

CAUSAL INFERENCE AND CAUSAL DISCOVERY IN CLIMATE SCIENCE

Marlene Kretschmer¹

Ted Shepherd¹, Elena Saggioro¹, Alberto Arribas², Rachel Prudden², Niall Robinson², Sam Adams²

¹University of Reading, ²Met Office Informatics Lab

"The prediction desert"

Weather Forecasts	Subseasonal to seasonal (S2S)	Decadal Predictions	Climate Projections
Initial value problem			
			Boundary condition problem

INTRODUCTION

Motivation:

Improved *understanding* of teleconnections is key to reduce and communicate uncertainties about regional weather and climate predictions

Typical questions:

How much does ENSO contribute to temperature variability in region A? Which processes drive precipitation in region B?

Challenge:

Extracting the (causal) information from data

Judea Pearl

[...] deep learning, I see they're all stuck there on the level of associations. Curve fitting. [...] no matter how skillfully you manipulate the data [...], it's still a curve-fitting exercise, albeit complex and nontrivial.

Yann LeCun

[...] sometimes people have accurate models of a phenomenon without any intuitive explanation or causation [...] sometimes, requiring explainability is counterproductive.

JUDEA PEARL WINNER OF THE TURING AWARD AND DANA MACKENZIE

Part 1: Causal Inference Quantifying causal effects from data

AMS Definition

A significant [...] <u>correlation</u> in [...] widely separated points.

[...] the name refers to the fact that such <u>correlations suggest that information is</u> <u>propagating [...]</u>.

Problem

Large gap between our physical understanding (= causal) and our statistical description (= correlational) of teleconnections.

How can we reconcile correlations with causation?

CAUSALITY IN STATISTICS

Example

X: Pressure

Y: Barometer

Intervening in Y will *not* change X: $P(X \mid do(Y) = y) = P(X)$

Intervening in X will cause changes in Y: $P(Y \mid do(X) = x) \neq P(Y)$ X causes Y, if intervening in X (while keeping everything else fixed) changes Y

 $\mathsf{P}(\mathsf{Y} \mid do(X) = \mathsf{x}) \neq \mathsf{P}(\mathsf{Y})$

Causal Inference: Predict the effect of an intervention from data (without actually doing the intervention)

Causal knowledge (e.g. X --> Y) is required!

TOY EXAMPLE

What happens to Y if X is changed to x = 1?

We want the *interventional* cond. distribution P(Y | do(X) = 1)

We can only compute the *observational* cond. distribution P (Y | X = 1)

But these are usually not the same P(pressure | barom. = 1) ≠ P(pressure | do(barom.) = 1)

> Answer is only possible if we have <u>causal knowledge</u> about the mechanisms that generated the data

TOY EXAMPLE

What happens to Y if X is changed to x =1?

EXAMPLE 1: COMMON DRIVER

(JJA mean, NCEP)

Precipitation in Denmark and the Mediterranean are significantly correlated

Corr(DK, MED) = -**0.25**

 \rightarrow Corr(DK, MED | NAO) = 0.001 DK and MED are independent conditional on NAO

 $DK = -0.55 \text{ NAO} + \varepsilon$ $MED = +0.42 \text{ NAO} + \varepsilon$

The causal effect explains the association

-0.25 **≈ -0.55 * 0.42**

EXAMPLE 2: MEDIATOR

What is the effect of ENSO on California precipitation?

 $CA = 0.0 ENSO + 0.81 Jet + \epsilon$

Correct way: CA = 0.24 ENSO + ϵ

Or via product along pathway: Jet = 0.29 ENSO + ϵ CA = 0.81 Jet + ϵ 0.29 * 0.81 = 0.24

(DJF mean, NCEP)

EXAMPLE 3: INDIRECT AND DIRECT EFFECTS

(OND mean, NCEP)

 $\frac{\text{Total effect of ENSO on Jet}}{\text{Jet} = 0.14 \text{ ENSO } + \epsilon}$

 $\frac{\text{Direct (tropospheric) pathway:}}{\text{Jet} = 0.04 \text{ ENSO } + 0.39 \text{ SPV} + \epsilon}$

Indirect (stratospheric) pathway: SPV = 0.26 ENSO + ε Jet = 0.39 SPV + 0.04 ENSO + ε 0.10 = 0.26 * 0.39 tropo + strato = 0.04 + 0.10 Total = 0.14

EXAMPLE 4: INFLUENCE OF SEA ICE ON THE POLAR VORTEX

 $SPV_{JFM} = a BK-SIC_{OND} + Ural-SLP_{SON} + \epsilon$

We estimate **a** for each model in the historical CIMP5 runs (1900-2005)

Mean causal effect is only very small, **a** ≈ 0.05 but has large implications for the future SPV

Kretschmer et al., WCD (2020)

EXAMPLE FROM NWP

Received: 23 October 2019 | Revised: 7 March 2020 | Accepted: 9 March 2020 | Published on: 5 May 2020

DOI: 10.1002/qj.3788

Quarterly Journal of the Royal Meteorological Society

RESEARCH ARTICLE

Cold-pool-driven convective initiation: using causal graph analysis to determine what convection-permitting models are missing

Mirjam Hirt¹ 💿 | George C. Craig¹ | Sophia A. K. Schäfer² | Julien Savre¹ | Rieke Heinze³

Causal network of how resolution can impact convective initiation

STEPS OF CAUSAL INFERENCE (= "KNOWLEDGE GUIDED STATISTICS")

1. Use expert knowledge to set a (plausible) causal model

2. Draw logical implications and test if data support them

U and V must be independent conditioned on X U L V | X

linear: Corr (U, V | X)= 0 ? 3. Use CI rules to estimate causal effects

To estimate the causal effect from X to Y, need to control for Z

P(Y |do(X)) = P(Y | X, Z) linear: Y = a X + b Z

Part 2: Causal Discovery

Learning causal structures from data

CAUSAL DISCOVERY

Input: Time-series data

where the second and the second

Monorgan war war when

Causal Discovery

PCMCI Algorithm

lterate through corr(A_{t-τ}, B_t | combinations of) conditions

Can deal with auto-correlation, regime-dependence, instantaneous links, ...

Output: Causal Structure

EXAMPLE: ENSEMBLE SUBSAMPLING

"Predictors and prediction skill for marine cold air outbreaks over the Barents Sea"

LINKS TO MACHINE LEARNING

Causal Discovery

PCMCI Algorithm

Iterate through corr(A_{t-τ}, B_t | combinations of) conditions

Can deal with auto-correlation, regime-dependence, instantaneous links, ...

Output: Causal Structure

APPLICATIONS (DOMAIN KNOWLEDGE REQUIRED)

Indian Summer Monsoon

Di Capua et al. (2019), ESD

Hurricane Activity

Pfleiderer et al. (2020), WCD

Morocco Crop yield Lehmann et al. (2020), GRL

December

SUMMARY

OUTLOOK

Thank You!

Causal Networks as a framework to reconcile physics with data science.

Key to build fully interpretable ML models for high-stake decision making?

There is a rich literature on causal inference but so far only few applications to climate science problems

Combining causality with ML/DL, (e.g. to quantify causal effects) is a cutting edge research topic