
1

The ways to use the
under-development functions

1. Source the git repository locally

2

1. If you don’t have the gitlab project under your directory, `git clone` the project; if you

do, update the project with `git pull` (on master branch)

2. Move to the branch to be tested by `git checkout <branch_name>`

3. Open an R console and load all functions from the repo using the following lines

4. Run the testing script.

#source all the .R files
 path <- "/esarchive/scratch/<user_id>/<proj_name>/R/" # your git repo path
 ff <- lapply(list.files(path), function(x) paste0(path, x))
 invisible(lapply(ff, source))
load all the depndency libraries
 lib <- c('parallel', 'abind', 'bigmemory', 'future', 'multiApply',
 'PCICt', 'ClimProjDiags', 'ncdf4', 'plyr')
 invisible(lapply(lib, library, character.only = TRUE))

Created by An-Chi Ho (09/07/2021)

2. Source functions on public Gitlab project

➢ To source() functions from gitlab directly
> source("https://earth.bsc.es/gitlab/es/startR/-/blob/master/R/AddStep.R")
Error in source("https://earth.bsc.es/gitlab/es/startR/-/blob/master/R/AddStep.R") :
 https://earth.bsc.es/gitlab/es/startR/-/blob/master/R/AddStep.R:1:1: unexpected '<'
1: <
 ^

Solution:
> source(“https://earth.bsc.es/gitlab/es/s2dv/-/raw/master/R/PlotLayout.R”)

Created by Núria Pérez-Zanón (02/12/2021) 3

4

3. How to source functions from
non-public GitLab repositories?

Created by Victòria Agudetse (05/05/2022)

In an R script or session, we can import code written in other files that we want to
use (e.g. a function) using source().

Sometimes, when we are working with GitLab, it is more practical to source the
files from the online repository, rather than from our own local copy.

Sourcing functions from a public GitLab repository is very simple! We just need the
URL to the ‘raw’ file:

> source(‘https://earth.bsc.es/gitlab/external/cstools/-/raw/master/

R/s2dv_cube.R’)

However, when we try to source from an internal or private

repository, things get complicated...

Sourcing functions in R

For example, let’s try to source the function get_regrid_params.R from the
CSOperational repository:

Sourcing from a non-public repository

GitLab is not returning the raw version of the file! Non-public files can only be
downloaded or sourced using the GitLab API. The way to access a file through the
API is a little different…

First of all, to access any repository through the API, we need its ID number.

We can open our browser and find the repository Project ID right underneath its
name on GitLab:

The GitLab API: Repository Project ID

According to the GitLab API documentation, we can access a certain file through its
unique SHA (Simple Hashing Algorithm). An SHA is an alphanumeric string that
identifies the file.

The GitLab API: File (“blob”) SHA

https://docs.gitlab.com/ee/api/repositories.html

We can see the top level files and directories in the repository tree on our browser
by typing:

https://earth.bsc.es/gitlab/api/v4/projects/<project_id>/repository/tree

If we add “?path=<path_to_directory>” at the end of above URL, we will get the
contents of our target directory. In this example, the file we want is under a
directory named “R”:

How to get your file SHA (I)

Files will have the "type":"blob" key-value pair. The value of the "id" key is our file
SHA. In this case:

"id":"743ec387fe27873406a0eabd92f63975f1c15a3a"

Alternative: If you have a local copy of the repository, you can skip this process,
open your terminal and simply cd to the folder where your file is and type the
command git ls-files -s:

How to get your file SHA (II)

The last thing you need to do is generate a Personal Access Token (PAT). You can do
this from your GitLab profile following the steps in this tutorial. Choose either ‘api’
or ‘read_api’ (more secure if you only need read access).

Once you have your PAT, you can build your URL by replacing the relevant bits. In
summary:

https://earth.bsc.es/gitlab/api/v4/projects/<project_id>/repository/blobs/<file_id>
/raw?ref=<branch>&private_token=<api_token>

<project_id>: Repository “Project ID” number

<file_id>: File SHA

<branch>: The name of the branch you want, e.g. ‘master’

<api_token>: Personal Access Token for the GitLab API

The GitLab API: Personal Access Tokens

https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html

