

Is snow cover an underrated source of springtime sub-seasonal predictability ?

Rationale and first results

Constantin Ardilouze¹ and Stefano Materia²

¹CNRM (Meteo-France & CNRS)

²BSC

Who am I (and why am I visiting BSC)?

- Agronomy Msc degree in 2001 (AgroParisTech)
- Working at Météo France in Toulouse since 2007
- Position at CNRM in 2013 as research engineer
- 2014-2015 : the stars align to start with effective climate research activity

Who am I (and why am I visiting BSC)?

- Agronomy Msc degree in 2001 (AgroParisTech)
- Working at Météo France in Toulouse since 2007
- Position at CNRM in 2013 as research engineer
- **2014-2015 : the stars align** for increasing my research activity
 - Oct. 2014 : 3rd General Assembly of the FP7-SPECS¹ project (2012-2016) in Toulouse
 - Coordinator : Paco Doblas-Reyes
 - Application to a Severo Ochoa mobility grant and setup of a
 3-month scientific visit at BSC in 2015
- Submission of my first 'First-authored' paper in ClimDyn
- Pre-requisite for my employer to let me engage in a PhD thesis (2016-2019)

Who am I (and why am I visiting BSC)?

- Thesis : Impact of soil moisture on summer climate predictability over mid-latitudes
- Main research themes : Sources of (sub)-seasonal predictability related to the land surface, land surface initialization strategy in dynamical forecast systems, predictability of extremes

Personal page http://www.umr-cnrm.fr/spip.php?article938&lang=en

Who am I (and why am I visiting BSC) ?

- Thesis : impact of soil moisture on summer climate predictability over mid-latitude
- Main research themes : Sources of (sub)-seasonal predictability related to the land surface, land surface initialization strategy in dynamical forecast systems, predictability of extremes Personal page http://www.umr-cnrm.fr/spip.php?article938&lang=en
- Project ERA4CS-MEDSCOPE¹ (2017-2020) : collaboration with CMCC, and Stefano Materia in particular
 - S2S-S2D WCRP conference in Boulder, CO (Sept. 2018)

Who am I (and why am I visiting BSC) ?

 Thesis : impact of soil moisture on summer climate predictability over mid-latitude

212

Main research themes : Sources of (sub)-seasonal predictability related to the land surface, land surface initialization strategy in dynamical forecast systems, predictability of extremes

Personal page http://www.umr-cnrm.fr/spip.php?article938&lang=en

- Project ERA4CS-MEDSCOPE¹ (2017-2020) : collaboration with CMCC, and Stefano Materia in particular
 - 1-month visit to CMCC in Bologna in Oct. 2019
 - 2 great 'companion' papers
 - Materia, S., Ardilouze, C., Prodhomme, C. et al. Summer temperature response to extreme soil water conditions in the Mediterranean transitional climate regime. Clim Dyn 58, 1943–1963 (2021)
 - Ardilouze, C., Materia, S., Batté, L. et al. Precipitation response to extreme soil moisture conditions over the Mediterranean. Clim Dyn 58, 1927–1942 (2020)
- Informal discussion in 2022 : a new potential study came up
- Interesting preliminary results \rightarrow opportunity to come back to BSC

Initial spark : a result from Materia et al. 2020

- Materia, S., Muñoz, Á. G., Álvarez-Castro, M. C., Mason, S. J., Vitart, F., & Gualdi, S. (2020). Multimodel Subseasonal Forecasts of Spring Cold Spells: Potential Value for the Hazelnut Agribusiness, Weather and Forecasting, 35(1), 237-254
- Multi-system evaluation of the sub-seasonal prediction skill for 2-m Temperature

Forecast skill (Spearman correlation) for 2-m temperatures predicted by a multisystem ensemble. Concatenation of three start dates (1 Mar, 15 Mar, and 1 Apr) over 19 years.

- Significant skill over N-E Asia and and parts of North America at week 5
- An unexpected result left in the air
 - Can we reproduce this result with a different subset of forecast systems ?
 - Could it be related to the snow cover ?
 - If so, what are the underlying mechanisms at play ?

Current model details

- First challenge : build a new multi-system sub-seasonal reforecast (Crucial fields are missing in the systems used by Materia et al)
- The S2S database (Vitart et al. 2017) : 12 forecast systems

	Model version	Implement. date in S2S	Time range	Resolution	Ens. Size	Frequency	Re- forecasts	Rfc period	Rfc frequency	Rfc size *7
BoM (ammc)	POAMA P24	01/01/2015	d 0-62	T47 L17	32+1	2/week (Thu, Sun)	fixed	1981-2013 (model version date 01/01/2014)	6/month (always on the 1st, 6th, 11th, 16th, 21st and 26th)	32+1
CMA (babj)	BCC-CPS- S2Sv2	11/11/2019	d 0-60	T266 L56	3+1	2/week (Mon, Thu)	on the fly	past 15 years	2/week (Mon, Thu)	3+1
CNR-ISAC (isac)	GLOBO	08/06/2017	d 0-32	0.75° x 0.56° L54	40+1	weekly (Thu)	fixed	1981-2010 (model version date 08/06/2017)	every 5 days (the same days each Rfc year *1)	4+1
CNRM Model (lfpw)	CNRM-CM 6.1	22/10/2020	d 0-47	T359 L91	25	weekly	fixed	1993-2017 (model version date 01/07/2019)	every 7 days (starting from 31/12/1992 *2)	10
ECCC (cwao)	GEPS 7	02/12/2021	d 0-32	Yin-Yang grid at 0.35° uniform resolution (~39 km) L85	20+1	weekly (Thu)	on the fly	2001-2020	weekly (Thu)	3+1
ECMWF (ecmf)	CY47R3	13/10/2021	d 0-46	Tco639 L137 (about 16 km) up to day 15 and Tco319 (about 32 km) after day 15	50+1	2/week (Mon, Thu)	on the fly	past 20 years	2/week (Mon, Thu)	10+1
HMCR (rums)	RUMS	15/09/2022	d 0-46	0.9° x 0.72° L96	40+1	weekly (Thu)	on the fly	1991-2015	weekly (Thu)	10+1

 Wide range of set-ups (ensemble size, reforecast period, reforecast frequency, time range, provided fields)

- 40-member multi-system based on 4 models : ECMWF, CNRM, HMCR and BOM (10 members each)
- Concatenation of 4 consecutive early spring start dates over 18 years (1996 – 2013) => 72 start dates

- 40-member multi-system based on 4 models : ECMWF, CNRM, HMCR and BOM (10 members each)
- Concatenation of 4 consecutive early spring start dates over 18 years (1996 – 2013) => 72 start dates

Forecast skill (Pearson correlation) for 2-week mean 2-m temperatures predicted by a multisystem ensemble. Reference : ERA5 Concatenation of four start dates (~27 Feb, 6 Mar, 13 Mar, and 21 Mar) over 18 years.

- 40-member multi-system based on 4 models : ECMWF, CNRM, HMCR and BOM (10 members each)
- Concatenation of 4 consecutive late spring start dates over 18 years (1996 – 2013) => 72 start dates

Forecast skill (Pearson correlation) for 2-week-mean 2-m temperatures predicted by a multisystem ensemble. Reference : ERA5 Concatenation of four start dates (~25 Apr, 1 May, 8 May, and 15 May) over 18 years

Could the skill be related to snow cover ?

 Lagged anomaly correlation between t2m averaged over the red boxes on Apr. 1st (ERA5) and Snow Water equivalent on March 1st (ERA5-Land), period 1993-2018

• Correlation \neq Causality but help define the focus regions

Could the skill be related to snow cover ?

 Computation of SWE Eofs (daily SWE values between mid Feb. and mid March 1993-2018)

correlation_between_pcs_and_sn ow

Evaluation over Asia

 Detrended time series of snow pc1 and t2m (left) and z500 (right) averaged over the boxes (1 month lag)

Correlation of March 1st snow pc1 with April 1st Z500 field

Evaluation over North America

 Detrended time series of snow pc1 and t2m (left) and z500 (right) averaged over the boxes (1 month lag)

Correlation of March 1st snow pc1 with April 1st Z500 field

Extension to 1979-2019

Asia

 Subsampling of year with Snow PC1 > 1std, and Snow PC1 < -1std => composite maps

Composite anomalies of Z500 (shades), wind at 300 hPa (vectors) and mean zonal wind (yellow contours) for 30-day averages centered around April 1st

Asia

North America

Hovmoller diagrammes of 14-day rolling mean Z500 (shades), meridional wind at 300 hPa (contours)

Asia

North America

Conclusions and way to go

- Main question to address : what are the mechanisms at play for this lagged correlation ?
- Interaction thermodynamics, boundary layer processes and mountain ranges ?
- Is it the same mechanism over Asia and America ?
- If a mechanism is identified, is it well captured by re-forecasts ?
- Many open questions, and current analyses to be completed with sea-level pressure (barotropic anomalies ?) and with T850
- Secondary question : choice of the snow reanalysis : 2 additional slides if interested

constantin.ardilouze@meteo.fr

Questions related to the choice of snow pack renalyses

How different are they ?

Feb. to April 1993-2018 snow depth water equivalent standard deviation

Is ERA5-Land favoring the ECMWF model?

SWE anomaly correlation (ref : ERA5-Land)

Speaks for itself :

- ECMWF far more skillful
- But : similar results with other snow reanalyses