
Machine Learning — 
Application in Climate Science



Is there a unique definition of ML?

● Wikipedia  — 

“Within the field of data analytics, machine learning is a method used to 
devise complex models and algorithms that lend themselves to prediction”

● Example: 

Amazon uses ML to suggest items based on the purchase histories of 
other customers. 



Another Example: Netflix
Sparse matrix completion 

● Make predictions about what movies you’ll like 
● based on the ratings of other users

● Data is short in supply as one user has rated only a few movies

● So, you put together this matrix of
○ All users that have ever rated things on Netflix and
○ All the movies

● Hope to fill in some missing data



Simply put ML is about:

● Constructing computer programs that automatically improve with 
experience.

● ML employs techniques from the fields of 
○ computer science, 
○ statistics, and 
○ artificial intelligence, among others.



My Background

● Economics and Management Science 
○ Statistics for Business Application
○ Regression testing, Business Forecasting, Econometrics

● Data Science
○ Statistical Modeling  — MLE, Bayesian Inference, GLM…
○ Machine Learning  — 

■ Decision Trees, 
■ Random Forests, 
■ Clustering: K-means, Spectral,
■ Boosting: AdaBoost



Climate Informatics           (Climate Sc. + Data Sc)
● Dr. Claire Monteleoni, Assistant Professor of Computer Science at George 

Washington University

● She co-founded the Climate Informatics Workshop with NASA climatologist, 
Gavin Schmidt. 

● Her most recent work  — applying ML to track several climate models that 
make predictions about climate change where the data collected is used to 
adjust how each of the models’ output is weighed 



One Dilemma in Climate Science

● “to be able to say that we are having warming, we have to be able to 
say what the temperature was in the past.”

● Records of past are few and far between

● ML can also be used to better understand what the climate looked like 
in past.



Main types of climate data

● Past: Historical data
○ Limited
○ Very heterogeneous

● Present: Observation data
○ Increasingly measured
○ Large quantities

● Past, Present, Future: 
Climate model simulations

○ Vast, high-dimensional 
○ Encodes scientific domain 

knowledge
○ Information lost in discretizations
○ Future predictions cannot be 

validated



Improving predictions of ensembles
● No one model predicts best all the time, for all variables
● Average predictions over all models is better predictor

● ML Approaches: 
○ Tracking Climate Models (TCM)
○ Neighborhood-Augmented TCM (geospatial influence)
○ Multi-model Regression with spatial smoothing
○ Climate prediction via Matrix Completion



Adaptive weighted prediction
● Average prediction weights all models equally

● Weighted average prediction gives varying weights to each models based on 
past performances

● Adaptive weighted average prediction identifies current best predicting model 
vs one that quickly switching to other models

○ Tradeoff: how often the identity of the best model switches

● Online Learning: Non stationary data
○ Learns the switching rate: level of non-stationarity



M, Schmidt, Saroha & Asplund, SAM 2011 
(CIDU 2010)

 
Track a set of expert predictors under changing observations



ML and Data mining 
collaborations with CS

● Atmospheric Chemistry, e.g. 
Musicant et al. ‘07 (‘05)

● Meteorology, e.g. Fox-Rabinovitz et al. 
‘06

● Seismology, Kohler et al. ‘08
● Oceanography, e.g Lima et al. ‘09
● Mining/modeling Climate Data, e.g. 

Steinback et al. ‘03, Steinhaeuser et al. 
‘10, Kumar ‘10

ML and Climate Modeling

● Data-drive climate models, Lozano et 
al. ‘09

● ML techniques inside a climate 
model, or for calibration, e.g. 
braverman et al. ‘06

● ML techniques with ensembles of 
climate models:

○ Regional models: Sain et al. ‘10
○ Global Climate Models (GCM): 

TCM 



ML and Air Quality
● Inferring Air Quality for Station Location Recommendation Based on Urban 

Big Data
○ Infer real-time air quality of any arbitrary location given environmental data and data from very 

sparse monitoring locations. 
○ Determine the best locations to establish new monitor stations to improve the inference quality

○ Design a semi-supervised inference model 
■ utilizing existing monitoring data 
■ together with heterogeneous city dynamics, including meteorology, human mobility, 

structure of road networks, and point of interests
○ Propose an entropy-minimization model to suggest the best locations to establish new 

monitoring stations.

○ Evaluate the proposed approach using Beijing air quality data, resulting in clear advantages 
over a series of state-of-the-art and commonly used methods.



ML and Air Quality
● U-Air: When Urban Air Quality Inference Meets Big Data

○ Infer the real-time and fine-grained air quality information throughout a city
○ Air quality data reported by existing monitor stations and other data sources such as 

meteorology, traffic flow, human mobility, structure of road networks, and point of 
interests

○ Propose a semi-supervised learning approach that consists of two separated classifiers
■ A spatial classifier based on an artificial neural network (ANN)  — takes 

spatially-related features (e.g., the density of POIs and length of highways) as 
input to model the spatial correlation between air qualities of different locations. 

■ A temporal classifier based on a linear-chain conditional random field (CRF), 
involving temporally-related features (e.g., traffic and meteorology) to model the 
temporal dependency of air quality in a location.



ML and Air Quality
● Deriving high-resolution urban air pollution maps using mobile sensor nodes

○ Real-time pollution assessment
○ Analyze one of the largest spatially resolved ultrafine particles (UFP) data set containing over 

50 million measurements
○ More than two years using mobile sensor nodes installed on top of public transport vehicles in 

the city of Zurich, Switzerland. 
○ Develop land-use regression models to create pollution maps with a high spatial resolution of 

100 m × 100 m.
○ Compare the accuracy of the derived models across various time scales and observe a rapid 

drop in accuracy for maps with sub-weekly temporal resolution. 
○ Propose a novel modeling approach that incorporates past measurements annotated with 

metadata into the modeling process. 
○ Achieve a 26% reduction in the RMSE – a standard metric to evaluate the accuracy of air 

quality models– of pollution maps with semi-daily temporal resolution. 


