
Intro to Containers

15/06/2023 BSC-CES - MWT

Bruno P. Kinoshita

Computational Earth Sciences | Earth Sciences Department

Barcelona Supercomputing Center - Centro Nacional de Supercomputación

Address: C/ Jordi Girona, 31, 08034 Barcelona | Torre Girona, 2nd Floor

BSC Website: https://www.bsc.es/

Research Engineer

Agenda

1. Containerization

1. Some context and history

2. Why containers?

3. Running Docker containers with the command-line

4. Creating images with Dockerfile

5. Volumes and persisting data

6. Networking

7. Creating a Singularity container

8. Testing on the HPC

9. Deploying containers

10. Container orchestration ({Docker, Singularity} Compose, Kubernetes, …)

2. Best practices

Containerization

Prerequisites

If you would like to try the examples in these slides, you will need to:

Install Docker

Be able to run docker run hello�world

Have Singularity (CE > 3.7) installed (optional)

Have Docker and Singularity compose tools (optional)

Have ~10 GB at least to spare, as well as good Internet connectivity.

※ NOTE: The example code snippets in this presentation may take several minutes to complete. If you are attending a session of this presentation, try running docker pull

image_name:version before the presentation begins.

` `

`

`

https://docs.docker.com/engine/install/ubuntu/

Containerization

It can take place at OS level and at application level.

This talk is about containerization at OS level, more specifically about containers with Docker (with a little about Singularity).

1. Trend Micro (2022). The Difference Between Virtual Machines and Containers ↩

Containerization is a way to run applications in an isolated environment.

[1]

https://www.trendmicro.com/zh_hk/devops/22/e/the-difference-between-virtual-machines-and-containers.html

Some context and history

Containers did not start with Docker, but Docker was responsible for its recent widespread use in software development.

Refs:

1997: Unix V7 adds chroot

2000: FreeBSD jails

2004: Solaris containers

2005: Open VZ (Open Virtuoso) (unreleased patch of Linux Kernel)

2006: Process Containers (Google)

2008: LXC (first container manager!)

2013: Docker (used LXC initially, then replaced by libcontainer)

2015: Open Container Initiative (Linux Foundation, runc)

2015: Singularity (Lawrence Berkeley National Lab)

2016: udocker (Python tool to execute Docker containers without root)

2017: Charliecloud (daemonless, rootless for HPC, created in 2015, but paper from 2017)

2018: Podman (daemonless, OS, uses OCI containers and images - compatible with Docker)

2019: Spack added the spack containerize command (#14202)

1. https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016 ↩

2. https://en.wikipedia.org/wiki/Linux_namespaces ↩

3. https://github.com/opencontainers/runc ↩

Containers are based on features of Kernel that have been available for quite some years (chroot , and Linux namespaces such as cgroups).` ` ` `

[1][2][3]

` `

` `

` `

https://blog.aquasec.com/a-brief-history-of-containers-from-1970s-chroot-to-docker-2016
https://en.wikipedia.org/wiki/Linux_namespaces
https://github.com/opencontainers/runc

Why containers?

Test software in a safely sandboxed environment

Faster development lifecycle

Faster than managing multiple local envs or VM’s

Isolate applications

Create portable environments

More portable than VM’s

Scalability

Cloud computing

Disaster recovery

Lower footprint than servers or virtual machines

In both memory, computing, and carbon (more in the next slide)

(Or at least for the cloud , I need to find HPC studies)

1. Containers vs VMs (virtual machines) (Google Cloud) ↩

2. Anusooya, G. & Varadarajan, Vijayakumar. (2021) ↩

3. Application platform considerations for sustainable workloads on Azure ↩

[1]

[2]

[3]

https://cloud.google.com/discover/containers-vs-vms
https://www.researchgate.net/figure/Overall-comparisons-between-container-and-VM-Table12_fig7_333096446
https://learn.microsoft.com/en-us/azure/well-architected/sustainability/sustainability-application-platform#containerize-workloads-where-applicable

Refs: (networking plays an important role, valid for cloud, HPC may have different numbers.)[1][2]

Demo (follow along!)

Running Docker containers with the command-line
Try these commands!

Run a terminal in Debian Bullseye slim image with Micromamba

$ docker run �ti �u 1000�1000 mambaorg/micromamba:bullseye�slim

(base) mambauser@5df690afaa1d:/tmp$

Run a terminal in the latest Ubuntu release

$ docker run �ti ubuntu:latest

root@51a769cec6c0�/#

Run an old version of Linux Alpine 2.7.18 Python 2.7.3

$ docker run �ti python:2.7.18-alpine3.11

Python 2.7.18 (default, Apr 20 2020, 19�51�05)

[GCC 9.2.0] on linux2

Type "help", "copyright", "credits" or "license" for more information.

���

Start the terminal instead of Python

$ docker run �ti python:2.7.18-alpine3.11 /bin/ash

/ #

Execute some Python 2 code with an environment variable

$ docker run �ti �e WORLD=Earth python:2.7.18-alpine3.11 python2 �c \

'import os; print "Hello " + os.environ["WORLD"]'

Hello Earth

Running Docker containers with the command-line

Look at all the mess you made!

$ docker ps �a

CONTAINER ID IMAGE COMMAND CREATED STATUS P

78ec649e58b2 python:2.7.18-alpine3.11 "python2 �c 'print \"…" 11 seconds ago Exited (0) 10 seconds ago

18f61a30ceb4 python:2.7.18-alpine3.11 "/bin/ash" 18 seconds ago Exited (0) 16 seconds ago

d8a7cace5eb3 python:2.7.18-alpine3.11 "python2" 20 seconds ago Exited (0) 18 seconds ago

64bf9b4b81bc ubuntu:latest "/bin/bash" 32 seconds ago Exited (130) 29 seconds ago

f9085a740dd1 mambaorg/micromamba:bullseye�slim "/usr/local/bin/_ent…" 50 seconds ago Exited (0) 48 seconds ago

3ca48baf860d mambaorg/micromamba:bullseye�slim "/usr/local/bin/_ent…" 5 minutes ago Up 5 minutes

Show system information

$ docker system df

TYPE TOTAL ACTIVE SIZE RECLAIMABLE

Images 3 3 243.7MB 0B (0%)

Containers 6 1 587.6kB 587.6kB (100%)

Local Volumes 0 0 0B 0B

Build Cache 0 0 0B 0B

Other useful commands

View all the images you have downloaded

$ docker image ls

���

Remove the containers you have created

$ docker container prune �f

Deleted Containers:

0e121a312675fafb2933f3def49e488c0b9b20fcb93aafb094e923bcc90a9605

111f533d7cd177f7e8b65e083dfff1335ef39830d94dbf9917a7a1b10882cfc7

bec5117a015484334b9e5368c8be70f1c609d3ac93a55ab3b67a0a92954dcd73

77ee9570b2dcf055c527d7dfdd363cbb3699b66295540be14923189435b68ad4

Total reclaimed space: 587.6kB

See everything you have running

$ docker ps �a

���

Or volumes or networks

$ docker network list

$ docker volume list

���

Other useful commands

You can clean up volumes, networks, images, containers, etc.

$ docker volume prune �f

Deleted Volumes:

95c54fdcf9fa352203d7c1e009a19f2cfeebcef29cca5fb54bed923df60e701c

Total reclaimed space: 478.3MB

Or do what I do from time to time

$ docker system prune �a �f

���

Total reclaimed space: 3.189GB

More useful commands

Run a container that will auto�delete itself when its process exits

$ docker run ��rm python:2.7.18-alpine3.11

Run a container with a name, as a daemon (in the background)

$ docker run �d ��rm ��name python2test python:2.7.18-alpine3.11

27909a75647fbd8bb700fcdc2e25019958a8d0ecda74227a1f74793e8caf4cab

Creating images with Dockerfile

RUN , ADD , and COPY create new layers. Layers are cached for performance.

File: Dockerfile

FROM python:2.7.18-alpine3.11

WORKDIR /app

COPY hello.txt .

RUN cat ��EOF > script.py

��/usr/bin/python2

with open('hello.txt') as f:

 msg = f.read()

 print(msg)

 with open('/tmp/output.txt', 'w�') as o:

 o.write(msg)

 o.flush()

EOF

CMD ["python2", "script.py"]

` ` ` ` ` `

Creating images with Dockerfile

$ echo "Hello World" > hello.txt

The dot at the end is for the local dir, where Dockerf�le is

$ docker build �t test�python:latest .

[+] Building 0.7s (9/9) FINISHED

 �� [internal] load .dockerignore 0.0s

 �� �� transferring context: 2B 0.0s

 �� [internal] load build def�nition from Dockerf�le 0.0s

 �� �� transferring dockerf�le: 231B 0.0s

 �� [internal] load metadata for docker.io/library/python:2.7.18-alpine3. 0.0s

 �� CACHED [1/4] FROM docker.io/library/python:2.7.18-alpine3.11 0.0s

 �� [internal] load build context 0.0s

 �� �� transferring context: 48B 0.0s

 �� [2/4] WORKDIR /app 0.2s

 �� [3/4] COPY hello.txt . 0.0s

 �� [4/4] RUN cat ��EOF > script.py 0.3s

 �� exporting to image 0.1s

 �� �� exporting layers 0.1s

 �� �� writing image sha256:de797699e542f0fd08cd4321d434754334df8399d5b3c 0.0s

 �� �� naming to docker.io/library/test�python:latest 0.0s

Creating images with Dockerfile

Look at the lines that contain CACHED !

What if you run that command again?

` `

$ docker build �t test�python:latest .

[+] Building 0.1s (9/9) FINISHED

�� [internal] load build def�nition from Dockerf�le 0.0s

�� �� transferring dockerf�le: 231B 0.0s

�� [internal] load .dockerignore 0.0s

�� �� transferring context: 2B 0.0s

�� [internal] load metadata for docker.io/library/python:2.7.18-alpine3. 0.0s

�� [1/4] FROM docker.io/library/python:2.7.18-alpine3.11 0.0s

�� [internal] load build context 0.0s

�� �� transferring context: 30B 0.0s

�� CACHED [2/4] WORKDIR /app 0.0s

�� CACHED [3/4] COPY hello.txt . 0.0s

�� CACHED [4/4] RUN cat ��EOF > script.py 0.0s

�� exporting to image 0.0s

�� �� exporting layers 0.0s

�� �� writing image sha256:de797699e542f0fd08cd4321d434754334df8399d5b3c 0.0s

�� �� naming to docker.io/library/test�python:latest 0.0s

Creating images with Dockerfile

But no container.

Yet!

Your image should be available in your local environment now.

$ docker image ls test�python

REPOSITORY TAG IMAGE ID CREATED SIZE

test�python latest 39b47fff6145 45 minutes ago 71.1MB

$ docker ps �a ��f�lter ancestor=test�python:latest

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

You can use `docker container run` too (newer syntax)

$ docker run ��name test�python2 test�python:latest

Hello World

Or `docker container ps` ���

$ docker ps �a ��f�lter ancestor=test�python:latest

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAME

48ec9a91370e test�python:latest "python2 script.py" About a minute ago Exited (0) About a minute ago test

Volumes and persisting data

But what if you wanted to access output.txt ?

You can use a volume (similar to volumes in VM’s like VirtualBox!), and map the /tmp inside the container to a local directory.

The container runs a script with Python 2. This script writes to the stdout and to a file on /tmp/output.txt .` `

` `

$ ls

Dockerf�le hello.txt

` `

$ docker run ��rm �ti �v ${PWD}�/tmp test�python:latest

Hello World

$ ls

Dockerf�le hello.txt output.txt

Volumes and persisting data

※ NOTE: Avoid persisting data inside your container, see best practices slides.

Organize your container so that users can control input and output

(imagine your container is a stateless math function)

If a container goes down, for whatever reason, start a new one using the same shared volume. You can have multiple containers sharing the same

volume, you can mount volumes as readonly, and more.

You can even modify the hello.txt file.` `

$ echo "Hola Món" > earth.txt

In the host machine, it is `earth.txt`, but mapped as `hello.txt` in the guest.

$ docker run ��rm �ti �v ${PWD}/earth.txt:/app/hello.txt test�python:latest

Hola Món

Networking

You can modify the command (CMD) executed by a container.

Quick example to show how to expose a port in Docker.

` `

$ docker run ��rm �ti test�python:latest python2 �m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ���

CTRL + C

Run is now as a daemon

$ docker run ��rm �d test�python:latest python2 �m SimpleHTTPServer

cc38293a5265e609d76cd440b95e775175e6da72d03cccc098d8a35483e3878a

Note the `PORT` column!

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

cc38293a5265 test�python:latest "python2 �m SimpleHT…" 34 seconds ago Up 33 seconds nifty_elion

$ docker stop cc38293a5265

cc38293a5265

Networking

Specify a port to bind with `�p $HOST�$GUEST`

$ docker run ��rm �d �p 7000�8000 test�python:latest python2 �m SimpleHTTPServer

34be3a39dc27516805d9698581e34edbc0da6f1f0e7843090cd3218830dd1c88

Look at `PORT` now!

$ docker ps

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS

34be3a39dc27 test�python:latest "python2 �m SimpleHT…" About a minute ago Up About a minute 0.0.0.0�7000��8000/tcp,

Creating a Singularity container
You can write a Singularity file, download from Singularity Hub or Docker Hub, or use a local Docker image.

The chroot way��� you can write to it with ��writable

$ singularity build ��sandbox test�python docker�daemon:��test�python:latest

���

Or build a single container f�le to be loaded into memory��� (what I normally use)

$ sudo singularity build test�python.sif docker�daemon:��test�python:latest

INFO� Starting build���

2023/06/14 18�29�13 info unpack layer: sha256:c1f002e71ff26f48d9071266c88531cc7740de5f12a710395e68ea604ed4ff6a

2023/06/14 18�29�13 info unpack layer: sha256�7dfeae6c1959458377be7cb43c8d4bba4d64c09f2aa569b9806ef90ffa4bfae8

2023/06/14 18�29�13 info unpack layer: sha256:eae0303b3277085a9830077a7ff6e679ef772961676015d0418df72ac5de3582

2023/06/14 18�29�13 info unpack layer: sha256:e1a35eb1d0f6bcf41aef81ad625a2024de331991fc453573b6a4ab644f42aaf7

2023/06/14 18�29�14 info unpack layer: sha256:cdbb2ced0e763d99157788e6b3b1b04f63f442467a34cbfb35cd7ab6825f70da

2023/06/14 18�29�14 info unpack layer: sha256:f1cfa610d290fd7eaac1a5f60f8494c9703e042a2240b3b36eafa5e37c3f8ff5

2023/06/14 18�29�14 info unpack layer: sha256:fe2555b8984cba0a403a87269a257667fddc0f527231de75245d8fe9f2cf3c0d

INFO� Creating SIF f�le���

INFO� Build complete: test�python.sif

Creating a Singularity container

※ NOTE: You can convert Docker to Singularity. That does not mean everything will work automatically. Portability requires careful design (other examples: MPI, GPU.)

Singularity will mount your $HOME or $PWD (depending on the version) and use as the working directory. In the default configuration, the

system default bind points are $HOME , /sys:/sys , /proc:/proc , /tmp:/tmp , /var/tmp:/var/tmp ,

/etc/resolv.conf:/etc/resolv.conf , /etc/passwd:/etc/passwd , and $PWD .

The latter command gives you test�python.sif file. You can run the container now.` `

$ singularity run test�python.sif

/usr/local/bin/python2� can't open f�le 'script.py': [Errno 2] No such f�le or directory

$ singularity run ��pwd /app test�python.sif

Hello World

$ singularity shell test�python.sif

Singularity>

` ` ` `

` ` ` ` ` ` ` ` ` `

` ` ` ` ` `

Testing on the HPC

Something like

That’s that! You have a container that you can use on your laptop, in the cloud, or in an HPC. For other solutions that involve MPI or GPU they may

not be as portable.

But containerization is a useful skill to have in your tool-belt, especially if you collaborate with people from external institutions.

An exercise for you. Try running this, or another Docker → Singularity container on your HPC.

Upload it to some offline node, for example (or save to a NFS partition to use with computing nodes.)

bruno@bscearth000��� scp test�python.sif bsc32���@mn2.bsc.es:/home/bsc32/bsc32..../

Jump onto that host and load the Singularity module

bruno@bscearth000��� ssh bsc32....@mn2.bsc.es

bsc32....@login2��� module load Singularity

Run the container

bsc32....@login2��� singularity run ��pwd /app test�python.sif

Hello World

Deploying containers

You can deploy images locally (as you have seen in this talk)

You can deploy images to Docker Hub or Singularity Hub

You can deploy Singularity images to Singularity Registries (they can be installed as modules)

You can deploy images to Quay.io

You can deploy images to Biocontainers

AWS has a registry for containers, as well as Google Cloud, OpenStack

You can deploy to Docker Swarm

You can deploy images to Kubernetes

You can deploy images to GitHub Packages (limitations for free projects apply)

…

Container orchestration ({Docker, Singularity} Compose,
Kubernetes, …)

They provide tools for deploying pods and using containers, and for scaling, networking, securing, and maintaining containerized applications.

Docker Compose, and Singularity Compose are tools that also can be used to manage clusters of containers. Users can declare how the containers

must be created and interlinked (networking, volumes). Useful when deploying more than 1 container locally or remotely (especially if sharing with

others).

There are other tools, some offered by cloud providers like AWS.

Docker Swarm and Kubernetes are example of container orchestration tools.

Best practices

Docker development
1. Keep your images small

(For Cloud environments it is important, but for HPC not so much)

Use a smaller image for production, but additional debug tooling added for troubleshooting

Use multistage builds (※ !) and leverage the build cache

Use docker image history $image to view the layers in your image

2. Use official images where possible

3. Create ephemeral containers

4. Manage your build context (see .dockerignore)

5. Avoid storing application data in the container

Use volumes or bind mounts

6. Limit each container to one process and application (whenever that is possible)

7. Add labels to add metadata to your image (license, author, release information, etc.)

8. Use RUN set �o pipefail �� cmd1 | cmd2 if you want to use pipes (Docker uses /bin/sh �c)

9. Declare network ports used in EXPOSE

10. Expose environment variables for the software with ENV

11. COPY is preferred over ADD whenever possible

12. Portability and reproducibility are hard. Test it! (Developing containers is software development!)

1. This is omitted from the current version of this presentation, but it is an important Docker concept. ↩

[1]

` `

` `

` ` ` `

` `

` `

` ` ` `

https://docs.docker.com/build/building/multi-stage/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/#leverage-build-cache

References

Docker development best practices

Best practices for writing Dockerfiles

Image-building best practices

Security best practices

DestinE Barcelona Coding Sprint CSC presentation

Best practices for building and running Docker and Singularity containers

These slides are based on (links with underscore):

https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/get-started/09_image_best/
https://docs.docker.com/develop/security-best-practices/
https://www.admin-magazine.com/mobile/HPC/Articles/More-Best-Practices-for-HPC-Containers

Thank you

bruno.depaulakinoshita@bsc.es

Security

Use official images

Use the right context

Use secrets to store sensitive application data

If you are using a :latest base image, rebuild your image to get the latest updates

Use security scanning tools to check your image for vulnerabilities

WIP, more to come!

` `

https://docs.docker.com/engine/swarm/secrets/

Singularity and Docker

Singularity has a single file, simplified I/O

Simplified security model, more compatible with HPC

Easier to work with Slurm (Docker has a daemon)

Con Singularity

Docker has a wider user/knowledge base

Docker is used by many types of software developers

Docker has more containers ready-to-use

Other possible issues

Singularity had a big rewrite from C to Go

Singularity modified its file format (OCI should change it)

Singularity, Singularity CE & Apptainer

Most HPC centers have their own set of instructions for users to use Singularity, e.g. Running MPI apps on Singularity at BSC MN4

Pro Singularity

https://www.bsc.es/supportkc/blog/

HPC Examples

hzdr.de recipe for Slurm in Docker https://codebase.helmholtz.cloud/fwcc/slurm-in-docker

Sweden’s PDC center for HPC instructions on using Singularity https://www.pdc.kth.se/support/documents/software/singularity.html

NeSI (New Zealand) Knowledge Base entry on using Singularity https://support.nesi.org.nz/hc/en-gb/articles/360001107916-Singularity

NCAR recipes for WRF with Docker https://github.com/NCAR/WRF_DOCKER & https://github.com/NCAR/container-wrf

Singularity docs for MPI https://docs.sylabs.io/guides/latest/user-guide/mpi.html

Auburn HPC docs about MPI and Slurm with Singularity

https://hpc.auburn.edu/hpc/docs/hpcdocs/build/html/easley/containers.html#parallel-mpi-code

Pawsey repository with container recipes (conda, mpi, OpenFoam, etc.) https://github.com/PawseySC/pawsey-containers/tree/master

IFCA (ES) Docker containers for Distributed Training of Deep Learning Algorithms in HPC Clusters https://github.com/IFCA/workflow-DL-HPC/

CANOPIE-HPC 2023 https://canopie-hpc.org/cfp/

https://codebase.helmholtz.cloud/fwcc/slurm-in-docker
https://www.pdc.kth.se/support/documents/software/singularity.html
https://support.nesi.org.nz/hc/en-gb/articles/360001107916-Singularity
https://github.com/NCAR/WRF_DOCKER
https://github.com/NCAR/container-wrf
https://docs.sylabs.io/guides/latest/user-guide/mpi.html
https://hpc.auburn.edu/hpc/docs/hpcdocs/build/html/easley/containers.html#parallel-mpi-code
https://github.com/PawseySC/pawsey-containers/tree/master
https://github.com/IFCA/workflow-DL-HPC/
https://canopie-hpc.org/cfp/

Workflow Managers

cwltool, reference CWL runner, uses containers (docker/udocker/podman/singularity) to isolate tasks (Cylc does so without containers)

Snakemake supports Docker and singularity too

Workflow Managers normally support Docker, and then add support to Singularity later. Science/Research Workflow Managers may be an

exception to this rule.

In some workflow managers users must decide if, and how to use containers (e.g. Autosubmit, Cylc, ecFlow)

Other

https://container-in-hpc.org/ (they have a Slack channel too)

#containers channel in Slack/Mattermost/etc.

https://container-in-hpc.org/

