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Unsupervised

Clustering Dimensionality reduction Density estimation

Supervised

Regression Classification
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Learningtransfer
functionsfor simulating

precipitation fields



Imageto imagetranslation

cGAN, Mirza & Osindero 2014

U-NET, Ronneberger et al. 2015

Learning the mapping 

(transfer function) 

between an 

input image and an 

output image (or 

between data 

modalities)

Isola et al. 2017

... and other generative models proposed in the last few years



Transferfuncions for precipitation

Rozas et al. 2019

ñA data-driven approach to 

precipitation parameterizations

using convolutional encoder-

decoder neural networksò

ERA Interim

geopotential

Models for I2I translation tested: 

Segnet, VGG16, U-NET



ERA5 first tests

From ERA 5 (WeatherBench) geopotential to ERA 5 precipitation
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ERA5 first tests
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From ERA 5 (WeatherBench) specific humidity to ERA 5 precipitation


