
R user meeting

Victòria Agudetse 04/04/2024

Agenda

1. Ice-breaker: Checking available resources and memory in R
2. News

○ s2dv
○ startR
○ CSTools
○ SUNSET

3. Presentation: Nadia Milders
4. Q&A

Ice-breaker

Checking available resources and memory in R
Different R functions can give us information about how much memory we are using

and how much memory is available to the R session.

★ Let’s check the available memory in our WS/personal laptop/BSC Hub, and how

to determine the size of objects. Open an R session:

> library(memuse)
> library(pryr)
Let’s find out information about our RAM availability and usage.
Sys.meminfo() shows the total RAM and free RAM in our platform
> Sys.meminfo()
Sys.procmem() shows the amount of ram used by the current R process.
> Sys.procmem()
We can create an object and check its size with object.size()
> my_array <- rnorm(30000000)
> print(object.size(my_array), units = "MB")
228.9 Mb
Run Sys.meminfo() and Sys.procmem() again. What changed?

Checking available resources and memory in R
Another important piece of information is the number of cores that we can use to

parallelize processes with functions like parallel:mclapply() or multiApply::Apply().

★ For example, if we request an interactive session on Nord3v2:
salloc -t 00:30:00 -n 4

Let’s find out information about our RAM availability and usage.
> library(parallel)
> parallel::detectCores()
[1] 16
This is not the correct number of cores! detectCores() returns the total number of cores
in the node, NOT the number of cores available to the R session!
> library(future)
> future::availableCores()
cgroups.cpuset
 4
To get a numeric value that we can use directly as the input for a function:
> as.numeric(future::availableCores())
[1] 4

Checking available resources and memory in R
Some resources to learn more about memory, parallel computing and profiling in R:

★ Memory usage · Advanced R by Hadley Wickham

★ Quick Intro to Parallel Computing in R by Matt Jones

★ multiApply - in-house BSC-ES package for parallel computing

★ Simple Memory Profiling in R by Henrik Bengtsson

Does anyone have any other resources or functions that they like to use? Please

share!

http://adv-r.had.co.nz/memory.html
https://nceas.github.io/oss-lessons/parallel-computing-in-r/parallel-computing-in-r.html
https://cran.r-project.org/web/packages/multiApply/readme/README.html
https://cran.r-project.org/web/packages/profmem/vignettes/profmem.html

s2dv

New parameter ‘return_mean’ in RPS() and CRPS()

The default behavior of sd2v::RPS() and s2dv::CRPS() is to return the metric averaged

over the dimension specified in time_dim. If the new parameter return_mean is set to

FALSE, this temporal mean will not be compute. The default value of the parameter is

return_mean = TRUE.

Example:
> crps <- CRPS(exp = lonlat_tempexpdata, obs = lonlat_tempobsdata, return_mean = TRUE)
> crps_nomean <- CRPS(exp = lonlat_tempexpdata, obs = lonlat_tempobsdata, return_mean = FALSE)
> dim(crps)
dataset ftime lat lon
 1 3 22 53
> dim(crps_nomean)
sdate dataset ftime lat lon
 6 1 3 22 53

MR: https://earth.bsc.es/gitlab/es/s2dv/-/merge_requests/179

status: in master

https://earth.bsc.es/gitlab/es/s2dv/-/merge_requests/179

NAO(): Allow time_dim to be NULL

The NAO() function required a forecast time dimension ftime_dim to be present in the

data. However, this dimension is only used in the function when ftime_avg = TRUE (i.e.,

when temporal aggregation is requested).

The function check has been modified so that ftime_dim is only mandatory when

ftime_avg = TRUE . This gives more flexibility to the function, so that it can be used

inside a startR workflow chunking along the time dimension.

MR: https://earth.bsc.es/gitlab/es/s2dv/-/merge_requests/180

status: in master

https://earth.bsc.es/gitlab/es/s2dv/-/merge_requests/180

CDORemap() irregular grid interpolation error

Depending on the dimensions of the input array, CDORemap() can raise an error when

interpolating from an irregular grid to a gaussian grid.

This was due to a bug in the code that was causing incorrect matching of the dimensions.

Careful! The function match() only matches vector values, it does not take into account

vector names! For example:

Issue: https://earth.bsc.es/gitlab/es/s2dv/-/issues/114

status: in branch dev-fix_cdoremap_irregular_grid, ready to test

original_dims <- c(time = 10, lat = 23, lon = 36, ensemble = 10)
new_dims <- c(lat = 23, lon = 36, ensemble = 10, time = 10)

If we use match() to compare the position of the dimensions in two arrays:
match(original_dims, new_dims)
[1] 3 1 2 3 # WRONG!
match(names(original_dims), names(new_dims))
[1] 4 1 2 3 # OK !

https://earth.bsc.es/gitlab/es/s2dv/-/issues/114

startR

Minor correction to the documentation of Start()

The documentation of the output given by the startR::Start() function was missing

two attributes:

- $ExpectedFiles: When retrieve = FALSE , the data in the files is not retrieved, and

only the metadata is loaded. In this case, the attribute $Files is actually named

$ExpectedFiles, but this was not stated in the documentation.

- $PatternDim : The name of the file pattern dimension. This attribute was missing from

the documentation.

MR: https://earth.bsc.es/gitlab/es/startR/-/merge_requests/232

status: in master

https://earth.bsc.es/gitlab/es/startR/-/merge_requests/232

CSTools

CST_MergeDims(): Error when merging time dimensions

A new bug was introduced in the latest version of CSTools in the CST_MergeDims()

function. If the user wants to merge two or more time dimensions, and more than one

dimension has length > 1, the function returns an error: ‘dims do not match the length

of object’.

This error is caused by a bug in the way the dimensions of the $Dates attribute were

merged.

Issue: https://earth.bsc.es/gitlab/external/cstools/-/issues/149

status: in branch develop-fix_CST_MergeDims_Dates

https://earth.bsc.es/gitlab/external/cstools/-/issues/149

SUNSET

Release 2.0.0

The code for SUNSET v2.0.0 is available in the production branch.

This latest internal release includes many of the features that we have added in the past

few months:

- Autosubmit as a workflow manager

- Recipe division and a launcher script to easily execute atomic recipes in parallel in

the cluster

- New modules: Units, Indices, Downscaling and Scorecards

- Hands-on use cases

- Sample dataset and conda environment to facilitate usage

Many bug fixes and several other new developments are also included; you can find the

complete list in the release notes.

https://earth.bsc.es/gitlab/es/sunset/-/releases/v2.0.0

Units module bugfix and ‘Scorecards’ output format

The bug in the Units module regarding the transformation of monthly precipitation has

been fixed. The fix was included in the latest release.

For the ‘Scorecards’ output format, the skill metrics are now saved in individual netCDF

files instead of being saved as different variables in the same netCDF file. There is also the

possibility of requesting some metrics that are not aggregated by the ‘syear’ dimension.

status: in master

MR: https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/120

status: in production (included in v2.0.0)

MR: https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/117

https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/120
https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/117

New Statistics module

The new Statistics module allows the user to compute relevant statistics such as the

variance, covariance or the standard deviation. The format to request statistics in the

recipe is similar to the Skill module:

 Statistics:
 metric: cov std var n_eff # list of the statistics to be computed
 save: 'all' # ‘all’ or ‘none’

The output of this module is a list of named arrays that can be plotted with the

Visualization module using the new function parameter statistics .

status: in master

MR: https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/120

https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/120

Multimodel module

The first version of the Multimodel module is now in the master branch. The ‘pooled’

method is the currently available method. It can be used with and without Autosubmit,

but Autosubmit is the recommended option for efficiency.

Example scripts and recipes are available in the SUNSET GitLab. You can find example

scripts and recipes here:

More development is underway to improve efficiency and include different methods.

Issue: https://earth.bsc.es/gitlab/es/sunset/-/issues/69

https://earth.bsc.es/gitlab/es/sunset/-/blob/master/example_scripts/multimodel_seasonal.R
https://earth.bsc.es/gitlab/es/sunset/-/blob/master/recipes/recipe_multimodel_seasonal.yml
https://earth.bsc.es/gitlab/es/sunset/-/issues/69

Multimodel module: requesting resources

When using Autosubmit, the user can choose to request different resource directives for

the single-model and multi-model jobs:

auto_conf:
 script: ./example_scripts/multimodel_seasonal.R
 expid: a6wq
 hpc_user: bsc32762
 wallclock: 01:00
 wallclock_multimodel: 02:00
 processors_per_job: 4
 processors_multimodel: 16
 custom_directives: ['#SBATCH --exclusive']
 custom_directives_multimodel: ['#SBATCH --exclusive', '#SBATCH --constraint=highmem']

If the _multimodel directives are filled, they will be used for the multi-model jobs. If left

empty, the normal single-model job directives will be used as the default.

status: in master

Default plot format changed to PDF

In order to avoid a bug in PlotEquiMap, the plots created by the Visualization module are

now saved in PDF format by default.

There is a new parameter in the recipe, file_format, that can be defined to choose the

desired format for the outputs If chosen, all the plots will be converted:

 Visualization:
 plots: most_likely_terciles, skill_metrics, forecast_ensemble_mean
 projection: cylindrical_equidistant
 file_format: PNG

 The available formats are: PNG, PDF, EPS, JPG and JPEG.

MR: https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/122

status: in master

https://earth.bsc.es/gitlab/es/sunset/-/issues/82#note_241823
https://earth.bsc.es/gitlab/es/sunset/-/merge_requests/122

User presentation

What is a scorecard?

→A visualization to help assess the quality of a model

Example:

I want to analyse the quality of ECMWF SEAS5 comparing against
reanalysis of ERA5, for seasonal data and 6 forecast months…

… starting with the metric mean bias.

Mean bias for 12 months and 6 forecast month = 72 maps

Instead of 72 maps …

Splitting the map into desired regions and aggregating the data:

Instead of 72 maps …

Splitting the map into desired regions and aggregating the data:

-0.42

-0.20

 0.07

Repeat for every start month and forecast month…

More metrics can also be included…

Why aggregate metrics?

● Aggregating climate variables (i.e. temperature) would smooth out discrepancies
between model and observations.

● By first calculating the the metric for each grid point these discrepancies can be
better captured.

● Type of aggregation depends on type of product → scorecards are to measure
quality of the model

Scorecards with SUNSET (Currently only for seasonal)

Recipe input for
loading and
processing data:

Scorecards with SUNSET (Currently only for seasonal)

Scorecard recipe inputs:

In execute script after loading data and calculating metrics…

Scorecards outside of SUNSET

Git repository esviz: (https://earth.bsc.es/gitlab/es/esviz)

https://earth.bsc.es/gitlab/es/esviz

Scorecards outside of SUNSET

Thanks for joining

Next meeting: May 2nd

