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Abstract. We consider the use of deep learning methods for modeling complex
phenomena like those occurring in natural physical processes. With the large
amount of data gathered on these phenomena the data intensive paradigm
could begin to challenge more traditional approaches elaborated over the years
in fields like maths or physics. However, despite considerable successes in a
variety of application domains, the machine learning field is not yet ready to
handle the level of complexity required by such problems, Using an example
application, namely sea surface temperature prediction, we show how general
background knowledge gained from the physics could be used as a guideline for
designing efficient deep learning models. In order to motivate the approach and
to assess its generality we demonstrate a formal link between the solution of a

class of differential equations underlying a large family of physical phenomena
and the proposed model. Experiments and comparison with series of baselines . P_‘resente_d by
including a state of the art numerical approach is then provided. Jesus Pena-lzqmerdo
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handle the level of complex1ty reqmred by such problems. Using an example
application, namely sea surface temperature prediction, we show how general
background knowledge gained from the physics could be used as a guideline for

designing efficient deep learning models. In order to motivate the approach and
T and the proposed model. Experiments and comparison with series of baselines

including a state of the art numerical approach is then provided.
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Multilayer Perceptron a.k.a Neural Network

A brain neuron vs an artificial neuron (perceptron)
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Multilayer Perceptron a.k.a Neural Network

A Brain

VS

Rosenblatt (1958)

an Artificial Neural Network (Multilayer Perceptron)
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Learning through backpropagation
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https://docs.google.com/file/d/1xv7sxnAOJUDjYNg1LqJKW8X3IPi8QrLN/preview

Training is just minimizing a loss function
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How Images are processed by Neural Networks?



Convolutional layers
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Operation Kernel w Image result g(x.,y)
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Convolutional layers
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Convolutional layers (ENCODER)
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Convolutional layers (ENCODER)
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Convolutional layers (ENCODER) Deconvolutional layers (DECODER)
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Convolutional layers (ENCODER) Deconvolutional layers (DECODER)
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Convolutional layers (ENCODER)

Deconvolutional layers (DECODER)
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Convolutional layers (ENCODER) Deconvolutional layers (DECODER)
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Convolutional layers (ENCODER) Deconvolutional layers (DECODER)
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Adding the temporal dimension....



Adding the temporal dimension....

Recurrent Neural Network

Process time series inputs
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Adding the temporal dimension....

Long-Short-Term-Memory CONVOLUTIONAL Neural Networks (Conv-LSTM)

Process time series of images as inputs

Allow storing and removing context from very far in time
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Generative models



Generative models.

Generative Adversarial Networks (GANSs)
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Generative models.

Generative Adversarial Networks (GANSs)
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Generative models.

Generative Adversarial Networks (GANSs)
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Summary of models

e Convolutional-Deconvolutional Neural Network (CDNN)

- No temporal dimension explicitly included

e LSTM Convolutional-Deconvolutional Neural Network (Conv-LSTM)

- Temporal dimension explicitly included

e Generative Adversarial Network (GAN)

- No temporal dimension explicitly included



Summary of models

e Convolutional-Deconvolutional Neural Network (CDNN)

- No temporal dimension explicitly included

e LSTM Convolutional-Deconvolutional Neural Network (Conv-LSTM)

- Temporal dimension explicitly included

e Generative Adversarial Network (GAN)

- No temporal dimension explicitly included

NON OF THEM HAS ANY IDEA OF WHAT THE LAWS OF PHYSICS ARE!!!
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DATA

e Predict SST maps

e Data comes from NEMO model with data
assimilation (~5-10km resolution)

e Daily images, subregions 64x64pixels, period
2006 to 2017

e Training/validation set: 2006 to 2015
(94743 samples, 20% val.)

e Testset: 2016 to 2017

e  Seasonality is removed normalizing by
day-of-year mean divided by std
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) I Value of image at (x,t)

w. velocity field (2-dimensional)
Diffusivity coefficient

®

MODEL - Imposing physical constraints
ol

e The SST evolution is primary driven by the Advection-Diffusion equation: — <+ (w 5 V)I == DV2I
(no sources or sinks considered ¢,?) ot
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It is a weighted average of the temperatures at time t and location x,
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MODEL - Imposing physical constraints

e From the solution equation the unknowns to compute I(x,t+1):
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MODEL - Imposing physical constraints

e From the solution equation the unknowns to compute I(x,t+1):
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) I Value of image at (x,t)
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e  From the solution equation the unknowns to compute I(x,2+1):

w: velocity field (2-dimensional)

D: Diffusivity coefficient
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MODEL - Imposing physical constraints

e  From the solution equation the unknowns to compute I(x,2+1):
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MODEL - Learning from data constrained by physics
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MODEL - Learning from data constrained by physics
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MODEL - Learning from data constrained by physics

n
Loss function Loss(y,9) = Z()’ — §)?
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Additional physical constraints - Regularization:
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RESULTS - Comparing with other models

1 <& A
Metric - Mean Squared Error MSE = — § (Y; — ;)2
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RESULTS - Comparing with other models

1 <& s
Metric - Mean Squared Error MSE = — § (Y; — ;)2
n 4
1=1

Model

Numerical model (Béréziat and Herlin 2015)

State of the art numerical model
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RESULTS - Comparing with other models

1 -
Metric - Mean Squared Error MSE = — Z(Y; —-Y;)

e
Model
Numerical model (BéI‘éZl&t and Herlin 2015) State of the art numerical model
ConvLSTM (Shi et al 2015) Convolutional NN with explicit temporal dimension
CDNN Convolutional NN without explicit temporal dimension

GAN video generation (Mathieu et al 2015) Generative Adversarial Network without explicit temp. dim.
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RESULTS - Comparing with other models

1 -
Metric - Mean Squared Error MSE = — Z(K —-Y;)

e
Model
Numerical model (Béréziat and Herlin 2015) State of the art numerical model
ConvLSTM (Shi et al 2015) Convolutional NN with explicit temporal dimension
CDNN . _ _ Convolutional NN without explicit temporal dimension
GAN video generation (Mathieu et al 2015) Generative Adversarial Network without explicit temp. dim.

Proposed model with regularization

: e Convolutional NN with physical constraints +
Proposed model without regularization volutl with physi '

Convolutional NN with physical constraints
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Iy

e Ground truth

e Their model
Convolutional NN with physical constraints +

- Inferred velocity field

e State of the art numerical model

e CDNN
Convolutional NN without explicit temporal dimension

e ConvLSTM
Convolutional NN with explicit temporal dimension
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RESULTS - Comparing with other models

1 == ~
Metric - Mean Squared Error MSE = — Z(K —-Y;)

Lo
Model
Numerical model (Béréziat and Herlin 2015) State of the art numerical model
ConvLSTM (Shi et al 2015) Convolutional NN with temporal dimension
CDNN Convolutional NN without explicit temporal dimension
GAN video generation (Mathieu et al 2015) Generative Adversarial Network

Proposed model with regularization

: e Convolutional NN with physical constraints +
Proposed model without regularization voluti with pnysi '

Convolutional NN with physical constraints
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RESULTS - Comparing with other models

n

Metric - Mean Squared Error MSE = — Z(YZ — Yoy
i=1
Average
Model score (MSE)

Numerical model (Béréziat and Herlin 2015)

ConvLSTM (Shi et al 2015)
CDNN
GAN video generation (Mathieu et al 2015)

Proposed model with regularization
Proposed model without regularization

1.99

5.76
15.84
4.73

1.42

2.01
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RESULTS - Comparing with other models

n

Metric - Mean Squared Error MSE = — 2:(}’Z ~Y;)?
i=1

Average Average
Model score (MSE) time (8)
Numerical model (Béréziat and Herlin 2015) 1.99 4.8
ConvLSTM (Shi et al 2015) 5.76 0.018
CDNN 15.84 0.54
GAN video generation (Mathieu et al 2015) 4.73 0.096
Proposed model with regularization 1.42 0.040
Proposed model without regularization 2.01 0.040
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SUMMARY

e Hybrid model, data-driven solution with physical constraints beats a state of the art numerical model
e  Physical constraints improve the prediction, not otherwise!

e Computing time is 2 orders of magnitude shorter with data-driven solutions

MY THOUGHTS

e Using a numerical simulation (NEMO) as ground truth, even with assimilation schemes, could have effects
on the verification reliability.
- The ground truth is not really the truth, it's a simulation with its biases. A data-driven solution may
reproduce it better than another simulation of the truth.
- Test set should be the real SST from satellite.

e I'm surprised neglecting sinks/sources does not have a clear negative impact on predicting performance.
Atmosphere interaction (mixed layer depth), upwelling/downwelling,....

e Most than the performance that can be somehow questioned, the importance of this work lies on the
procedure that opens a way of imposing physical constraints to DL models.
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Here we present a general framework for learning simulation, and provide a single model implementation that yields state-of-the-art
performance across a variety of challenging physical domains, involving fluids, rigid solids, and deformable materials interacting with one
another. Our framework---which we term "Graph Network-based Simulators" (GNS)---represents the state of a physical system with particles,
expressed as nodes in a graph, and computes dynamics via learned message-passing. Our results show that our model can generalize from
single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an
order of magnitude more particles at test time. Our model was robust to hyperparameter choices across various evaluation metrics: the main
determinants of long-term performance were the number of message-passing steps, and mitigating the accumulation of error by corrupting the
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Efficient simulation of the Navier-Stokes equations for fluid flow is a long standing problem in applied mathematics, for which state-of-the-art
methods require large compute resources. In this work, we propose a data-driven approach that leverages the approximation power of deep-
learning with the precision of standard solvers to obtain fast and highly realistic simulations. Our method solves the incompressible Euler
equations using the standard operator splitting method, in which a large sparse linear system with many free parameters must be solved. We use
a Convolutional Network with a highly tailored architecture, trained using a novel unsupervised learning framework to solve the linear system. We
present real-time 2D and 3D simulations that outperform recently proposed data-driven methods; the obtained results are realistic and show
good generalization properties.
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