@a
2
@D
2
s
=
@
s
~
D
&
<
=
)
k=]

Boosting performance in Machine Learning
of Turbulent and Geophysical Flows via scale separation

Davide Farandal:23,
Mathieu Vrac!, Pascal Yiou?!, Flavio Maria Emanuele Pons!, Adnane Hamidl,
Giulia Carellal, Cedric Gacial Ngoungue Langue?!, Soulivanh Thao! and
Valerie Gautard4

1 LSCE, IPSL, CNRS, CEA Paris Saclay, Université Paris Saclay, UVSQ, Gif-sur-Yvette,France
2 London Mathematical Laboratory, London, United Kingdom
3 LMD, ENS Paris, France
4 IRFU CEA Paris Saclay, Gif-sur-Yvette, France

Machine Learning for Geophysical Flows davide.faranda@cea.fr



https://meetingorganizer.copernicus.org/EGU2020/EGU2020-7569.html
https://meetingorganizer.copernicus.org/EGU2020/EGU2020-7569.html

MACHINE LEARNING IN SCIENCE

N |

Neurosciences Genomics

o -

-Complex Systems
-Multiple Spatial and time Scales
-Large Availability of Training Data

-Missing Equations of State
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MACHINE LEARNING IN CLIMATE SCIENCE (@
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-Complex Systems
-Multiple Spatial and time Scales

-Large Availability of Training Data
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-Missing-Equations-ef-State-(we have Navier-Stokes egs.)
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WHICH SCIENTIFIC PROBLEM?

NCEP sea-level-pressure 6h

Task: forecast and generate a sea-level pressure forecast and its long

term statistics to mimic that of the NCEP reanalysis.
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WHICH TECHNIQUE?
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Type of Learning Categories of Algorithms
R Support Discriminant
Classification Vector Analysis Nalve Bayes Nrieia:lebsgr
. Machines 9
Supervised
Learning
Linear :
- s SVR, Ensemble Decis
Regression Regc;f_swslm" GPR Methods Tree

Machine
Learning

Gaussian
Mixture

kMeans, kmedoids

Unsupervised Fuzzy C-Means

Learning /
& “

Pathak et al.— Phys. Rev. Lett. 2018
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-Echo State Network for chaotic Systems
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-Forecasts beyond the Lyapunov time!
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ECHO STATE NETWORKS + RECURRENCE

Lorenz 1963 equations

Input serial data A Lorenz Attractor
a = o(y — z),
/\,J,\/_ I 60
dy | ®
— =7 z X 0 2
dt (p ) — Y ll 0 2
20
f 10

& dz 3 A
— =Ty — p=. T
o dt .
. A model of atmospheric convection o
-20 _ — 0 &

X(t) is a L dimensional vector

-Variables need to be standardized

:ZC (t) ECHO STATE NETWORK T (t _I_ dt)
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ECHO STATE NETWORKS + RECURRENCE

Input serial data Input layer

W:,, Is a matrix LxN

-L is the number of variables.
-N is the network size

/W Random, Each lines consists of random

f fixed weights uniform in [-0.5,+0.5]
input
weights
ECHO STATE NETWORK
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ECHO STATE NETWORKS + RECURRENCE

Input serial data Input layer Reservoir |/,

W is NXN matrix

-N is the network size
-Activation function is
tanh

Each lines consists of

Random, random weights
f fixed Random, fixed uniform in [-0.5,+0.5]
input recurrent
weights connections
ECHO STATE NETWORK
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ECHO STATE NETWORKS + RECURRENCE

Input serial data Input layer Reservoir ‘ 1 / Output layer

/\’\/‘/\/\J A Trained (morphable)
Random, output weights

? fixed Random, fixed
input recurrent
weights connections

W, ..+ 1S a matrix NxL

-Optimized during the training with a Ridge regression
so that the output matches x(t+dt)
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ECHO STATE NETWORKS + RECURRENCE

Input serial data Input layer Reservoir 14,

.

Trained (morphable)

Random, output weights

""V?

fixed Random, fixed
input recurrent
weights connections

x(t + dt) = tanh(Wax(t) + Wi, Wourx(t))
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FIRST TRIALS ON SEA-LEVEL PRESSURE

Network Size= 200 Neurons, Learning Time = 10 years Forecast Length = 10 years

a) Target after 24000h b) forecast after 24000h

1040 1040

1030 1030

At long time, the
dynamics is stuck,
It does not look
realistic anymore
(independently on
the chosen
parameters)

1020 1020

1010 1010

1 1000 < 1000

990 990

980 980

970 970

960 960

Similar results: Scher & Messori (2018,2019), Dueben & Bauer (2018)

=> We need to take one step back to assess what is wrong
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TEST SYSTEMS
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Lorenz 1963 equations

d:I‘: Lorenz Attractor

T U(y - 33).’

dt =

dy 50

5 =P —2) -y o 2
20

dz 10

— =Yy — PDZ.

a WP

A model of atmospheric convection o

=10
Xag. 10 o i 3
1 | | , |
—_ _ 0.8 l _ !:
Pomeau Manneville intermittent map 1L | | |
0.6 | \ -
Xy = Xp_1(1 4 2Px,_;) if x, <.5 il 04 \ | ‘ ’
Xp = 2Xp_1—1 if x, >.5 ' ’
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DANGER #1: LEARNING TIME
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DANGER #1: LEARNING TIME
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DANGER #2 NOISE & INTERMITTENCY

Additive noise to the Lorenz 1963 equations & Pomeau-
Manneville Intermittent map:

x(t + dt) = f(x(t)) + €&(t)

where £(t) is a random variable uniform in [-0.5 0.5]

Lorenz Pomeau - Manneville
1 - - - - 1
100 100
& o
= 200 @ -
= - 200 N5
300 100
400
400 0
4 -4 -2 0 5 4 2 0
log(e) log(e)

Percentage of failure in reproducing the attractor

(0 means never fail, 1 means always fail)
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POSSIBLE SOLUTION: SCALE SEPARATION (&l |8

1) Filter the noise

There are countless methods, but we use the
simplest possible one:

Moving Average filter with window size:
ws KT
where t Is the Lyapunov time

2) Apply Echo State Network to the filtered system only

3) Add back the residual to the forecast
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IMPROVEMENTS FOR LOW D SYSTEMS

Percentage of failure in reproducing the attractor
(0 means never fail, 1 means always fail)

No Filter Moving average
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IMPROVEMENTS FOR LOW D SYSTEMS
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TEST ON NCEP SEA-LEVEL PRESSURE

Network Size= 200 Neurons, Learning Time = 10 years Forecast Length = 10 years

Target No Filter Mov Av ws=12h
1030 |

980

970

960

For the short term forecast, there is no much improvement
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TEST ON NCEP SEA-LEVEL PRESSURE

Network Size= 200 Neurons, Learning Time = 10 years Forecast Length = 10 years

No Filter
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Mov Av ws=12h
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1000

If we look at the long term behavior, it is evident that the
simulation with moving average is more realistic
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SPACE TIME STATISTICS
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A MORE QUANTATIVE ASSESSMENT

Distance
from the
NCEP data
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CONCLUSIONS

1)

2)

3)

It is not straightforward to apply Machine Learning
techniques to geophysical flows: turbulence and
intermittency worsen the performance

Partial predictability can be recovered by separating
large from small scale dynamics (e.g moving average,
PCA, wavelets)

Possible developments will largely benefit from
interactions with the stochastic dynamical systems
community
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