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Overview

● Neural Network basic concepts
● The problem
● The model
● The results
● The conclusion

 



Multilayer Perceptron a.k.a  Neural Network

A brain neuron vs an artificial neuron (perceptron) 

Rosenblatt (1958)
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Rosenblatt (1958)

A Brain an Artificial Neural Network (Multilayer Perceptron) vs

~80 Billion neurons

Multilayer Perceptron a.k.a  Neural Network



Learning through backpropagation Video by
3Blue1Brown

https://docs.google.com/file/d/1xv7sxnAOJUDjYNg1LqJKW8X3IPi8QrLN/preview


Training is just minimizing a loss function

your prediction

ground truth



How images are processed by Neural Networks?
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Convolutional layers (ENCODER)
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Convolutional layers (ENCODER)

x16 features maps

x32 features maps
x64 features maps

1x1x512 features maps
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Deconvolutional layers (DECODER)Convolutional layers (ENCODER)
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Deconvolutional layers (DECODER)Convolutional layers (ENCODER)
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Deconvolutional layers (DECODER)Convolutional layers (ENCODER)
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Deconvolutional layers (DECODER)Convolutional layers (ENCODER)
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Deconvolutional layers (DECODER)

SST map at time t SST map at time t+1

Convolutional layers (ENCODER)

Prediction of next frame



Adding the temporal dimension....



time

Adding the temporal dimension....

Recurrent Neural Network

- Process time series inputs

- There is a state input (hi) related to 
previous inputs

Qué tal estás?

input

output

How are you?



Recurrent Neural Network

- Process time series inputs

- There is a state input (hi) related to 
previous inputs

Long-Short-Term-Memory Neural Network

- Process time series as inputs

- Allows storing and removing context from 
very far in time (memory)

Adding the temporal dimension....
Qué tal estás?

How are you?
input

output



Adding the temporal dimension....

Long-Short-Term-Memory CONVOLUTIONAL Neural Networks (Conv-LSTM)

- Process time series of images as inputs

- Allow storing and removing context from very far in time



Generative models



Generative models.

Generative Adversarial Networks (GANs)

Deconvolution (DECODER)



Generative models.

Generative Adversarial Networks (GANs)

Convolution (ENCODER)

Deconvolution (DECODER)



Generative models.

Generative Adversarial Networks (GANs)

Deconvolution (DECODER)

(real images)

Convolution (ENCODER)



Summary of models

● Convolutional-Deconvolutional Neural Network (CDNN)

- No temporal dimension explicitly included

● LSTM Convolutional-Deconvolutional Neural Network (Conv-LSTM)

- Temporal dimension explicitly included

● Generative Adversarial Network (GAN)

- No temporal dimension explicitly included



Summary of models

● Convolutional-Deconvolutional Neural Network (CDNN)

- No temporal dimension explicitly included

● LSTM Convolutional-Deconvolutional Neural Network (Conv-LSTM)

- Temporal dimension explicitly included

● Generative Adversarial Network (GAN)

- No temporal dimension explicitly included

NON OF THEM HAS ANY IDEA OF WHAT THE LAWS OF PHYSICS ARE!!!





● Predict SST maps

● Data comes from NEMO model with data 
assimilation (~5-10km resolution)

● Daily images, subregions 64x64pixels, period 
2006 to 2017

● Training/validation set: 2006 to 2015
(94743 samples, 20% val.)

● Test set: 2016 to 2017

● Seasonality is removed normalizing by 
day-of-year mean divided by std

DATA

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



● The SST evolution is primary driven by the Advection-Diffusion equation:
(no sources or sinks considered ¿?)

I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficientMODEL - Imposing physical constraints

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



● The SST evolution is primary driven by the Advection-Diffusion equation:
(no sources or sinks considered ¿?)

● A discretized solution to the A-D eq. is given by: 

I: Value of image at (x,t)
w: velocity field (2-dimensional)
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MODEL - Imposing physical constraints
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● The SST evolution is primary driven by the Advection-Diffusion equation:
(no sources or sinks considered ¿?)

● A discretized solution to the A-D eq. is given by: 

I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficient

*

Value of image pixel
at (x = x, t = t+1)

Value of image pixel
 at (x = y, t = t )

MODEL - Imposing physical constraints
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● The SST evolution is primary driven by the Advection-Diffusion equation:
(no sources or sinks considered ¿?)

● A discretized solution to the A-D eq. is given by: 

I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficient

*

Value of image pixel
at (x = x, t = t+1)

Value of image pixel
 at (x = y, t = t )

Gaussian kernel with radial dependency

It is a weighted average of the temperatures at time t and location x,  
weights are larger when the pixel’s positions is closer to initial position (x − w)

MODEL - Imposing physical constraints

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficient

*

● From the solution equation the unknowns to compute I(x,t+1): 

w: velocity field (2-dimensional)

D: Diffusivity coefficient

MODEL - Imposing physical constraints
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I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficient

*

● From the solution equation the unknowns to compute I(x,t+1): 

Extract w and  D from data

w: velocity field (2-dimensional)

D: Diffusivity coefficient

MODEL - Imposing physical constraints
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I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficient

*

● From the solution equation the unknowns to compute I(x,t+1): 

Extract w and  D from dataUse data-inferred w and  D to compute I(x,t+1)

w: velocity field (2-dimensional)

D: Diffusivity coefficient

MODEL - Imposing physical constraints
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I: Value of image at (x,t)
w: velocity field (2-dimensional)
D: Diffusivity coefficient

*

● From the solution equation the unknowns to compute I(x,t+1): 

w: velocity field (2-dimensional)

D: Diffusivity coefficient

MODEL - Imposing physical constraints

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari

w is 2-dimensional
(u, v)



MODEL - Learning from data constrained by physics

*

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



*

The velocity field is not the mean w at time 
(t-k-1: t)

The velocity field inferred is the best 
estimation to optimize the prediction at t+1

MODEL - Learning from data constrained by physics

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



Loss function

Additional physical constraints - Regularization:

Charbonnier penalty function

Minimizing divergent fields
(conservation of mass)

Minimizing sharp gradients
(smooth fields)

Minimizing large values
(smooth fields)

MODEL - Learning from data constrained by physics

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



RESULTS - Comparing with other models
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Metric - Mean Squared Error 
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CDNN

State of the art numerical model

Convolutional NN with explicit temporal dimension
Convolutional NN without explicit temporal dimension

Generative Adversarial Network without explicit temp. dim.

Metric - Mean Squared Error 



RESULTS - Comparing with other models

State of the art numerical model

Convolutional NN with explicit temporal dimension
Convolutional NN without explicit temporal dimension

Generative Adversarial Network without explicit temp. dim.

Convolutional NN with physical constraints +
Convolutional NN with physical constraints

  

CDNN
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● CDNN 
Convolutional NN without explicit temporal dimension

  

● State of the art numerical model

● Their model
Convolutional NN with physical constraints +

● Ground truth

● ConvLSTM 
Convolutional NN with explicit temporal dimension

  

- Inferred velocity field

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



RESULTS - Comparing with other models

Metric - Mean Squared Error 

State of the art numerical model

Convolutional NN with temporal dimension
Convolutional NN without explicit temporal dimension

Generative Adversarial Network

Convolutional NN with physical constraints +
Convolutional NN with physical constraints

  

CDNN
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Metric - Mean Squared Error 

CDNN
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SUMMARY

● Hybrid model, data-driven solution with physical constraints beats a state of the art numerical model

● Physical constraints improve the prediction, not otherwise!

● Computing time is 2 orders of magnitude shorter with data-driven solutions

MY THOUGHTS

● Using a numerical simulation (NEMO) as ground truth, even with assimilation schemes, could have effects 
on the verification reliability. 

- The ground truth is not really the truth, it’s a simulation with its biases. A data-driven solution may 
reproduce it better than another simulation of the truth. 

- Test set should be the real SST from satellite.

● I’m surprised neglecting sinks/sources does not have a clear negative impact on predicting performance. 
Atmosphere interaction (mixed layer depth), upwelling/downwelling,....

● Most than the performance that can be somehow questioned, the importance of this work lies on the 
procedure that opens a way of imposing physical constraints to DL models.

Deep learning for physical processes: incorporating prior scientific knowledge
Emmanuel de Bézenac, Arthur Pajot and Patrick Gallinari



More promising studies…

On fluid dynamics and Neural networks

https://sites.google.com/view/learning-to-simulate/home#h.p_hjnaJ6k8y0wo


More promising studies…

On fluid dynamics and Neural networks

https://www.youtube.com/watch?v=w71zxkniJfo&list=PLqbT6w5ukYYSm1FaFJ6N1PbKj6BqjJJng&index=1

