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BACKGROUND: The solid Earth, oceans, and
atmosphere together form a complex interact-
ing geosystem. Processes relevant to under-
standing Earth’s geosystem behavior range in
spatial scale from the atomic to the planetary,
and in temporal scale from milliseconds to
billions of years. Physical, chemical, and bio-
logical processes interact and have substan-
tial influence on this complex geosystem, and
humans interact with it in ways that are in-
creasingly consequential to the future of both
the natural world and civilization as the finite-
ness of Earth becomes increasingly apparent
and limits on available energy, mineral re-
sources, and fresh water increasingly affect
the human condition. Earth is subject to a
variety of geohazards that are poorly under-
stood, yet increasingly impactful as our expo-
sure grows through increasing urbanization,
particularly in hazard-prone areas. We have a
fundamental need to develop the best possible
predictive understanding of how the geosys-
tem works, and that understanding must be
informed by both the present and the deep

past. This understanding will come through
the analysis of increasingly large geo-datasets
and fromcomputationally intensive simulations,
often connected through inverse problems. Geo-
scientists are facedwith the challenge of extract-
ing as much useful information as possible and
gaining new insights from these data, simula-
tions, and the interplay between the two. Tech-
niques from the rapidly evolving field ofmachine
learning (ML) will play a key role in this effort.

ADVANCES: The confluence of ultrafast com-
puters with large memory, rapid progress in
ML algorithms, and the ready availability of
large datasets place geoscience at the thresh-
old of dramatic progress. We anticipate that
this progress will come from the application of
ML across three categories of research effort:
(i) automation to perform a complex predic-
tion task that cannot easily be described by a
set of explicit commands; (ii) modeling and
inverse problems to create a representation
that approximates numerical simulations or
captures relationships; and (iii) discovery to

reveal new and often unanticipated patterns,
structures, or relationships. Examples of auto-
mation include geologicmapping using remote-
sensing data, characterizing the topology of
fracture systems tomodel subsurface transport,
and classifying volcanic ash particles to infer

eruptivemechanism.Exam-
ples of modeling include
approximating the visco-
elastic response for com-
plex rheology, determining
wave speedmodels direct-
ly from tomographic data,

and classifying diverse seismic events. Exam-
ples of discovery include predicting laboratory
slip events using observations of acoustic emis-
sions, detecting weak earthquake signals using
similarity search, anddetermining the connec-
tivity of subsurface reservoirs using ground-
water tracer observations.

OUTLOOK: The use of ML in solid Earth geo-
sciences is growing rapidly, but is still in its
early stages and making uneven progress.
Much remains to be donewith existing datasets
from long-standing data sources, which in
many cases are largely unexplored. Newer, un-
conventional data sources such as light detec-
tion and ranging (LiDAR), fiber-optic sensing,
and crowd-sourcedmeasurementsmaydemand
new approaches through both the volume and
the character of information that they present.
Practical steps could accelerate and broad-

en the use of ML in the geosciences. Wider
adoption of open-science principles such as
open source code, open data, and open access
will better position the solid Earth community
to take advantage of rapid developments in
ML and artificial intelligence. Benchmark data-
sets and challenge problems have played an
important role in driving progress in artificial
intelligence research by enabling rigorous per-
formance comparison and could play a similar
role in the geosciences. Testing on high-quality
datasets produces better models, and bench-
mark datasets make these data widely availa-
ble to the research community. They also help
recruit expertise from allied disciplines. Close
collaboration between geoscientists and ML
researchers will aid in making quick progress
inMLgeoscience applications. Extractingmax-
imumvalue fromgeoscientific datawill require
new approaches for combining data-driven
methods, physical modeling, and algorithms
capable of learningwith limited,weak, or biased
labels. Funding opportunities that target the
intersection of these disciplines, as well as a
greater component of data science andML ed-
ucation in the geosciences, could help bring
this effort to fruition.▪
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Understanding the behavior of Earth through the diverse fields of the solid Earth geosciences
is an increasingly important task. It is made challenging by the complex, interacting, and
multiscale processes needed to understand Earth’s behavior and by the inaccessibility of nearly
all of Earth’s subsurface to direct observation. Substantial increases in data availability and
in the increasingly realistic character of computer simulations hold promise for accelerating
progress, but developing a deeper understanding based on these capabilities is itself
challenging.Machine learningwill play a key role in this effort.We review the state of the field
and make recommendations for how progress might be broadened and accelerated.

T
he solid Earth, oceans, and atmosphere
together form a complex interacting geo-
system. Processes relevant to understand-
ing its behavior range in spatial scale from
the atomic to the planetary, and in tempo-

ral scale from milliseconds to billions of years.
Physical, chemical, and biological processes in-
teract and have substantial influence on this
complex geosystem. Humans interact with it
too, in ways that are increasingly consequen-
tial to the future of both the natural world and
civilization as the finiteness of Earth becomes
increasingly apparent and limits on available
energy, mineral resources, and fresh water in-
creasingly affect the human condition. Earth is
subject to a variety of geohazards that are poorly
understood, yet increasingly impactful as our ex-
posure grows through increasing urbanization,
particularly in hazard-prone areas. We have a
fundamental need to develop the best possible
predictive understanding of how the geosystem
works, and that understanding must be informed
by both the present and the deep past.
In this review we focus on the solid Earth.

Understanding the material properties, chemis-
try, mineral physics, and dynamics of the solid
Earth is a fascinating subject, and essential to
meeting the challenges of energy, water, and
resilience to natural hazards that humanity faces
in the 21st century. Efforts to understand the
solid Earth are challenged by the fact that nearly
all of Earth’s interior is, and will remain, in-
accessible to direct observation. Knowledge of
interior properties and processes are based on
measurements taken at or near the surface, are
discrete, and are limited by natural obstructions

such that aspects of that knowledge are not
constrained by direct measurement.
For this reason, solid Earth geoscience (sEg)

is both a data-driven and a model-driven field
with inverse problems often connecting the two.
Unanticipated discoveries increasingly will come
from the analysis of large datasets, new develop-
ments in inverse theory, and procedures enabled
by computationally intensive simulations. Over
the past decade, the amount of data available to
geoscientists has grown enormously, through
larger deployments of traditional sensors and
through new data sources and sensing modes.
Computer simulations of Earth processes are
rapidly increasing in scale and sophistication
such that they are increasingly realistic and rele-
vant to predicting Earth’s behavior. Among the
foremost challenges facing geoscientists is how
to extract as much useful information as possible
and how to gain new insights fromboth data and
simulations and the interplay between the two.
We argue that machine learning (ML) will play a
key role in that effort.
ML-driven breakthroughs have come initially

in traditional fields such as computer vision and
natural language processing, but scientists in
other domains have rapidly adopted and ex-
tended these techniques to enable discoverymore
broadly (1–4). The recent interest in ML among
geoscientists initially focused on automated anal-
ysis of large datasets, but has expanded into the
use of ML to reach a deeper understanding of
coupled processes through data-driven discov-
eries and model-driven insights. In this review
we introduce the challenges faced by the geo-
sciences, present emerging trends in geoscience
research, and provide recommendations to help
accelerate progress.
ML offers a set of tools to extract knowledge

and draw inferences from data (5). It can also be
thought of as the means to artificial intelligence
(AI) (6), which involves machines that can per-
form tasks characteristic of human intelligence
(7, 8). ML algorithms are designed to learn from

experience and recognize complex patterns and
relationships in data. ML methods take a differ-
ent approach to analyzing data than classical
analysis techniques (Fig. 1)—an approach that
is robust, fast, and allows exploration of a large
function space (Fig. 2).
The two primary classes of ML algorithms are

supervised and unsupervised techniques. In sup-
ervised learning, the ML algorithm “learns” to
recognize a pattern or make general predictions
using known examples. Supervised learning algo-
rithms create a map, or model, f that relates a
data (or feature) vector x to a corresponding
label or target vector y: y = f(x), using labeled
training data [data for which both the input and
corresponding label (x(i), y(i)) are known and
available to the algorithm] to optimize the mod-
el. For example, a supervised ML classifier might
learn to detect cancer in medical images using
a set of physician-annotated examples (9). Awell-
trained model should be able to generalize and
make accurate predictions for previously un-
seen inputs (e.g., label medical images from new
patients).
Unsupervised learningmethods learn patterns

or structure in datasets without relying on label
characteristics. In a well-known example, re-
searchers at Google’s X lab developed a feature-
detection algorithm that learned to recognize
cats after being exposed to millions of images
from YouTube without prompting or prior in-
formation about cats (10). Unsupervised learning
is often used for exploratory data analysis or vi-
sualization in datasets for which no or few labels
are available, and includes dimensionality reduc-
tion and clustering.
The many different algorithms for supervised

and unsupervised learning each have relative
strengths and weaknesses. The algorithm choice
depends on a number of factors including (i)
availability of labeled data, (ii) dimensionality
of the data vector, (iii) size of dataset, (iv)
continuous- versus discrete-valued prediction
target, and (v) desired model interpretability.
The level of model interpretability may be of
particular concern in geoscientific applications.
Although interpretability may not be necessary
in a highly accurate image recognition system,
it is critical when the goal is to gain physical
insight into the system.

Machine learning in solid Earth
geosciences

Scientists have been applying ML techniques to
problems in the sEg for decades (11–13). Despite
the promise shown by early proof-of-concept
studies, the community has been slow to adopt
ML more broadly. This is changing rapidly.
Recent performance breakthroughs in ML, in-
cluding advances in deep learning and the avail-
ability of powerful, easy-to-use ML toolboxes,
have led to renewed interest in ML among geo-
scientists. In sEg, researchers have leveragedML
to tackle a diverse range of tasks that we group
into the three interconnected modes of automa-
tion, modeling and inverse problems, and dis-
covery (Fig. 3).
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Automation is the use of ML to perform a
complex task that cannot easily be described by a
set of explicit commands. In automation tasks,
ML is selected primarily as a tool for making
highly accurate predictions (or labeling data),
particularly when the task is difficult for humans
to perform or explain. Examples of ML used for
automation outside the geosciences include
image recognition (14) or movie recommenda-
tion (15) systems. ML can improve upon expert-

designed algorithms by automatically identifying
better solutions among a larger set of possibili-
ties. Automation takes advantage of a strength
of ML algorithms—their ability to process and
extract patterns from large or high-dimensional
datasets—to replicate or exceed human perform-
ance. In the sEg, ML is used to automate the
steps in large-scale data analysis pipelines, as
in earthquake detection (16) or earthquake early
warning (17–19), and to perform specialized, re-

petitive tasks that would otherwise require time-
consuming expert analysts, such as categorizing
volcanic ash particles (20).
ML can also be used for modeling, or creating

a representation that captures relationships and
structure in a dataset. This can take the form of
building amodel to represent complex, unknown,
or incompletely understood relationships be-
tween data and target variables; e.g., the rela-
tionship between earthquake source parameters
and peak ground acceleration for groundmotion
prediction (21, 22). ML can also be used to build
approximate or surrogate models to speed large
computations, including numerical simulations
(23, 24) and inversion (25). Inverse problems con-
nect observational data, computational models,
and physics to enable inference about physical
systems in the geosciences. ML, especially deep
learning, can aid in the analysis of inverse prob-
lems (26). Deep neural networks, with architec-
tures informed by the inverse problem itself, can
learn an inverse map for critical speedups over
traditional reconstructions, and the analysis of
generalization of MLmodels can provide insights
into the ill-posedness of an inverse problem.
Data-driven discovery, the ability to extract

new information from data, is one of most ex-
citing capabilities of ML for scientific applica-
tions. ML provides scientists with a set of tools
for discovering new patterns, structure, and rela-
tionships in scientific datasets that are not easily
revealed through conventional techniques. ML
can reveal previously unidentified signals or phy-
sical processes (27–31), and extract key features
for representing, interpreting, or visualizing data
(32–34). ML can help to minimize bias—for ex-
ample, by discovering patterns that are counter-
intuitive or unexpected (29). It can also be used
to guide the design of experiments or future data
collection (35).
These themes are all interrelated; modeling

and inversion can also provide the capability for
automated predictions, and the use of ML for
automation, modeling, or inversion may yield
new insights and fundamental discoveries.

Methods and trends for
supervised learning

Supervised learning methods use a collection of
examples (training data) to learn relationships
and build models that are predictive for pre-
viously unseen data. Supervised learning is a
powerful set of tools that have successfully been
used in applications spanning the themes of
automation, modeling and inversion, and dis-
covery (Fig. 4). In this section we organize recent
supervised learning applications in the sEg byML
algorithm, which we order roughly by model
complexity, starting with the relatively simple
logistic regression classifier and endingwith deep
neural networks. In general, more complex mod-
els require more training data and less feature
engineering.

Logistic regression

Logistic regression (36) is a simple binary classi-
fier that estimates the probability that a new data
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Fig. 2. The function space used by
domain experts and that used by
ML.The function space of user-defined
functions employed by scientists, in
contrast to the functional space used
by ML, is contained within the entire
possible function space. The function
space that ML employs is expanding
rapidly as the computational costs and
runtimes decrease and memory,
depths of networks, and available
data increase.

The full function space

Functions explored 
by current machine 

learning methodologies

Domain 
specific classes 
of functions

Fig. 1. How scientists analyze data: the conventional versus the ML lens for scientific analysis.
ML is akin to looking at the data through a new lens. Conventional approaches applied by domain
experts (e.g., Fourier analysis) are preselected and test a hypothesis or simply display data
differently. ML explores a larger function space that can connect data to some target or label. In
doing so, it provides the means to discover relations between variables in high-dimensional space.
Whereas some ML approaches are transparent in how they find the function and mapping, others are
opaque. Matching an appropriate ML approach to the problem is therefore extremely important.
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point belongs to one of two classes. Reynen and
Audet (37) apply a logistic regression classifier to
distinguish automatically between earthquake
signals and explosions, using polarization and
frequency features extracted from seismic wave-
form data. They extend their approach to detect
earthquakes in continuous data by classifying each
time segment as earthquake or noise. They used
class probabilities at each seismic station to com-
bine the detection results from multiple stations
in the seismic network. Pawley et al. (38) use
logistic regression to separate aseismic from seis-
mogenic injection wells for induced seismicity,
using features in the model to identify geologic
factors, including proximity of the well to base-
ment, associated with a higher risk of induced
seismicity.

Graphical models

Many datasets in the geosciences have a tempo-
ral component, such as the ground motion time-
series data recorded by seismometers. Although
most ML algorithms can be adapted for use on
temporal data, somemethods, like graphicalmod-
els, can directly model temporal dependencies.
For example, hidden Markov models (HMMs)
are a technique for modeling sequential data
and have been widely used in speech recognition
(39). HMMs have been applied to continuous
seismic data for the detection and classification

of alpine rockslides (40), volcanic signals (41, 42),
regional earthquakes (43), and induced earth-
quakes (44). A detailed explanation of HMMs
and their application to seismic waveform data
can be found in Hammer et al. (42). Dynamic
Bayesian networks (DBNs), another type of graph-
ical model that generalizes HMMs, have also
been used for earthquake detection (45, 46). In
exploration geophysics, hierarchical graphical
models have been applied to determine the con-
nectivity of subsurface reservoirs from time-series
measurementsusingpriorsderived fromconvection-
diffusion equations (47). The authors report that
use of a physics-based prior is key to obtaining
a reliable model. Graph-based ML emulators
were used by Srinivasan et al. (48) tomimic high-
performance physics-based computations of flow
through fracture networks, making robust un-
certainty quantification of fractured systems pos-
sible (48).

Support vector machine

Support vector machine (SVM) is a binary clas-
sification algorithm that identifies the optimal
boundary between the training data from two
classes (49). SVMs use kernel functions, similar-
ity functions that generalize the inner product, to
enable an implicit mapping of the data into a
higher-dimensional feature space. SVMs with
linear kernels separate classeswith a hyperplane,

whereas nonlinear kernel functions allow for
nonlinear decision boundaries between classes
[see Cracknell and Reading (50) and Shahnas
et al. (51) for explanations of SVMs and kernel
methods, respectively].
Shahnas et al. (51) use an SVM to studymantle

convection processes by solving the inverse prob-
lemof estimatingmantle density anomalies from
the temperature field. Temperature fields com-
puted by numerical simulations of mantle con-
vection are used as training data. The authors
also train an SVM to predict the degree ofmantle
flow stagnation. Both support vector machines
(18) and support vector regression (19) have been
used for rapid magnitude estimation of seismic
events for earthquake early warning. Support vec-
tor machines have also been used for discrimi-
nation of earthquakes and explosions (52) and
for earthquake detection in continuous seismic
data (53).

Random forests and ensemble learning

Decision trees are a supervised method for clas-
sification and regression that learn a piecewise-
constant function, equivalent to a series of if-then
rules that can be visualized by a binary tree
structure. A random forest (RF) is an ensemble
learning algorithm that can learn complex rela-
tionships by voting among a collection (“forest”)
of randomized decision trees (54) [see Cracknell
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Fig. 3. Common modes of ML.
The top row shows an example of an
automated approach to mapping
lithology using remote-sensing data
by applying a random forest ML
approach. This approach works well
with sparse ground-truth data and
gives robust estimates of the
uncertainty of the predicted lithol-
ogy (35). The second row shows
training a deep neural network to
learn a computationally efficient
representation of viscoelastic
solutions in Earth, allowing calcula-
tions to be done quickly, reliably,
and with high spatial and temporal
resolutions (23). The third row
shows an example of inversion
where the input is a nonnegative
least-squares reconstruction and
the network is trained to reconstruct
a projection into one subspace. The
approach provides the means to
address inverse problems with
sparse data and still obtain good
reconstructions (79). Here, (under)
sampling is encoded in the training
data that can be compensated by
the generation of a low-dimensional
latent (concealed) space from which
the reconstructions are obtained.
The fourth row shows results from
applying a random forest approach
to continuous acoustic data to extract fault friction and bound fault failure time. The approach identified signals that were deemed noise beforehand
(28). [Reprinted with permission from John Wiley and Sons (23), (28), and the Society of Exploration Geophysicists (35)]
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and Reading (50) for a detailed description of
RFs]. Random forests are relatively easy to use
and interpret. These are important advantages
over methods that are opaque or require tuning
many hyperparameters (e.g., neural networks,
described below), and have contributed to the
broad application of RFs within sEg.
Kuhn et al. (35) produced lithological maps in

Western Australia using geophysical and remote-
sensing data that were trained on a small subset
of the ground area. Cracknell and Reading (55)
found that random forests provided the best
performance for geological mapping by com-
paring multiple supervised ML algorithms.
Random forest predictions also improved three-
dimensional (3D) geological models using re-
motely sensed geophysical data to constrain
geophysical inversions (56).
Trugman and Shearer (21) discern a predictive

relationship between stress drop andpeak ground
acceleration using RFs to learn nonlinear, non-
parametric ground motion prediction equations
(GMPEs) from a dataset of moderate-magnitude
events in northern California. This departed from
the typical use of linear regression to model the
relationship between expected peak ground velo-
city or acceleration and earthquake site and
source parameters that define GMPEs.
Valera et al. (24) used ML to characterize the

topology of fracture patterns in the subsurface
for modeling flow and transport. A graph rep-

resentation of discrete fracture networks allowed
RF and SVMs to identify subnetworks that char-
acterize the network flow and transport of the
full network. The reduced network representa-
tions greatly decreased the computational effort
required to estimate system behavior.
Rouet-Leduc et al. (28, 29) trained a RF on

continuous acoustic emission in a laboratory
shear experiment to determine instantaneous
friction and to predict time-to-failure. From
the continuous acoustic data using the same
laboratory apparatus, Hulbert et al. (30) apply a
decision tree approach to determine the instan-
taneous fault friction and displacement on the
laboratory fault. Rouet-Leduc et al. (31) scaled
the approach to Cascadia by applying instanta-
neous seismic data to predict the instantaneous
displacement rate on the subducting plate inter-
face using GPS data as the label. In the lab-
oratory and the field study in Cascadia, ML
revealed unknown signals. Of interest is that
the same features apply both at laboratory and
field scale to infer fault physics, suggesting a
universality across systems and scales.

Neural networks

Artificial neural networks (ANNs) are an algo-
rithm loosely modeled on the interconnected
networks of biological neurons in the brain (57).
ANN models are represented as a set of nodes
(neurons) connected by a set of weights. Each

node takes a weighted linear combination of
values from the previous layer and applies a
nonlinear function to produce a single value that
is passed to the next layer. “Shallow” networks
contain an input layer (data), a single hidden
layer, and an output layer (predicted response).
Valentine and Woodhouse (58) present a de-
tailed explanation of ANNs and the process of
learning weights from training data. ANNs can
be used for both regression and classification,
depending on the choice of output layer.
ANNs have a long history of use in the geo-

sciences [see (59, 60) for reviews of early work],
and they remain popular for modeling nonlinear
relationships in a range of geoscience appli-
cations. De Wit et al. (61) estimate both the 1D
P-wave velocity structure and model uncertain-
ties from P-wave travel-time data by solving the
Bayesian inverse problem with an ANN. This
neural network–based approach is an alternative
to using the standard Monte Carlo sampling ap-
proach for Bayesian inference. Käufl et al. (25)
built an ANN model that estimates source pa-
rameters from strong motion data. The ANN
model performs rapid inversion for source pa-
rameters in real time by precomputing compu-
tationally intensive simulations that are then
used to train the neural network model.
ANNs have been used to estimate short-period

response spectra (62), to model ground motion
prediction equations (22), to assess data quality
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Fig. 4. ML methods and their applications. Most ML applications in
sEg fall within two classes: unsupervised learning and supervised learning.
In supervised learning tasks, such as prediction (21, 28) and classification
(16, 20), the goal is to learn a general model based on known (labeled)
examples of the target pattern. In unsupervised learning tasks, the
goal is instead to learn structure in the data, such as sparse or
low-dimensional feature representations (27). Other classes of ML tasks

include semi-supervised learning, in which both labeled and unlabeled
data are available to the learning algorithm, and reinforcement learning.
Deep neural networks represent a class of ML algorithms that include
both supervised and unsupervised tasks. Deep learning algorithms
have been used to learn feature representations (32, 89), surrogate
models for performing fast simulations (23, 75), and joint probability
distributions (98, 100).
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for focal mechanism and hypocenter location
(58), and to perform noise tomography (63).
Logistic regression and ANN models allowed
Mousavi et al. (64) to characterize the source
depth of microseimic events induced by under-
ground collapse and sinkhole formation.Kong et al.
(17) use an ANN with a small number of easy-to-
compute features for use on a smartphone-based
seismic network to distinguish between earth-
quake motion and motion due to user activity.

Deep neural networks

Deep neural networks (DNNs), or deep learning,
are an extension of the classical ANN that in-
corporatemultiple hidden layers (65). Deep learn-
ing does not represent a single algorithm, but a
broad class of methods with diverse network
architectures, including both supervised and
unsupervised methods. Deep architectures in-
clude multiple processing layers and nonlinear
transformations, with the outputs from each
layer passed as inputs to the next. Supervised
DNNs simultaneously learn a feature represen-
tation and amapping from features to the target,
enabling good model performance without re-
quiring well-chosen features as inputs. Ross et al.
(66) provide an illustrative example of a convo-
lutional neural network (CNN), a popular class of
DNNs, with convolutional layers for feature ex-
traction and a fully connected layer for classifi-
cation and regression. However, training a deep
network also requires fitting a large number of
parameters, which requires large training data-
sets and techniques to prevent overfitting the
model (i.e., memorizing the training data rather
than learning a general trend). The complexity of
deep learning architectures can also make the
models difficult to interpret.
DNNs trained on simulation-generated data

can learn a model that approximates the output
of physical simulations. DeVries et al. (23) use a
deep, fully connected neural network to learn a
compact model that accurately reproduces the
time-dependent deformation of Earth as mod-
eled by computationally intensive codes that
solve for the response to an earthquake of an
elastic layer over an infinite viscoelastic half
space. Substantial computational overhead is re-
quired to generate simulation data for training
the network, but once trained themodel acts as a
fast operator, accelerating the computation of
new viscoelastic solutions by orders of magni-
tude. Moseley et al. (67) use a CNN, trained on
synthetic data from a finite difference model, to
perform fast full wavefield simulations.
Shoji et al. (20) use a CNN to classify volcanic

ash particles on the basis of their shape, with
each of the four classes corresponding to a dif-
ferent physical eruption mechanism. The authors
use the class probabilities returned by the net-
work to identify themixing ratio for ash particles
with complex shapes, a task that is difficult for
expert analysts.
Several recent studies have appliedDNNswith

various architectures for automatic earthquake
and seismic event detection (16, 68, 69), phase-
picking (66, 70), and classification of volcano-

seismic events (71). Wiszniowski et al. (72) in-
troduced a real-time earthquake detection algo-
rithm using a recurrent neural network (RNN),
an architecture designed for sequential data.
Magaña- Zook and Ruppert (73) use a long short-
termmemory (LSTM)network (74), a sophisticated
RNN architecture for sequential data, to discrimi-
nate natural seismicity from explosions. An ad-
vantage of DNNs for earthquake detection is that
feature extraction is performed by the network,
so minimal preprocessing is required. By con-
trast, shallow ANNs and other classical learning
algorithms require the user to select a set of key
discriminative features, and poor feature selection
will hurt model performance. Because it may be
difficult to define the distinguishing characteristics
of earthquake waveforms, the automatic feature
extraction of DNNs can improve detection per-
formance, provided large training sets are available.
Araya-Polo et al. (75) use a DNN to learn an

inverse for a basic type of tomography. Rather
than using ML to automate or improve individ-
ual elements of a standard workflow, they aim to
learn to estimate a wave speed model directly
from the raw seismic data. The DNN model can
computemodels faster than traditionalmethods.
Understanding the fundamental properties

and interpretability of DNNs is a very active line
of research. A scattering transform (76, 77) can
provide natural insights in CNNs relevant to
geoscience. This transform is a complex CNN
that discards the phase and thus exposes spectral
correlations otherwise hidden beneath the phase
fluctuations, to define moments. The scattering
transform by design has desirable invariants. A
scattering representation of stationary processes
includes their second-order and higher-order
moment descriptors. The scattering transform
is effective, for example, in capturing key proper-
ties in multifractal analysis (78) and stratified
continuum percolation relevant to representations
of sedimentary processes and transport in porous
media, respectively. Interpretable DNN architec-
tures have been obtained through construction
from the analysis of inverse problems in the geo-
sciences (79); these are potentially large improve-
ments over the original reconstructions and
algorithms incorporating sparse data acquisi-
tion, and acceleration.

Methods and trends for
unsupervised learning

Clustering and self-organizing maps

There are many different clustering algorithms,
including k-means, hierarchical clustering, and
self-organizing maps (SOMs). A SOM is a type
of unsupervised neural network that can be used
for either dimensionality reduction or clustering
(80) [see Roden et al. (81) for thorough explana-
tion of SOMs]. Carneiro et al. (33) applied a SOM
to airborne geophysical data to identify key geo-
physical signatures and determine their relation-
ship to rock types for geological mapping in the
Brazilian Amazon. Roden et al. (81) identified
geological features from seismic attributes using
a combination of PCA for dimensionality reduc-

tion followed by SOM for clustering. SOMs are
often used to identify seismic facies, but standard
SOMs do not account for spatial relationships
among the data points. Zhao et al. (82) propose
imposing a stratigraphy constraint on the SOM
algorithm to obtain more detailed facies maps.
SOMs have also been applied to seismic wave-
form data for feature selection (83) and to cluster
signals to identify multiple event types (84, 85).
Supervised and unsupervised techniques

are commonly used together in ML workflows.
Cracknell et al. (86) train a RF classifier to iden-
tify lithology from geophysical and geochem-
ical survey data. They then apply a SOM to the
volcanic units from the RF-generated geologic
map to identify subunits that reveal composi-
tional differences. In the geosciences it is com-
mon to have large datasets in which only a
small subset of the data are labeled. Such cases
call for semi-supervised learning methods de-
signed to learn from both labeled and unlabeled
data. In a semi-supervised approach, Köhler et al.
(87) detect rockfalls and volcano-tectonic events
in continuous waveform data using an SOM for
clustering and assigning each cluster a label
based on a small number of known examples.
Sick et al. (88) also use a SOM with nearest-
neighbor classification to classify seismic events
by type (quarry blast versus seismic) and depth.

Feature learning

Unsupervised feature learning can be used to
learn a low-dimensional or sparse feature rep-
resentation for a dataset. Valentine and Trampert
(32) learn a compact feature representation for
earthquake waveforms using an autoencoder
network, a type of unsupervised DNN designed
to learn efficient encodings for data. Qian et al.
(89) apply a deep convolutional autoencoder
network to prestack seismic data to learn a fea-
ture representation that can be used in a clus-
tering algorithm for facies mapping.
Holtzman et al. (27) use nonnegative matrix

factorization and HMMs together to learn fea-
tures to represent earthquakewaveforms.K-means
clustering is applied to these features to identify
temporal patterns among 46,000 low-magnitude
earthquakes in the Geysers geothermal field. The
authors observe a correlation between the injec-
tion rate and spectral properties of the earthquakes.

Dictionary learning

Sparse dictionary learning is a representation
learning method that constructs a sparse repre-
sentation in the form of a linear combination of
basic elements, or atoms, as well as those basic
elements themselves. The dictionary of atoms
is learned from a set of input data while finding
the sparse representations. Dictionary learning
methods, which learn an overcomplete basis for
sparse representation of data, have been used to
de-noise seismic data (90, 91). Bianco and Gerstoft
(92) develop a linearized (surface-wave) travel-
time tomography approach that sparsely models
local behaviors of overlapping groups of pixels
from a discrete slowness map following a maxi-
mumaposteriori (MAP) formulation. They employ
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iterative thresholding and signed K-means dic-
tionary learning to enhance sparsity of the re-
presentation of the slowness estimated from
travel-time perturbations.

Deep generative models

Generative models are a class of ML methods
that learn joint probability distributions over
the dataset. Generative models can be applied
to both unsupervised and supervised learning
tasks. Recent work has explored applications
of deep generative models, in particular genera-
tive adversarial networks (GANs) (93). A GAN is
a system of two neural networks with opposing
objectives: a generator network that uses train-
ing data to learn a model to generate realistic
synthetic data and a discriminator network that
learns to distinguish the synthetic data from real
training data [see (94) for a clear explanation].
Deep generative models, such as the Deep

Rendering Model (95), Variational Autoencoders
(VAEs) (96), and GANs (93), are hierarchical prob-
abilistic models that explain data at multiple
levels of abstraction, and thereby accelerate learn-
ing. The power of abstraction in these models
allows their higher levels to learn concepts and
categories far more rapidly than their lower levels,
owing to strong inductive biases and exposure
to more data (97). The unsupervised learning cap-
ability of the deep generative models is partic-
ularly attractive to many inverse problems in
geophysics where labels are often not available.
The use of neural networks can substantially

reduce the computational cost of generating syn-
thetic seismograms compared with numerical
simulation models. Krischer and Fichtner (98)

use a GAN to map seismic source and receiver
parameters to synthetic multicomponent seismo-
grams. Mosser et al. (99) use a domain transfer
approach, similar to artistic style transfer, with
a deep convolutional GAN (DCGAN) to learn
mappings from seismic amplitudes to geological
structure and vice versa. The authors’ approach
enables both forward modeling and fast inver-
sion. GANs have also been applied to geological
modeling by Dupont et al. (100), who infer local
geological patterns in fluvial environments from
a limited number of rock type observations using
a GAN similar to those used for image inpaint-
ing. Chan and Elsheikh (101) generate realistic,
complex geological structures and subsurface
flow patternswith aGAN. Veillard et al. (102) use
both a GAN and a VAE (96) to interpret geolo-
gical structures in 3D seismic data.

Other techniques

Reinforcement learning is a ML framework in
which the algorithm learns to make decisions to
maximize a reward by trial and error. Draelos et al.
(103) propose a reinforcement learning–based
approach for dynamic selection of thresholds
for single-station earthquake detectors based on
the observations at neighboring stations. This
approach is a general method for automated
parameter tuning that can be used to improve
the sensitivity of single-station detectors using
information from the seismic network.
Several recent studies in seismology have used

techniques for fast near-neighbor search to de-
termine focal mechanisms of seismic events (104),
to estimate ground motion and source param-
eters (105), or to enable large-scale template

matching for earthquake detection (106). Each
of these three applications requires a database
of known or precomputed earthquake features
and uses an efficient search algorithm to reduce
the computational runtime. By contrast, Yoon et al.
(107) take an unsupervised pattern-mining ap-
proach to earthquake detection; the authors use
a fast similarity search algorithm to search the
continuous waveform data for similar or re-
peating, allowing the method to discover new
events with previously unknown sources. This
approach has been extended to multiple stations
(108) and can process up to 10 years of continuous
data (109).
Network analysis techniques—methods for

analyzing data that can be represented using a
graph structure of nodes connected by edges—
have also been used for data-driven discovery in
the sEg. Riahi and Gerstoft (110) detect weak
sources in a dense array of seismic sensors
using a graph clustering technique. The authors
identify sources by computing components of
a graph where each sensor is a node and the
edges are determined by the array coherence
matrix. Aguiar and Beroza (111) use PageRank,
a popular algorithm for link analysis, to analyze
the relationships between waveforms and dis-
cover potential low-frequency earthquake (LFE)
signals.

Recommendations and opportunities

ML techniques have been applied to a wide
range of problems in the sEg; however, their
impact is limited (Fig. 5). Data challenges can
hinder progress and adoption of the new ML
tools; however, adoption of these methods has
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beginning at the undergraduate university
level is key. ML offers an important new set
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Library of Science). Also important are selecting
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lagged some other scientific domains with sim-
ilar data quality issues.
Our recommendations are informed by the

characteristics of geoscience datasets that pre-
sent challenges for standardMLalgorithms.Data-
sets in the sEg represent complex, nonlinear,
physical systems that act across a vast range of
length and time scales. Many phenomena, such
as fluid injection and earthquakes, are strongly
nonstationary. The resulting data are complex,
with multiresolution, spatial, and temporal struc-
tures requiring innovative approaches. Further,
much existing data are unlabeled. When availa-
ble, labels are often highly subjective or biased
toward frequent or well-characterized phenome-
na, limiting the effectiveness of algorithms that
rely on training datasets. The quality and com-
pleteness of datasets create another challenge as
uneven data collection, incomplete datasets, and
noisy data are common.

Benchmark datasets

The lack of clear ground-truth and standard
benchmarks in solid sEg problems impedes the
evaluation of performance in geoscience appli-
cations. Ground truth, or reference data for
evaluating performance, may be unavailable, in-
complete, or biased. Without suitable ground-
truth data, validating algorithms, evaluating
performance, and adopting best practices are dif-
ficult. Automatic earthquake detection provides
an illustrative example. New signal processing
or ML-based earthquake detection algorithms
have been regularly developed and applied over
the past several decades. Each method is typi-
cally applied to a different dataset, and authors
set their own criteria for evaluating perform-
ance in the absence of ground truth. This makes
it difficult to determine the relative detection
performance, advantages, and weaknesses of
each method, which prevents the community
from adopting and iterating on the best new
detection algorithms.
Benchmark datasets and challenge problems

have played an important role in driving pro-
gress and innovation inML research.High-quality
benchmark datasets have two key benefits: (i)
enabling rigorous performance comparisons and
(ii) producing better models. Well-known chal-
lenge problems include mastering game play
(112–115), competitions for movie recommen-
dation [Netflix prize (15)], and image recognition
[ImageNet (14)]. The performance gain demon-
strated by a CNN (116) in the 2012 ImageNet
competition triggered a wave of research in deep
learning. In computer vision, it is common prac-
tice to report performance of new algorithms on
standard datasets, such as the MNIST handwrit-
ten digit dataset (117).
Greater use of benchmark datasets can accel-

erate progress in applyingML to problems in the
sEg. This will require an investment from the
research community, both in terms of creating
and maintaining datasets and also in reporting
algorithm performance on benchmark datasets
in published work. The contribution of compil-
ing and sharing benchmark datasets is unlikely

to go unrecognized. The ImageNet image rec-
ognition dataset (118) has been cited in over
6000 papers.
Recently, the Institute of Geophysics at the

Chinese Earthquake Administration (CEA) and
Alibaba Cloud hosted a data science competition
with more than 1000 teams centered around
automatic detection and phase picking of after-
shocks following the 2008 Ms 8.0 Wenchuan
earthquake (119, 120). The ground-truth phase-
arrival data, against which entries were assessed,
were determined by CEA analysts. Such chal-
lenges are useful for researchers seeking to test
and improve their detection algorithms. Future
competitions should have greater impact if they
are accompanied with some form of broader
follow-up, such as publications associated with
top-performing entries or a summary of effec-
tive methods and lessons learned from compe-
tition organizers.
Creating benchmark datasets and determin-

ing evaluation metrics are challenging when the
underlying data are incompletely understood.
The ground truth used as a benchmark may
suffer from the same biases as training data.
Although benchmark datasets can provide a use-
ful guide, the research community must not dis-
regard or penalize methods that discover new
phenomena not represented in the ground truth.
Performance evaluation needs to include both
the overall error rate, along with the relative
strengths and weaknesses, including kinds of
errors made by the algorithm (121). Ideally,
within a given problem domain, several diverse
benchmark datasets would be available to the
research community to avoid an overly narrow
focus on algorithm development. For example
the performance of earthquake detection algo-
rithms can vary on the basis of the type of events
to be detected (e.g., regional events, volcanic
tremor, tectonic tremor) and the characteristics
of the noise signals. An additional approachwould
be to create datasets from simulations where
the simulated data are released but the under-
lying model is kept hidden, e.g., a model of com-
plex fault geometry based on seismic reflection
data. Researchers could then compete to deter-
mine which approaches best recover the input
model.

Open science

Adoption of open science principles (122) will
better position the sEg community to take ad-
vantage of the rapid pace of development in AI.
This should include a commitment to make code
(open source), datasets (open data), and research
(open access) publicly available. Open science ini-
tiatives are especially important for validating
and ensuring reproducibility of results from
more-difficult-to-interpret, “black-box”MLmodels
such as DNNs.
Open source codes, often shared through on-

line platforms (123, 124), have already been
adopted for general data processing in seismol-
ogy with the ObsPy (125, 126) and Pyrocko (127)
toolboxes. Scikit-learn is another example of
broadly applied open-source software (128). Along

with benchmark datasets, greater sharing of
the code that implements new ML-based sol-
utions will help accelerate the development and
validation of these new approaches. Active re-
search areas like earthquake detection benefit as
available open source codes enable direct com-
parisons ofmultiple algorithms on the same data-
sets to assess the relative performance. To the
extent possible, this should also extend to the
sharing of the original datasets and pretrained
ML models.
The use of electronic preprints [e.g., (129–131)]

may also help to accelerate the pace of research
(132) at the intersection of Earth science and AI.
Preprints allow authors to share preliminary re-
sults with a wider community and receive feed-
back in advance of the formal review process.
The practice of making research available on
preprint servers is common in many science,
technology, engineering, andmathematics (STEM)
fields, including computer vision and natural lan-
guage processing—two fields that are driving
development in deep learning (133); however,
this practice has yet to be widely adopted within
the sEg community.

New data sources

In recent years new, unconventional data sources
have become available but have not been fully
exploited, presenting new opportunities for the
application and development of new ML-based
analysis tools. Data sources such as light detec-
tion and ranging (LiDAR) point clouds (134),
distributed acoustic sensing with fiber optic
cables (135–137), and crowd-sourced data from
smartphones (17), social media (138, 139), web
traffic (140), and microelectromechanical sys-
tems (MEMS) accelerometers (141) are well-suited
to applications using ML. Interferometric syn-
thetic aperture radar (InSAR) data are widely
used for applications such as identifying crops or
deforestation, but have seen minimal use in ML
applications for geological and geophysical prob-
lems. High-resolution satellite and multispectral
imagery (142) provide rich datasets for geological
and geophysical applications, including the study
of evolving systems such as volcanoes, earth-
quakes, land-surface change, mapping geology,
and soils. A disadvantage of nongovernmental
satellite data can be cost. Imagery data from
sources such as Google Maps or lower-resolution
multispectral data from government-sponsored
satellites such as SPOT and ASTER are available
without cost.

Machine learning solutions, new models,
and architectures

Researchers have many opportunities for collab-
orative research between the geoscience and ML
communities, including new models and algo-
rithms to address data challenges that arise in
sEg [see also Karpatne et al. (143)]. Real-time
data collection from geophysical sensors offer
new test cases for online learning in streaming
data. Domain expertise is required to interpret
many geoscientific datasets, making these inter-
esting use cases for the development of interactive
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ML algorithms, including scientist-in-the-loop
systems.
A challenge that comes with entirely data-

driven approaches is the need for large quan-
tities of training data, especially for modeling
through deep learning. Moreover, ML models
may end up replicating the biases in training
data, which can arise during data collection or
even through the use of specific training data-
sets. Thus, extracting maximum value from
geoscientific datasets will require methods cap-
able of learning with limited, weak, or biased
labels. Furthermore, because the phenomena
of interest are governed by complex and dy-
namic physical processes, there is a need for
new approaches to analyzing scientific data-
sets that combine data-driven and physical mod-
eling (144).
Much of the representational power of mod-

ern ML techniques, such as DNNs, comes from
the ability to recognize paths to data inversion
outside of the established physical and mathe-
matical frameworks, through nonlinearities that
give rise to highly realistic yet nonconvex regu-
larizers. Recently, interpretable DNN architec-
tures were constructed based on the analysis
of inverse problems in the geosciences (79) that
have the potential to mitigate ill-posedness,
accelerate reconstruction (after training), and
accommodate sparse (constrained) data acqui-
sition. In the framework of linear inverse prob-
lems, various imaging operators induce particular
network architectures (26). Furthermore, deep
generative models will play an important role
in bridging multilevel regularized iterative tech-
niques in inverse problems with deep learning.
In the same context, priors may be learned from
the data.
Another approach to mitigating deep learn-

ing’s reliance on large datasets is to use simula-
tions to generate supplemental synthetic training
data. In such cases, domain adaption can be used
to correct for differences in the data distribution
between real and synthetic data. Domain adap-
tation architectures, including the mixed-reality
generative adversarial networks (145), iteratively
map simulated data to the space of real data
and vice versa. Studying trained deep genera-
tive models can reveal insights into the under-
lying data-generating process, and inverting
these models involves inference algorithms
that can extract useful representations from
the data.
A note of caution in applyingML to geoscience

problems: ML should not be applied naïvely to
complex geoscience problems. Biased data, mix-
ing training and testing data, overfitting, and
improper validation will lead to unreliable re-
sults. As elsewhere, working with data scientists
will help mitigate these potential issues.

Geoscience curriculum

Data science is moving quickly, and geoscientists
would benefit from close collaboration with ML
researchers (146) to take full advantage of de-
velopments at the cutting edge. Collaboration
will require focused effort on the part of geo-

scientists. A greater component of data science
and ML in geoscience curricula could help, as
would recruiting students trained in data science
to work on geoscience research. Interdisciplinary
research conferences could and are being used to
promote collaborations through identifying com-
mon interests and complementary capabilities.
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