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Context

Aim of the article:

- Propose an alternative ML model capable of improving subseasonal temperature and precipitation forecast on the
western US region, in comparison to the NOAA's dynamical model; CFSv2 (under the context of Subseasonal forecast
Rodeo competition).

How?
- Two linear regression models: a local linear regression model with multitask feature selection (MultiLLR) and a

weighted local autoregression enhanced with multitask k-nearest neighbor features (AutoKNN).
Why?
- Immense societal value, having an impact in a wide variety of domains.
- Forecasts based on dynamical models with changes on land/sea processes. There is a big room for improvement on
skill, particularly on weeks 2 to 4 onwards.
- Computationally efficient methods that exploited the multitask, i.e., multiple grid point, nature of our problem and

incorporated the unusual forecasting skill objective function.
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Type

Reanalysis

Gauge-Based Analysis

Reanalysis PCs

6 variables aggregation

Phase and amplitude

Reanalysis

Reanalysis PCs

Dynamical Forecast

Data

Freq

daily

daily

Bimonthly
Daily
daily
daily

monthly (weight avg)

Range

1979 - 2019

1979 - 2019

1981 - 2010

1949 - 2019
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1948-2019

1948-2010

Resolution

1°x1°

1°x1°

1°x1° ?

scalar

scalar

1°x1°

1°x1° ?

1°x1°



Methods

The MultiLLR model introduces candidate regressors from each data source in the SubseasonalRodeo dataset and then prunes

irrelevant predictors using a multitask backward stepwise criterion designed for the forecasting skill objective.

e Variables are selected for a target date jointly for all grid points, while the coefficients associated with those variables are fit

independently for each grid point using local linear regression.

e Specifically, the training data for a given target date is restricted to a 56-day (8-week) span around the target date’s day of the
year (s = 56).
o If the target date is May 2, 2017, the training data consists of days within 56 days of May 2 in any year.

e The skill for a target date t is the cosine similarity achieved by holding out a year’s worth of data around t, fitting the model on

the remaining data, and predicting the outcome for t.
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Methods

Autoknn is a weighted local linear regression with features derived exclusively from historical measurements of the target variable

(temperature or precipitation).

e When predicting weeks 3-4, we include lagged temperature or precipitation anomalies from 29 days, 58 days, and 1 year prior to

the target date; when predicting weeks 5-6, we use 43 days, 86 days, and 1 year.

e |n addition to fixed lags, we include the constant intercept ones and the observed anomaly patterns of the target variable on similar
(cosine similarity) dates in the past.

o 20 Knns for temperature 1 for precipitation.

e To predict a given target date, we regress onto the three fixed lags, the constant intercept feature ones, and either knn1 through

knn20 (for temperature) or knn1 only (for precipitation), treating each grid point as a separate prediction task.
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Results

task multillr  autoknn ensemble contest debiased cfsv2 damped top competitor
temperature, weeks 3-4 | 0.3079 0.2807 0.3451 0.1589 0.1952 0.2855
temperature, weeks 5-6 0.2562 0.2817 0.3025 0.2192 -0.0762 0.2357
precipitation, weeks 3-4 | 0.1597 0.2156 0.2364 0.0713 -0.1463 0.2144
precipitation, weeks 5-6 | 0.1876 0.1870 0.2315 0.0227 -0.1613 0.2162
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Barcel Figure 1: Distribution of contest-period skills of the proposed models MultiLLR and AutoKNN, the proposed ensemble of MultiLLR
s and AutoKNN (ensemble), the official contest debiased-CFSv2 baseline, and the official contest damped-persistence baseline
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temperature, weeks 3-4
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temperature, weeks 5-6
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Figure 2: Feature inclusion frequencies of all candidate variables for local linear regression with multitask feature selection
(MultiLLR) across all target dates in the historical forecast evaluation period (see Section 5.4).
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Results

temperature, weeks 3-4
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Conclusions

. We release a new SubseasonalRodeo dataset suitable for training and benchmarking subseasonal forecasts.

e  We introduce two subseasonal regression approaches tailored to the forecast skill objective, one of which uses only
features of the target variable.

e  We introduce a simple ensembling procedure that probably improves average skill whenever average skill is positive.

o We show that each regression method alone outperforms the Rodeo benchmarks, including a debiased version of the
operational U.S. Climate Forecasting System (CFSv2), and that our ensemble outperforms the top Rodeo competitor.

o We show that, over 2011-2018, an ensemble of our models and debiased CFSv2 improves debiased CFSv2 skill by
40-50% for temperature and 129-169% for precipitation.
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Critique

e \ery heterogeneous dataset -> wide variety of preprocessing techniques applied (weighthing,
PCs, regridding...)
o Wide variety of regressors (anomalies, time-lagged)
o Complexity and trivial decissions

e What about more complex models (DL, XGboost...) ?
o Non-linear spatial information
o Temporal sequence information

® |s the skill score used the best solution for each variable?

e For the multiLLR; the top regressors list makes sense?
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Context

Aim of the article:

Explore a wide variety of ML for subseasonal forecasting, extending the current state of the art implementations
How?

- Implementation of multiple ML models (XGboost, Lasso, LSTM-FNN)
Why?

- Immense societal value, having an impact in a wide variety of domains.

Forecasts based on dynamical models with changes on land/sea processes. There is a big room for improvement on

skill, particularly on weeks 2 to 4 onwards.
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Data

Table 1: Description of climate variables and their data sources.

Type Climate variable Description Unit Spatial coverage Data Source
EHD 2 Daily average o CPC Global Daily
temperature at 2 meters US mainland Temperature [1:3]
. Monthly CPC Soil Moisture
= i Soil moisture L [25] B3] M2]
5 B Daily sea surface o North Pacific Optimum Interpolation
a, sst C :
= temperature & Atlantic Ocean SST (OISST) [4T1]
3 Daily relative humidity
'T; rhum near the surface % T W
e (sigma level 0.995) US mainland HOSPASES
= - - - ; Research
A, Daily pressure ) and North Pacific i
slp Pa 7 Reanalysis
U at sea level & Atlantic Ocean
Daily geopotential height Dataset. |65
ily potenti igh
hgt10 & hgt500 at 10mb and 500mb =
MEI Bimonthly multivariate NOAA ESRL
=~ ENSO index MEI.v2 [62]
5 Nino 142, 3, Weekly Oceanic NOAA National
o 3.4, 4 Nino Index (ONI) NA NA Weather Service, CPC [41]
= NAO Daily North Atlantic NOAA National
& Oscillation index Weather Service, CPC [3] 51]
MJO phase Madden-Julian Australian
& amplitude Oscillation index Government BoM [60]
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Methods

Autoknn and MultiLLR

Error

Multitask Lasso

o “Multilinear regression with added penalty coefficient”

Gradient boosting trees

State-of-the-art climate baseline:

t. Hﬁ\
&b &
g |
S S5
+
Iterations

o Both are Least Square (LS) linear regression models [59]. The first model has predictors as climate indices, such as NAO

index and Nifo indices, which are used to monitor ocean conditions. The predictor of the second model is the most recent

anomaly of the target variable, i.e., anomaly temperature of week -2 & -1, with which the model, also known as damped

persistence [52] in climate science, is essentially a first-order autoregressive model.
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Methods

e Encoder (LSTM)-Decoder (FNN)
o Input of the model is features extracted spatially from covariates (PCA).
o The temporal components of covariates are handled by feeding features of each historical date into an LSTM
Encoder recurrently.
o The output of each date from LSTM is sent jointly to a two-layer FNN network using ReLU as an activation function.
The output of the FNN Decoder is the predicted average temperature of week 3 & 4 over all target locations.
e CNN-LSTM
The proposed CNN-LSTM model directly learns the representations from the spatial-temporal data using CNN
components [31]. CNN extracts features for each climate variable at all historical dates separately. Then, the extracted
features from the same date are collected and fed into an LSTM model recurrently. The temperature prediction for all

target locations is done by an FNN layer taking the output of the LSTM’s last layer from the latest input.
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Methods
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Figure 2: Architectures of the designed DL models. (a) Encoder (LSTM)-Decoder (FNN) includes a
few LSTM layers as the Encoder, and two fully connected layers as the Decoder. (b) CNN-LSTM
consists of a few convolutional layers followed by an LSTM.
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Results
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Figure 3: Temporal cosine similarity over the US mainland of ML models discussed in Section
4 for temperature prediction over 2017-2018. Large positive values (green) closer to 1 indicates
better predictive skills. Overall, XGBoost and Encoder (LSTM)-Decoder (FNN) perform the best.

((@ S e outi Qualitatively, coastal and south regions are easier to predict than inland regions (e.g., Midwest).
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Figure 4: Feature importance scores computed from (a) XGBoost and (b) Lasso. Darker color means
a covariate is of the higher importance. The first 8 rows contains the top 10 principal components
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Conclusions

e We illustrate the difficulty of SSF due to the complex physical couplings as well as the unique nature of climate data, i.e.,
strong spatial-temporal correlation and high-dimensionality.

o We show that suitable ML models, e.g., XGBoost, to some extent, capture predictability for sub-seasonal time scales
from climate data, and persistently outperform existing approaches in climate science, such as climatology and the
damped persistence model.

. We demonstrate that even though DL models are not the obvious winner, they still show promising results with
demonstrated improvements from careful architectural choices. With further improvements, DL models present a great
potential topic for future research.

o We find that ML models tend to select covariates from the land and ocean, such as soil moisture and El Nino indices,
and rarely select atmospheric covariates, such as 500mb geopotential height
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Critique

e What about more complex models (DL, XGboost...) ?
o Non-linear spatial information
o Temporal sequence information
e Is the skill score used the best solution for each variable?

e For the multiLLR; the top regressors list makes sense?

® Failure on CNN, PCA preferred method for extracting spatio-temporal information from fields.
o Different approaches?
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