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Basics of downscaling

GOAL - Produce a derived product at a finer spatial scale:
o Represent physical phenomena not present at coarse scales
o Reduce representativeness errors

METHOD 1 - Dynamical downscaling: use a limited area model (aka
mesoscale model, regional model, nested model, ...) to refine grid
information according to the laws of physics

o  Weather forecasts (WRF, MM5, HIRLAM ...)

o Regional reanalyses (e.g. UERRA, NARR)

o Climate change projections (e.g CORDEX)

METHOD 2 - Statistical downscaling: use observations to derive statistical
(or empirical) relationships between coarse and fine scales.



Downscaling for seasonal forecasts

e Seasonal forecasts use coarse grids (long runs with many ensembles are
costly)

e Sources of predictability: presumed to be of large scale (e.g. ENSO, sea
ice concentration, Stratospheric Polar Vortex, etc...)

e ...but applications require fine scale information
e Dynamical downscaling is prohibitive: N members x M years of hindcast.

e |deal ground for statistical downscaling: cheap and fast



Perfect prognosis

HR_field ~ F(LR_field_1, ..., LR_field_N)
|

\ find F using historical observations at

local and large scale What is the

quality of this
approximation?
“Goodness of fit”

HR_fcst = F(LR_fest_1, ..., LR_fest N)

| evaluate F with forecasts of low-res
: fields to obtain a high-res forecast How good is that

——————————————————————— - HR forecast?
“Skill”

NOTE: F does not correct model biases, and its universal to any model



First article
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Article
Downscaling and Evaluation of Seasonal Climate Data for the
European Power Sector

Jennifer Ostermoller **, Philip Lorenz 2, Kristina Frohlich ?, Frank Kreienkamp ? and Barbara Friih ?



Final goal: seasonal forecasts of
hydropower generation

Precipitation & Hydropower
P ——{ Hydrological model - Energy model generation
Temperature River runoff & (MWh)

Reservoir levels

. Requirements:

. Daily timescale

. Catchment level at km scale
. Time and space consistency
- Variable consistency




Datasets @daily scale

Seasonal Forecasts
GCFS2.0 (DWD Sys2)
e ~70km
e Hindcast:
o 1990-2017*
o 30 members
e [orecast:
o 2018 onwards
o 50 members
e Leadtime: 1 month
o Nov for DJF
o Feb for MAM
o May for JUA
o Aug for SON

Large-scale (low-res)
reanalysis
NCEP/NCAR reanalysis 2
e 1995-2017
o 2.5%2.5°

Local-scale (high-res)
reanalysis
COSMO-REAG

e 1995-2017

e ~6km over Europe




Regions and variables

Danube

catchment

Predictands (i.e. output): .
e Daily mean §
temperature &
precipitation
e Resolution: that of
COSMO-REAG6

Predictors (i.e. input):
e ~50vars
e Resolution:
100x100km grid

only 8 points , ;
in Portugal -



Predictor preprocessing

e Derive physically-related fields:
o  pressure gradients
o advections
layer thickness
o  vorticity
e Compute daily anomalies wrt an 11-day moving-window climatology

e Interpolate all data to a common grid ~100x100km
o  conservative interpolation

@)

Table 1. All considered large-scale selector fields and predictors for cross-validation.

Selector Fields and Predictors Pressure Levels
Mean daily geopotential height 1000 hPa, 850 hPa, 700 hPa, 500 hPa, 250 hPa
Mean daily air temperature 1000 hPa, 850 hPa, 700 hPa, 500 hPa, 250 hPa
Mean daily relative humidity 1000 hPa, 850 hPa, 700 hPa, 500 hPa
Mean daily specific humidity 1000 hPa, 850 hPa, 700 hPa, 500 hPa A list Of ~50 derived ﬁelds that
Vorticity 1000 hPa, 850 hPa, 700 hPa, 500 hPa . . .
Geopotential horizontal differences East-West 1000 hPa, 850 hPa, 700 hPa, 500 hPa from a phySIcal pOInt Of view
Geopotential horizontal differences North-South 1000 hPa, 850 hPa, 700 hPa, 500 hPa can exp[ain temperature or
Relative topography 1000-850hPa, 1000-700hPa, 850-700hPa . . . T
Advection of temperature 1000 hPa, 850 hPa, 700 hPa, 500 hPa precipitation variations
Advection of specific humidity 1000 hPa, 850 hPa, 700 hPa, 500 hPa

Pseudopotential temperature 850 hPa, 700 hPa, 500 hPa




Method - EPISODES

Adapted from a climate projections downscaling method:
Analogue and regression + time/space/variable consistency postprocess

“My interpretation of the methodology in those papers follows”

Kreienkamp, F., Paxian, A., Frah, B., Lorenz, P., & Matulla, C. (2018). Evaluation of the
empirical—statistical downscaling method EPISODES. Climate Dynamics, 52(1-2), 991-1026.
https://doi.org/10.1007/s00382-018-4276-2
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https://doi.org/10.1007/s00382-018-4276-2

Method - EPISODES (1)

Part | - Analog and regression (ANAREG)
Independently for each basin, predictand and start date
(i.e. season):
1.  Choose 2 predictors for analogue search
(selectors)
2. Choose another predictor for regression
(predictor)

Then, for each day, member and LR grid point:

3. Find 35 analogue days in the reanalysis based on)
a 500x500 km box (5x5 grid points) and +- 20
days

4. Fit a linear regression using the 35 reanalysis
values of the predictor and the 35 values of the
predictand (but at coarse resolution!)

5. Predict using the seasonal forecast value of the

predictor in the regression line

sisouBold 108ed

Historical archive

Reanalysis

Observations

y

(using separately the current Julian day + 20 days of each year)

day by day comparison of large scale valuD

Y

)]

selection of the 35 most similar days >

-t
%

all variables except
precipitation

-4 >

precipitation

‘ regression ’

rainfall on more than
11 out of 35 days

regression

Fig.4 Flow chart of the AFREG procedure
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53°N

52°N

51°N —

49°N

48°N

Distance calculations for analogues in

ANAREG

2°E 4°E 6°E 8°E 10°E 12°E 14°E
| | |
. s . 54°N
P5 P6 P7
P1 P2 53°N
® [
52°N
P8 PO P9
& o
o 51°N
P3 P4
. . 50°N
P10 P11 P12 49°N
® ® @
48°N
‘ \ 1 T ‘
4°E 6°E 8°E 10°E 12°E

Uses a 13-point stencil to
weight distance
calculations

Weights:

Green = 1

Blue =3

Red = 3 (target point)
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Method - EPISODES (lI)

Part Il - Consistent timeseries (simplified)
For all region grid points at once, and both variables
(tas & prlr):
1. Take a daily field adjusted with ANAREG
2. Find one analogue day in the coarse grid of
COSMO-REAG
3. Use the high-res values of COSMO-REAG for observation AFREG resuits
both variables '

Y

4. Add high-res anomalies to high-res climatology  owanony A e s wines 7 svn /

<.u mmation (rnr Pach largf-l qnd pnlm]
daly cimatology + mean chmate gus anabiiey

Fig.6 Flow chart of the generation of synthetic time series
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Best selector/predictor combinations

Temperature Portugal

Season MAM JJA SON DJF

Relative topogra- Mean daily air tem-
phy 1000-850 hPa perature 850 hPa

Salacton fald2 Advection specific Geopotential horiz. Relative topogra- Geopotential horiz.
humidity 850 hPa diff. N-S850 hPa phy 1000-850 hPa diff. N-S 700 hPa

Predictor Mean daily air tem-Mean daily air tem-Mean daily air tem-Mean daily air tem-
perature 1000 hPa perature 1000 hPa perature 1000 hPa perature 1000 hPa

Selector field 1 Vorticity 1000 hPa Vorticity 1000 hPa

Precipitation Portugal

Season MAM JIA SON DJF

Salector field 1 Mean daily relative Mean daily relative Mean daily geopo- Mean daily relative
humidity 700 hPa humidity 700 hPa  tential 500 hPa  humidity 850 hPa

Selector field 2 Relative topogra- Geopotential horiz. Geopotential horiz. Geopotential horiz.
i phy 850-700 hPa  diff. N-S850 hPa  diff. N-S850hPa _diff. N-S 850 hPa

Predict Geopotential horiz. Mean daily relative Relative topogra- Advection specific
el diff. N-S850 hPa humidity 850 hPa phy 850-700hPa humidity 850 hPa

Determined with
cross-validation

Two metrics employed:
bias and rmse.

No info available on the

goodness of fit of the final
choice
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Skill

©)

Bias
O
O

Quality metrics

Ensemble mean correlation
(ACC in the text)

Absolute for temperature
Percentual for precipitation

Insensitive to bias
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GCFS2.0

Downscaled

Ensemble Mean Correlation
for precipitation in Portugal
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Summary of results

ACC MAM JJA SON DJF
tas Danube = = = in
Alps
pr Danube = =
tas Portugal = = = =
pr Portugal = =
BIAS of MAM JJA SON DJF
downscaling
tas Danube 0 - 0 +
pr Danube + - 0 +
tas Portugal 0 0 0 0
pr Portugal 0 -1+ - +++

17



Strengths and Weaknesses

Strengths:
1. Produces downscaled forecasts with space/time/variable consistency
2. The use of anomalies acts as an implicit bias adjustment
3. The use of derived fields with physical sense as predictors is wise

Weaknesses:

Very complex model, but no skill improvement and biases not eliminated totally
No probabilistic metrics. What happened with ensemble spread/reliability?

No CV loop in the PP loop (obs for the forecasted season should not be used)
Figures do not facilitate comparisons

Methodology not described with enough detail sometimes

©® NSO OA
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Second article of the day...

ENVIRONMENTAL RESEARCH
LETTERS

ACCEPTED MANUSCRIPT * OPEN ACCESS

A perfect prognosis downscaling methodology for seasonal
prediction of local-scale wind speeds

Jaume Ramon’ {2}, Lioreng Lledé? (2}, Pierre-Antoine Bretonniére', Margarida Samsé' and
Francisco J Doblas-Reyes'
Accepted Manuscript online 9 February 2021 + © 2021 The Author(s). Published by IOP Publishing Ltd

What is an Accepted Manuscript?

a Accepted Manuscript PDF

Link: https://iopscience.iop.org/article/10.1088/1748-9326/abe491/meta

Barcelona
Supercomputing
Center

Centro Nacional de Suparcamputacicn
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https://iopscience.iop.org/article/10.1088/1748-9326/abe491/meta

@

...in @ nutshell

multi-linear regression

perfect prognosis

statistical downscaling

Akaike Information Criterion

seasonal forecasts

fine scale

Barcelona
Supercomputing

Center

Centro Nacy

onal de Suparcompultacion
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Context

AIM: Improve skill of seasonal forecasts for wind speed at a local scale

HOW? statistical downscaling with perfect prognosis

WHY?

60N

40N

Blues indicate no skill 9

Barcelona
Sup'muﬂng

Cer ----- MNacional de Suparcompuiacion
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seasonally-averaged wind speeds (i.e., 1 per
year and season)

500h hPa geopotential height

seasonal forecasts reanalysis station data
1980 1990 2000 2010
| I | ] >

observations - training

forecasts and observations - validation

@

Barcelona
Suporeonlpuﬂng

Cer ro Nacional de Suparcamputacion

Hamburg met mast: https://icdc.cen.uni-hamburg.de
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Methods

1. Build the statistical model with observations: PERFECT PROGNOSIS

w'(x,y,t) = ap(z, y)+ar(x,y)* NAO(t) +az(x,y)* EA(t) +az(z,y)* EAW R(t) +a4(x,y) * SCA(t)

/

~ /A\\//\N\‘W"VVA AvM + :\A/\A/\ A_AA /\/\ + :\M/‘/\/\ AL | + ] A AA/\/\/\ A
' | LANARAYA il B L A M
1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010 1980 1990 2000 2010

...and leave-one-out cross-validation

Barcelona
Supormpuﬂng
Cer ----- MNacional de Suparcampulacion 23



Methods

2. Euro-Atlantic Teleconnection (EATC) indices

@

CH ANOMALY

DJF 1984

DJF 1985

By —
Supercomputing
Center

Centro Nacional de Suparcamputacion

- X'NAO + y'EA +  ZEAWR &+ w'SCA o Mo

E

gy

$254

imate Serv
or Cle

f

>
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Courtesy of Lloreng Lledé: Seasonal prediction of Euro-Atlantic teleconnections from multiple systems (2020). Env. Res. Lett.



Methods

3. Generate forecasts of wind speed using forecasts of EATCs: HYBRID FORECASTS

W (2, 9,1) = ao(x, y)+ax (z, y)x NAO(t) +as(z, y) x EA(t) +aa(w, y) » EAW R(t) +ay(x,y) x SCA(t)

4. Skill assessment of wind speed hybrid forecasts

Barcelona
Suporeonlpuﬂng
Cer tro Nacional de Suparcampulacion
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Can EATCs explain wind speed variability?

e —— Coefficient of determination R?
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Predictors entering the multi-linear regression

w'(z,y,t) = ap(z, y)+ar(x,y)* NAO(t) +az(x,y)* EA(t) +az(x,y)* EAW R(t) +a4(z,y) * SC A(t)

@

Barcelona
Supercomputing

Center

Centro N

cional de Suparcamputacitn

T17-
T16 -
T15-
T14
T131
T12-
T11 1
T10-
T9
T8 -
T7 -
T6 -
T5 -
T4
T3
T2
T1 -

Akaike
Information
Criterion
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Coefficients of the multi-linear regression
weight of each EATC in the hybrid model

w'(z,y,t) = ap(z, y)+ar(x,y)* NAO(t) +az(x,y)* EA(t) +az(x,y)* EAW R(t) +a4(z,y) * SC A(t)

x107*

(0.8,1]
(0.6,0.8]
(0.4,0.6]

(0.2,0.4]
(0,0.2)
(-0.2,0]
(-0.4,0.2)
(-0.6,-0.4]
(-0.8,-0.6]
(-1,-0.8]

Latitude

T T T ; T
-20 0 20 40

-
.,
Barcelona
Supercomputing i
Centor Longitude
Centro Nacional de Supearcanmg



Hybrid forecasts vs dynamical forecasts

are they better?

Target season: winter
Score: CRPSS

Ref. forecast: dynamical
prediction

Variable: near-surface

wind speed

Dots: statistically significant
(Diebold-Mariano test)

.
1o
Barcelona -
Supercomputing
Center
Centro Nacional de Suparcampulacion

Latitude

Latitude

a) Lead month: 0

b) Lead month: 1

Longitude
c) Lead month: 2

Longitude

Latitude

Latitude

Longitude

(0.20,1]
(0.15,0.20]
(0.10,0.15]
(0.05,0.10]
(0.00,0.05]
(-0.05,0.00]
{-0.10,-0.05]
(-0.15,-0.10]
{-0.20,-0.15]
{-Inf-0.20]

Better

Worse
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Hybrid forecasts vs dynamical forecasts
at a site (local) scale

Target season: winter
Start date: September
Ref. forecast: climatology

Prediction CRPSS
Dynamical prediction (without
: : -4.215
bias-correction)
Dynamical prediction
(bias-corrected) -0.046
Hybrid prediction 0.0007

Puijo tower, Finland

Barcelona

Supercomputing

Ccnfor ) 30
cio reamputacion Source: @puijontorni on Instagram
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The hybrid prediction is a good approach for...

NORTHERN europe

FURTHEST forecast horizons
LOCAL-SCALE e.g. wind farms

Barcelona
Supercomputing

Center

Centro Nacional de Suparcompulacion
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Critique

1. Small sample size (37 values for training; 24 values for validation)

2. More complex models?

3. Optimal number of PCs?

4. Perfect Prognosis does not account for biases in the EATC predictions

5. Would MOS (Model Output Statistics) achieve better results?

Barcelona
Sup'rewuﬂng
Cer- tro Nacional de Suparcampulacion
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Downscaled variables
(predictands)

Predictors

Method

Training data

Test data

Time resolution of training data

Skill of downscaled data

Barcelona
Supercomputing
Contor

Comparison

Ostermoller et al. 2021

2 m temperature, precipitation

Temperature, humidity, geopotential
height, vorticity... (at different
pressure levels)

analogs + linear regression in PP
Observations (Reanalysis fields)
Hindcasts from DWD

daily

Preserved

Ramon et al. 2021

Wind speed

EATC indices

PCA + multi-linear regression in PP
Observations (fields & point data)
Hindcasts from 5 SPS in C3S
seasonal

Increased
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