
Profiler integration in
Autosubmit 4

Pablo Goitia González

Computational Earth Sciences Group | August 4th, 2023 Meeting

Why Autosubmit needs a profiler?

● Measure the performance of Autosubmit.

● Detect bottlenecks that hinder performance.

● Reduce energy consumption.

● Improve code quality, in general.

Find the docs here! 👇
https://autosubmit.readthedocs.io/en/master/userguide/profiler.html

https://autosubmit.readthedocs.io/en/master/userguide/profiler.html

Fundamentals

● Mainly uses cProfile, pstats and psutil libraries.
https://docs.python.org/3/library/profile.html
https://psutil.readthedocs.io/en/latest/

● Assumable overhead.

● cProfile works on a single thread.

● Key: Make it as simple as possible.

https://docs.python.org/3/library/profile.html
https://psutil.readthedocs.io/en/latest/

How it works? Scope.

Specially designed to be executed with the autosubmit run command!

● The structure of the code works as a simple state machine.

How can I profile myself?

Step 1: Make sure that your AS version integrates the profiler (AS>v4.0)

Step 2: Run the autosubmit run command as you always did, but adding
the --profile or -p flag, as follows:

autosubmit run --profile <EXPID>

● You will receive a full performance report on the console.

● This report will also be stored in the <EXPID>/tmp/profile directory in two
separate files, a text file and a .prof binary that can be manipulated with
external tools.

Post-processing

● There are many tools to do it! Pstats, for example.

● But I highly recommend you to use SnakeViz.
https://jiffyclub.github.io/snakeviz/

Want to see or manipulate the contents of the .prof file?

Images from https://jiffyclub.github.io/snakeviz/

https://jiffyclub.github.io/snakeviz/
https://jiffyclub.github.io/snakeviz/

How to profile a specific section of code?

Remember the status diagram. Just place in the code…

Instantiate the profiler, passing the EXPID as parameter, and start
the execution.

AUTOSUBMIT RUN FUNCTION

Reminder: This profiler’s scope is the autosubmit run command.

if profile:

profiler = Profiler(expid)

profiler.start()

[more tons of code…]

if profile:

profiler.stop()

Terminate the execution, preferably in a section of code that
always executes even if a critical failure occurs, such as within a
finally clause.

Yes, but… What if I want to profile a section out
from the “run” function?

You are a programmer, there is (almost) nothing impossible for you, but keep in mind that this profiler was
made specially for the Autosubmit Run function.

That means…
The profiler inherits the cProfile library characteristics, and that means that works on a single thread. If you
use it over multiple threads or synchronized sections, the results will be far from accurate.

The EXPID restriction: the profiler requires your the ID of your experiment to know where to save the output
files. You could bypass this restriction just passing as parameter another string when you plan to run it in a
function that does not use it.

BE CAREFUL!

Demo time! :)

Thanks!

pablo.goitia@bsc.es | Models and Workflows Team

