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OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FDR YEARS.

71

STRUGGLE NO MORE!
IT'™M HERE TO SOLVE
IT JIITH ALGORITHI?S!

M 51X MONTHS LATER: [

WOW, THIS PROBLEM
15 REHU.Y HARD,

WMS&V
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https://xkcd.com/1831/



MOTIVATION

Weather
Forecasts

“The prediction desert”

Subseasonal to
seasonal (S2S)

Decadal
Predictions

Climate
Projections

./alue problem
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Based on Fig. 2 (Box 11.1) in AR5-WG1.



INTRODUCTION

Polar Vortex

= Motivation:
Improved understanding of teleconnections is
key to reduce and communicate uncertainties
about regional weather and climate predictions

v

= Typical questions: ,_pENSO/ MIQ:
How much does ENSO contribute to Ly _\v\f g

temperature variability in region A?

Which processes drive precipitation in region B? \‘\
\‘ \‘ J"\h
» Challenge: \jz\\ N

Extracting the (causal) information from data




OVERVIEW

Data Science

Machine
Learning

Causal
Inference

P
<

Deep
Learning

Part 1: Causal Inference
Quantifying causal effects
from data

Part 2: Causal Discovery
Learning causal structures
from data

A (non-exhaustive) Venn Diagram of Data Science




Judea Pearl

[...] deep learning, | see they’re all stuck there on the level of associations. Curve fitting. [...]
no matter how skillfully you manipulate the data [...], it’s still a curve-fitting exercise, albeit
complex and nontrivial.

JUDEA PEARL
WINNER OF THE TURING AWARD
AND DANA MACKENZIE

Yann LeCun THE
BOOK OF

WHY

At

THE NEW SCIENCE

[...] sometimes people have accurate models of a i B s
phenomenon without any intuitive explanation or .
causation [...] sometimes, requiring explainability is
counterproductive.




Machine
Learning

Part 1: Causal Inference
Quantifying causal effects from data

Deep
Learning




TELECONNECTIONS

AMS Definition

A significant [...] correlation in [...] widely
separated points.

[...] the name refers to the fact that such
correlations suggest that information is

propagating [...].

Problem

Large gap between

our physical understanding (= causal) and

our statistical description (= correlational)

of teleconnections.

How can we reconcile correlations with causation?




CAUSALITY IN STATISTICS

Example

X: Pressure Y: Barometer

Intervening in Y will not change X:
P(X | do(Y) =y) = P(X)

Intervening in X will cause changes in Y:
P(Y | do(X) =x) # P(Y)

X causes Y, if intervening in X
(while keeping everything else fixed)
changes Y

P(Y | do(X) =x) # P(Y)

Causal Inference:
Predict the effect of an intervention
from data
(without actually doing the intervention)

Causal knowledge (e.g. X -->Y) is required!

J. Pearl, “Causality” (2000)



TOY EXAMPLE

What h toYif Xisch dtox=17?
athappensto YT A5 changed tox We want the interventional cond. distribution

P(Y | do(X) =1)

We can only compute the observational cond.
distribution
P(Y|X=1)

But these are usually not the same
P(pressure| barom. =1) # P(pressure | do(barom.) = 1)

Answer is only possible if we have
causal knowledge about the
mechanisms that generated the data

Source: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/ 10



TOY EXAMPLE

What happens to Y if X is changed to x =1?

Expert knowledge

X — Y

31 Quantify effect from data
. 2] X=g,
oo Y:O.S*X+2+z-:y
<
[} .l:

. . 1 Answer causal questions

P(Y | do(X)=1) =P(Y | X=1)




EXAMPLE 1: COMMON DRIVER

(JJA mean, NCEP)

Precipitation in Denmark and the
Mediterranean are significantly correlated

—> Corr(DK, MED | NAO) = 0.001
DK and MED are independent conditional on NAO

DK=-0.55NAO +¢
MED = +0.42 NAO +¢

The causal effect explains the association

-0.25 = -0.55 * 0.42

Kretschmer et al. (in revision at BAMS)
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EXAMPLE 2: MEDIATOR

What is the effect of ENSO on California
precipitation?

CA=0.0ENSO +0.81 Jet +¢

Correct way:
CA=0.24ENSO +¢

Or via product along pathway:

Jet=0.29 ENSO + ¢ CA=0.81Jet +¢

0.29 * 0.81 = 0.24

(DJF mean, NCEP)

Kretschmer et al. (in revision at BAMS) 13



EXAMPLE 3: INDIRECT AND DIRECT EFFECTS

(OND mean, NCEP)

Total effect of ENSO on Jet

Jet=0.14 ENSO +¢

Direct (tropospheric) pathway:
Jet =0.04 ENSO +0.39SPV + ¢

Indirect (stratospheric) pathway:

SPV =0.26 ENSO + ¢
Jet =0.39SPV + 0.04 ENSO + ¢

0.10 =0.26 * 0.39
tropo + strato = 0.04 + 0.10

Total = -

Kretschmer et al. (in revision at BAMS)
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EXAMPLE 4: INFLUENCE OF SEA ICE ON THE POLAR VORTEX

SPV)em = @ BK-SICyp + Ural-SLP¢o + €

We estimate a for each model in the historical CIMP5 runs (1900-2005)

BK-SIC - SPV
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Mean causal effect is only very small, a = 0.05
but has large implications for the future SPV

Kretschmer et al., WCD (2020)
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EXAMPLE FROM NWP

D: dlurnal/synoptlc

R Resolution

Recerved: 23 Uctober 2019 | Revised: 7 March 2020 | Accepted: Y March 2020 | Published on: 5 May 2020 COl’ldl[lOl’N
DOL: 10.1002/qj.3788

Quarterly Journal of the ERMets

Royal Meteorological Society
RESEARCH ARTICLE
Cold-pool-driven convective initiation: using causal graph m
analysis to determine what convection-permitting models
are missing
Mirjam Hirt' © | George C. Craig! | Sophia A. K. Schiifer? | Julien Savre! | Rieke Heinze? \ B: Buoyancy

(95%11e)

G: Gustfront
u-massflux '
\ (mean) |
Causal network of how resolution can
impact convective initiation )
P: P[CT]
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STEPS OF CAUSAL INFERENCE (= “KNOWLEDGE GUIDED STATISTICS”)

1. Use expert knowledge to 2. Draw logical
set a (plausible) causal implications and test
model if data support them

“ U and V must be
a independent
conditioned on X
“ ULV]|X
linear:
Corr (U, V| X)=07

3. Use Cl rules to
estimate causal
effects

To estimate the causal
effect from X to Y, need
to control for Z

P(Y |do(X)) =P(Y | X, 2)

linear:
Y=aX+bZ

Pearl (2000), Pearl & Mackenzie (2018), Pearl (2013)
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Machine
Learning

Causality

Deep
Learning

Part 2: Causal Discovery
Learning causal structures from data
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CAUSAL DISCOVERY

Input: Time-series data

vt len A T@ﬂml_,'lw_/\,. ~,‘,._,)\_,‘J\,_;ul,JL.NI"I_ - A T w_,v.,
Ay ‘,{""ql‘“w’“"ﬁ"‘ My '”""A\r'-mfw ity

AN g A At Vg™

0000,

.’\U’\U"wr‘w‘\/‘wﬁ'& i A sl an ‘.\rﬁ"'w

Causal Discovery

PCMCI Algorithm

Iterate through
«v Bt | combinations of
conditions

corr(A

Can deal with auto-correlation,
regime-dependence,
instantaneous links, ...

Output: Causal Structure

Runge et al. (2019), Kretschmer et al. (2016, 2018, 2019), Saggioro et al. (2020), phython code: jakobrunge.github.io/tigramite 19



EXAMPLE: ENSEMBLE SUBSAMPLING

“Predictors and prediction skill for marine cold air outbreaks over the Barents Sea”

Normalized Barents Sea AMCAO "7

DJ F IOCQST Scand-2500 4
3

| §
1
2r7
Gr-2500 1 MCAOm e
L] .
— ERA-Interim Ensemble members
e COR=0.27 —  Ensemble mean Ensemble members subsampled

COR=0.57 — Ensemble mean subsampled === First guess (COR = 0.58)

6
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Polkova et al. (in revision, QJRMS)



LINKS TO MACHINE LEARNING

Input: Gridded Climate data Causal Discovery Output: Causal Structure

PCMCI Algorithm

Iterate through
corr(A.y B, | combinations of )
. . conditions
Machine Learning
@ A APy g Can deal with auto-correlation, H a

regime-dependence,

Ao A i o : .

° instantaneous links, ...
@ AN ot g AP Aot g

@ ANt A appeodegethes b

Kretschmer et al., GRL (2018), Lehmann et al, GRL (2020), Pfleiderer et al. WCD (2020), Di Capua et al., ESD (2019), Polkova et al. (in revision) 21



APPLICATIONS (DOMAIN KNOWLEDGE REQUIRED)

Indian Summer Monsoon

Di Capua et al. (2019), ESD

Hurricane Activity  prleiderer et al. (2020), wep

(b)
SST1
VWS
SST 2
=0:8 =06 04 502 0.0/ 02% 10:4; 0.6 08 00 04 08 ~0.8-04 00 0.4 0.8
Correlation Auto-dependence Link strength

Morocco Crop yield (chmann et al. (2020), Gre

December
- .
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SUMMARY

Part 1: Causal Inference
Quantifying causal effects from data

Domain expertise is explicitly built in and guides
the data analysis

&)

. &
J. N\
| 5

ENSO 'Y
MIO 4

Easy and traceable approach to quantifyy
teleconnection pathways (e.g. Using MLR)

Part 2: Causal Discovery
Learning causal structures from data

() roripp iy
ﬁWWWqWMMMWWWW
@ AN Mg A Aot ALV g™

@ I\ st oo eg st

Causal discovery algorithms can help to
close knowledge gaps and to test
hypotheses
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OUTLOOK Thank You!

OUR FIELD HASBEEN || STRUGGLE NO MORE! SX TONTHS LATER
STRUGGLING WITHTHIS | | T™M HERE TO SOLVE WL, THIS PROBLEM
PROBLEM FOR YEARS. T \JITH ALGORITFHIG! 15 REHLLYW
}wmsar
There is a rich literature on causal
inference but so far only few
applications to climate science
problems
Causal Networks as a framework to reconcile physics with Combining causality with ML/DL
data science. (e.g. to quantify causal effects) is a
cutting edge research topic
Key to build fully interpretable ML models for high-stake
decision making?
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