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MOTIVATION
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Initial value problem

Boundary condition problem

Weather 
Forecasts

Climate
Projections

Subseasonal to 
seasonal (S2S)

Decadal
Predictions

“The prediction desert”

Based on Fig. 2 (Box 11.1) in AR5-WG1.



INTRODUCTION
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Polar Vortex

ENSO/ MJO

QBO

Sea Ice

Snow cover

▪ Motivation:
Improved understanding of teleconnections is 
key to reduce and communicate uncertainties 
about regional weather and climate predictions

▪ Typical questions: 
How much does ENSO contribute to 
temperature variability in region A? 
Which processes drive precipitation in region B? 

▪ Challenge: 
Extracting the (causal) information from data 

Monsoon



OVERVIEW
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Machine 
Learning

Deep 
Learning

Part 1: Causal Inference
Quantifying causal effects 

from data

Part 2: Causal Discovery
Learning causal structures

from data

Causal 
Inference

Data Science

A (non-exhaustive) Venn Diagram of Data Science



[…] sometimes people have accurate models of a 
phenomenon without any intuitive explanation or 
causation […] sometimes, requiring explainability is 
counterproductive.

[…] deep learning, I see they’re all stuck there on the level of associations. Curve fitting. […]
no matter how skillfully you manipulate the data [...], it’s still a curve-fitting exercise, albeit 
complex and nontrivial.

Yann LeCun

Judea Pearl
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Part 1: Causal Inference
Quantifying causal effects from data



TELECONNECTIONS

AMS Definition 

A significant [...] correlation in [...] widely 
separated points.

[...] the name refers to the fact that such 
correlations suggest that information is 

propagating [...].

8

Problem

Large gap between

our physical understanding (= causal) and 

our statistical description (= correlational)

of teleconnections. 

How can we reconcile correlations with causation?



CAUSALITY IN STATISTICS
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X: Pressure Y: Barometer

X causes Y, if intervening in X 
(while keeping everything else fixed)

changes Y

P(Y | do(X) = x) ≠ P(Y)

Example

Intervening in Y will not change X:
P(X | do(Y) = y) = P(X)

Intervening in X will cause changes in Y:
P(Y | do(X) = x) ≠ P(Y) 

Causal Inference:
Predict the effect of an intervention

from data
(without actually doing the intervention)

J. Pearl, “Causality” (2000)

Causal knowledge (e.g. X --> Y) is required!



TOY EXAMPLE
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Answer is only possible if we have
causal knowledge about the 

mechanisms that generated  the data

We want the interventional cond. distribution
P(Y | do(X) = 1)

We can only compute the observational cond. 
distribution
P (Y | X = 1) 

But these are usually not the same
P(pressure| barom. = 1) ≠ P(pressure | do(barom.) = 1) 

Source: https://www.inference.vc/causal-inference-2-illustrating-interventions-in-a-toy-example/

What happens to Y if X is changed to x =1? 



TOY EXAMPLE
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X Y

P(Y | do(X) = 1) = P(Y | X= 1)  

Expert knowledge

X = ɛx

Y = 0.5 * X + 2 + ɛy

Quantify effect from data

Answer causal questions

What happens to Y if X is changed to x =1? 



EXAMPLE 1: COMMON DRIVER
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(JJA mean, NCEP)

DK = - 0.55 NAO + ɛ

MED = +0.42 NAO + ɛ

The causal effect explains the association

-0.25 ≈ -0.55 * 0.42

Precipitation in Denmark and the 
Mediterranean are significantly correlated

Corr(DK, MED) = -0.25

DK and MED are independent conditional on NAO

→ Corr(DK, MED | NAO) = 0.001

-0.55

0.42

Kretschmer et al. (in revision at BAMS)



EXAMPLE 2: MEDIATOR
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(DJF mean, NCEP)

CA = 0.0 ENSO + 0.81 Jet  + ɛ

0.29 * 0.81 = 0.24

CA = 0.81 Jet + ɛ

What is the effect of ENSO on California 
precipitation?

Correct way: 

Jet = 0.29 ENSO + ɛ

CA = 0.24 ENSO + ɛ

Or via product along pathway:

0.29

0.81

Kretschmer et al. (in revision at BAMS)



14

(OND mean, NCEP)

Jet = 0.14 ENSO  + ɛ

Jet = 0.04 ENSO  + 0.39 SPV + ɛ

SPV = 0.26 ENSO + ɛ

0.10 = 0.26 * 0.39

Total effect of ENSO on Jet

Direct (tropospheric) pathway:

Indirect (stratospheric) pathway:

0.39

0.26

0.04

tropo + strato = 0.04 + 0.10
Total = 0.14

EXAMPLE 3: INDIRECT AND DIRECT EFFECTS

Jet = 0.39 SPV + 0.04 ENSO  + ɛ

Kretschmer et al. (in revision at BAMS)



EXAMPLE 4: INFLUENCE OF SEA ICE ON THE POLAR VORTEX

15Kretschmer et al.,  WCD (2020)

?

SPVJFM = a BK-SICOND + Ural-SLPSON + ɛ

Mean causal effect is only very small, a ≈ 0.05
but has large implications for the future SPV

We estimate a for each model in the historical CIMP5 runs (1900-2005) 



EXAMPLE FROM NWP
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Causal network of how resolution can 
impact convective initiation
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Z

X

Y

U and V must be
independent

conditioned on X
U ⊥ V | X

1. Use expert knowledge to 
set a (plausible) causal

model

2. Draw logical
implications and test 
if data support them

3. Use CI rules to 
estimate causal 

effects

V

To estimate the causal 
effect from X to Y, need 

to control for  Z

P(Y  |do(X)) = P(Y | X, Z)

Pearl (2000), Pearl & Mackenzie (2018), Pearl (2013) 

U

STEPS OF CAUSAL INFERENCE (= “KNOWLEDGE GUIDED STATISTICS”)

linear:
Corr (U, V| X)= 0 ?

linear:
Y = a X + b Z
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Part 2: Causal Discovery
Learning causal structures from data



CAUSAL DISCOVERY
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A
C

B

Output: Causal StructureCausal Discovery

D

Runge et al. (2019), Kretschmer et al. (2016, 2018, 2019), Saggioro et al. (2020), phython code: jakobrunge.github.io/tigramite

PCMCI Algorithm

corr(At-τ, Bt | )
Iterate through 
combinations of 

conditions

Can deal with auto-correlation, 
regime-dependence, 

instantaneous links, ...

Input: Time-series data



EXAMPLE: ENSEMBLE SUBSAMPLING

20Polkova et al. (in revision, QJRMS)

“Predictors and prediction skill for marine cold air outbreaks over the Barents Sea”



LINKS TO MACHINE LEARNING
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Causal Discovery

PCMCI Algorithm

corr(At-τ, Bt | )
Iterate through 
combinations of 

conditions

Can deal with auto-correlation, 
regime-dependence, 

instantaneous links, ...

Input: Gridded Climate data

Machine Learning

A
C

B

Output: Causal Structure

D

Kretschmer et al., GRL (2018), Lehmann et al, GRL (2020), Pfleiderer et al. WCD (2020), Di Capua et al., ESD (2019), Polkova et al. (in revision)



APPLICATIONS (DOMAIN KNOWLEDGE REQUIRED)
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Di Capua et al. (2019), ESD

Pfleiderer et al. (2020), WCDIndian Summer Monsoon Hurricane Activity

Morocco Crop yield Lehmann et al. (2020), GRL



SUMMARY
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Domain expertise is explicitly built in and guides 
the data analysis

Part 1: Causal Inference
Quantifying causal effects from data

Part 2: Causal Discovery
Learning causal structures from data

Easy and traceable approach to quantifyy
teleconnection pathways (e.g. Using MLR)

Causal discovery algorithms can help to 
close knowledge gaps and to test 

hypotheses



OUTLOOK
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Causal Networks as a framework to reconcile physics with 
data science. 

Key to build fully interpretable ML models for high-stake 
decision making?

There is a rich literature on causal 
inference but so far only few 

applications to climate science 
problems 

Combining causality with ML/DL, 
(e.g. to quantify causal effects) is a 

cutting edge research topic

Thank You!


