implementation of a generic function for a particular class of

objects. The method's name includes the name of the generic function, followed by a dot and

the name of the class.

Some definitions of S3

f <- factor(c("a", "b", "c"))
typeof(f)
#> [1] "integer"
attributes(f)
#> $levels
#> [1] "a" "b" "c"
#> $class
#> [1] "factor"

> mean
function (x, ...)
UseMethod("mean")
<bytecode: 0x562580f176f0>
<environment:
namespace:base>

S4 provides a formal approach to functional OOP. The underlying ideas are similar to S3 but implementation

is much stricter and makes use of specialised functions for creating classes:

● Class (S4): You define an S4 class by calling setClass() with the class name and a definition of its slots,

and the names and classes of the class data.

● Generic (S4): Perform method dispatch, i.e. find the specific implementation for the combination of

classes passed to the generic.

● Method (S4): And then defining methods with setMethod().

S4 class

Define a class
setClass("Person",
 slots = c(
 name = "character",
 age = "numeric"
)
)

Construct new objects
john <- new("Person", name = "John Smith", age = NA_real_)

Check class
is(john)
#> [1] "Person"

Access slot
john@name
#> [1] "John Smith"

Create a generic
setGeneric("age", function(x)

standardGeneric("age"))
defining methods
setMethod("age", "Person",

function(x) x@age)

https://rdrr.io/r/methods/setClass.html
https://rdrr.io/r/base/c.html
https://rdrr.io/r/methods/new.html
https://rdrr.io/r/methods/is.html

General R

Package removed from CRAN

The following packages: ClimProjDiags, CSTools, CSIndicators, startR, s2dv,
easyNCDF were removed from CRAN on 15th May due to dependency issue. The
root reason is that the external package “climdex.pcic”, on which ClimProjDiags
depends, was removed from CRAN. The other in-house packages have
dependency on ClimProjDiags, so they were removed too as the chain effect.

● CSIndicators is on CRAN again
● We’re working on the other packages

○ ClimProjDiags: Temporarily remove the dependency on climdex.pcic
○ easyNCDF and CSTools will not depend on ClimProjDiags anymore
○ s2dv still needs this dependency, so as startR (chain effect)

New developments in the function shp_mask() that now is in ‘s2dv’ GitLab. The new

features and tests are being reported in Issue #75.

● Write documentation

● Added GADM (Database of Global Administrative Areas) database in the accepted

Shapefile System Database.

Next steps:

● Allow to save mask array to NetCDF

● Add features if needed while being tested

shp_mask() developments

Status: in branch s2dv::develop-shp_mask

https://earth.bsc.es/gitlab/es/s2dv/-/issues/75
https://earth.bsc.es/gitlab/es/s2dv/-/tree/develop-shp_mask

s2dv

● Documentation added.

● Sanity checks improved.

● Correct argument “var_limits”, “title_size”.

● Polygon can actually be plotted in workstation.

● Remove ggplot2 background grid and axis label.

● An intermediate question before plotting global map with polygon (slow and

incorrect)

● The default of argument “target_proj” is changed to “54030”, which is

“ESRI:54030”. The argument must be a valid CRS string, e.g., proj4 (“+proj=robin”),

EPSG, or ESRI code.

Status: in branch develop-PlotRobinson

Issue: https://earth.bsc.es/gitlab/es/s2dv/-/issues/95

PlotRobinson() changes

https://earth.bsc.es/gitlab/es/s2dv/-/blob/develop-PlotRobinson
https://earth.bsc.es/gitlab/es/s2dv/-/issues/95

New argument ‘ncores’ to use multiple thread with cdo.

Use module CDO/1.9.8,

● On Nord3v2 compute node (interactive session) 1 thread: 33s / 8 threads: 16s

● On workstation, no difference is shown.

Status: in master

Issue: https://earth.bsc.es/gitlab/es/s2dv/-/issues/97

CDORemap(): ncores

https://earth.bsc.es/gitlab/es/s2dv/-/issues/97

startR

● Error: Bugfix when interpolating with requesting all val lon = 'all' One point missing.

It was due to the target grid crop domain selection.

● Solution: extend the crop domain to all longitudes range.

Bugfix when interpolating lon = 'all'

Status: in branch master

Start(dat = path, var = variables,
 lon = "all",
 lat = "all",
 [...]
 transform = CDORemapper,
 transform_params = list(grid = 'r128x64', method = 'con'),
 transform_vars = c('lon','lat'),
 [...]
 retrieve = FALSE)

* Detected dimension sizes:
* dat: 1
* var: 1
* lon: 127
* lat: 64
* sdate: 1

https://earth.bsc.es/gitlab/es/startR/-/tree/master

multiApply

Apply() doesn't have attributes returned, even when the input data has attributes and

parameter “use_attributes” is used.

If use_attributes = NULL, the attributes are not taken by Apply() so it makes sense

to not have attributes along with the returned array. However, with use_attributes

defined, the attributes are still lost.

There are three types of attributes:

(1) All the attributes of the input data

(2) The ones in “use_attributes”

(3) The ones returned by “fun”

Issue: https://earth.bsc.es/gitlab/ces/multiApply/-/issues/15

Discussion: Should Apply() return attributes?

https://earth.bsc.es/gitlab/ces/multiApply/-/issues/15

CSTools

CST_SaveExp new parameter startdates
The parameter 'startdates' has been added to the function CST_SaveExp as proposed in

the last R user meeting. This parameter is used for naming the output files directly

(without taking the start dates from Dates).

Parameter startdates

● Vector of dates used for the filenames when saving the data in multiple files.

● Same length as the start date dimension of data (if there is).

● Class Dates, 'POSIXct' or character with lenghts between 1 and 10.

CST_SaveExp(lonlat_prec, destination = “./dev-startdates/",
 single_file = FALSE, dat_dim = 'dataset', memb_dim = 'member',
 ftime_dim = 'ftime', var_dim = NULL,
 startdates = c('1', '2', '3'))

Status: in branch develop-CST_SaveExp-startdates

https://earth.bsc.es/gitlab/external/cstools/-/tree/develop-CST_SaveExp-startdates

PlotWeeklyClim years outside ref period
● New development in order that it is possible to plot years outside the reference period.

● To do it, it's needed to specify the whole years of data in a new parameter called data_years.

Changes

● data_years: Vector with the complete years of the data. Ex: data_years = 2007:2021.

● ref_period: Vector with all the years of the reference period. Ex: ref_period = 2007:2010.

● last_date: Optional, to indicate the last date of the timeseries.

● subtitle: Optionla, used to set a subtitle.

● ytitle: Optional, it stands for the y-axis title.

● legend: Optional, whether to plot the legend or not.

Status: in branch develop-allow_plot_outside_reference

PlotWeeklyClim(data = data, first_date = '2021-03-01',
 data_years = 1993:2021,
 ref_period = 1998:2010,
 title = "Observed weekly means and climatology",
 subtitle = "Reference period: 1998 to 2010")

https://earth.bsc.es/gitlab/external/cstools/-/tree/develop-allow_plot_outside_reference/

CSIndicators

New release 1.0.1

NEWS:

● Add EnergyIndicators vignette figures

● Remove ClimProjDiags dependency

● Remove s2dv dependency

The s2dv dependency has been substituted with the

following:

● Function s2dv::InsertDim has been substituted with

an auxiliary function .insertdim() in here. Only in

MergeRefToExp.

● Function s2dv::Reorder has been substituted with

match() and aperm() from base R. Only in

SelectPeriodOnDates.R

The ClimProjDiags dependency has

been substituted with the following:

● Function

ClimProjDiags::Subset has

been substituted with an

auxiliary function

.arraysubset() in zzz.

● In: R/QThreshold.R and

/SelectPeriodOnData.R

https://earth.bsc.es/gitlab/es/csindicators/-/blob/master/R/zzz.R#L39-53
https://earth.bsc.es/gitlab/es/csindicators/-/blob/fde621ed88f2f5f52a8fdf503af07497c5ef278d/R/zzz.R#L28-36

SUNSET

The ESS Verification Suite is now named SUNSET

“SUbseasoNal to decadal climate forecast post-processIng and asSEmenT suite”

New name!

It is now possible to load and process multiple variables in a single atomic recipe, in the

same s2dv_cube object (‘var’ dimension). This development is a first step to being able

to compute indicators.

 Variables:

 name: tas, prlr

 freq: monthly_mean

> data$hcst$dims

 dat var sday sweek syear time latitude longitude

 1 2 1 1 12 2 21 21

 ensemble

 25

status: in master

Multiple variables in one atomic recipe

Issue: https://earth.bsc.es/gitlab/es/auto-s2s/-/issues/72

Some new options have been added to the visualization module:

- The user can now specify if they want the plots for all forecast times to be in the

same file (‘multi-panel’) or one file per forecast time (‘single-panel’).

- For the single-panel option, the user can also choose their preferred projection.

Visualization:

 plots: skill_metrics, forecast_ensemble_mean, most_likely_terciles

 multi_panel: no

 projection: robinson

status: in branch dev-Visualization-PlotRobinson

Visualization module: New plotting options

https://earth.bsc.es/gitlab/es/auto-s2s/-/issues/72

There are two possibilities for the ‘projection’ parameter:

1. Using the built-in projection options: 'cylindrical_equidistant', 'robinson',

'lambert_europe', and 'stereographic'.

2. Specifying a custom CRS string, EPSG or ESRI code for the projection you want to

use. Be aware that different machines (e.g. WS vs Nord3v2) might require different

codes for the same projection. See: PlotRobinson() Visualization Vignette

status: in branch dev-Visualization-PlotRobinson

Visualization module: Choosing a projection

https://earth.bsc.es/gitlab/es/s2dv/-/blob/develop-PlotRobinson/vignettes/visualization_projection.md#4-plot

Example: Single-panel plot using the Lambert Europe projection, including an individual

title and a caption.

Visualization module: Single-panel plots

User presentation

SPEI Indicator
The Standardised Precipitation-Evapotranspiration Index (SPEI) is a multiscalar drought index based on
climatic data. It can be used for determining the onset, duration and magnitude of drought conditions with
respect to normal conditions in a variety of natural and managed systems such as crops, ecosystems,
rivers, water resources, etc. The SPI is calculated using monthly (or weekly) precipitation as the input data.
The SPEI uses the monthly (or weekly) difference between precipitation and PET. This represents a simple
climatic water balance which is calculated at different time scales to obtain the SPEI

Development

● Code was provided from Alba and Bala

● The SPEI Indicator will be included in the module Indicators within SUNSET that will call a

CSIndicators function called CST_PeriodSPEI.

More information:

See issue #27: https://earth.bsc.es/gitlab/es/csindicators/-/issues/27

status: in branch develop-SPEI

https://earth.bsc.es/gitlab/es/csindicators/-/issues/27
https://earth.bsc.es/gitlab/es/csindicators/-/blob/develop-SPEI/R/PeriodSPEI.R

C
SI

nd
ic

at
or

s:
:P

er
io

dS
PE

I

Step1: units transformation

Step0: variables (e.g. tasmin, tasmax, prlr) are loaded in the same s2dv_cube

Step2: checks

Step3: estimate evapotranspiration

Step4: accumulation

Step5: standardization

hcst, fcst and obs are
treated independently: loop
for (dat in

datasets){...} where
datasets can be specified
when calling the function
and needs to be all or some
of the names(data)

original transformed
Temperature K C
Precipitation mm/day mm/month

data units

provided data vs evapotranspiration estimation method

package SPEI variables
hargreaves tasmin, tasmax, lat
hargreaves modified* tasmin, tasmax, prlr, lat
thornthwaite* tas (mean), lat

from matrix to vector + accumulation with rollapply(data_vector, accum_scale, sum)

vector of complete years to avoid accumulation with “previous” months which are not consecutive

parametric (select distribution: hardcoded to “log-Logistic”)

non-parametric

parametric is the hardcoded option
(when calling spX_crossvalid) and
the only option that allows for
cross_validation and handle_infinity

 Module Indicator workflow

s2dv_cube subset with 3 independent variables data

SU
N

SE
T:

:In
di

ca
to

rs
M

od
ul

e

Source: Alba Llabrés

Structure of Module Indicators

c(data, recipe) %<-%
load_data_from_recipe(recipe_file)

> str(data)
List of 3
$ hcst: List of 4 -> ‘s2dv_cube’ --> exp
$ fcst: List of 4 -> ‘s2dv_cube’ --> exp_cor
$ obs: List of 4 -> ‘s2dv_cube’ --> obs

Step 1

Step 2 # Subset and
transform units if
necessary:

obs <- list(tasmax = CST_Subset(), tasmin = CST_Subset(),prlr = CST_Subset())
obs <- transform_units(obs)
exp <- list(tasmax = CST_Subset(), tasmin = CST_Subset(), prlr = CST_Subset())
exp <- transform_units(exp)
exp_cor <- list(tasmax = CST_Subset(), tasmin = CST_Subset(), prlr = CST_Subset())
exp_cor <- transform_units(exp)

Step 3 # Set parameters

Step 4 # Call CST_PeriodSPEI

spei_obs <- CST_PeriodSPEI(exp = obs, exp_cor = NULL,...)

spei_exp_fcst <- CST_PeriodSPEI(exp = exp, exp_cor = exp_cor,...)

Structure of CST_PeriodSPEI

CST_PeriodSPEI <- function(exp, exp_cor = NULL, pet = NULL,
 time_dim = 'syear', leadtime_dim = 'time', memb_dim = 'ensemble',
 lon_dim = 'longitude', lat_dim = 'latitude',
 accum = 1, start = NULL, end = NULL,
 pet_method = NULL, standardization = TRUE,
 params = NULL, param_error = -9999, handle_infinity = FALSE, cross_validation = FALSE,
 method = 'parametric', distribution = 'log-Logistic',
 fit = 'ub-pwm', n_procs = 4) {
 # dates
 dates <- exp[[1]]$attrs$Dates
 # lat
 lat <- exp[[1]]$coords[[lat_name]]
 # exp and exp_cor
 exp <- lapply(exp, function(x) x$data)
 exp_cor <- lapply(exp_cor, function(x) x$data)

 res <- PeriodSPEI(exp = exp, exp_cor = exp_cor, pet = NULL, dates = dates, lat = lat,
 time_dim = 'syear', leadtime_dim = 'time', memb_dim = 'ensemble', lon_dim = 'longitude', lat_dim = 'latitude',
 accum = 1, start = NULL, end = NULL, pet_method = NULL,standardization = TRUE,
 params = NULL, param_error = -9999, handle_infinity = FALSE,cross_validation = FALSE,
 method = 'parametric', distribution = 'log-Logistic', fit = 'ub-pwm',
 n_procs = 4)

}

Structure of PeriodSPEI

PeriodSPEI <- function(exp = exp, exp_cor = exp_cor, pet = NULL,dates = dates, lat = lat,
 time_dim = 'syear', leadtime_dim = 'time', memb_dim = 'ensemble', lon_dim = 'longitude', lat_dim = 'latitude',
 accum = 1, start = NULL, end = NULL, pet_method = NULL,standardization = TRUE,
 params = NULL, param_error = -9999, handle_infinity = FALSE,cross_validation = FALSE,
 method = 'parametric', distribution = 'log-Logistic', fit = 'ub-pwm',
 n_procs = 4) {
 # Part (1): Initial checks
 [...]
 # (2) Complete dates
 [...]
 # (2) Loop for evapotranspiration, accumulation, spei_standardization for exp and exp_cor
 for (data in .return2list(exp, exp_cor)) {
 pet <- evapotranspiration(data, dates_monthly, pet_method, time_dim, leadtime_dim, memb_dim, lon_dim, lat_dim, n_procs)
 data_accum <- accumulation(diff_P_PET, dates_monthly, accum, time_dim, leadtime_dim, memb_dim, n_procs)
 spei_dat <- spei_standardization(data_accum = data_accum, leadtime_dim = leadtime_dim, time_dim = time_dim, memb_dim = memb_dim,
 cross_validation = cross_validation, handle_infinity = handle_infinity,n_procs = n_procs,
 accum = accum,param_error = param_error,
 params = params, method = method, distribution = distribution, fit = fit)
 spei_res[[k]] <- spei_dat
 }
 return(spei_res)

}

Function PeriodSPEI

Initial checks and

prepare datesStep 1

Step 2

Step 3

Compute the SPEI

for exp (hcst)

Get params

pet <- evapotranspiration(data = data,
 dates_monthly = dates_monthly,

 lat = lat,
 pet_method = pet_method[k],

 [...])
Accumulation
diff_p_pet <- data$prlr - pet
data_accum <- accumulation(data = diff_p_pet,
 dates_monthly = dates_monthly,

 accum = accum,
 [...])
Standardization:
if (standardization) {
 spei_dat <- spei_standardization(data = data_accum,
 [...]
 ref_period,
 cross_validation,
 handle_infinity,
 accum,
 param_error,
 params, method
 distribution,
 fit)
 params <- spei_dat$params
}

Compute the SPEI

for exp_cor (fcst)

with params from

exp

Value:
> str(result)
List of 3
 $ exp : MD array with SPEI for exp data
 $ exp_cor: MD array with SPEI for exp_cor data
 $ params: MD array with params from exp with same dimensions except memb_dim and coef dimension

Q & A

Thanks for
joining

Next meeting: 6th July 12h

