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Abstract Annual land use land cover (LULC) change information at medium spatial resolution (i.e. at 30 m) is required in
numerous subjects, such as biophysical modelling, land management and global change studies. Annual LULC information,
however, is usually not available at continental or national scale due to reasons such as insufficient remote sensing data coverage
or lack of computational capabilities. Here we integrate high temporal resolution and coarse spatial resolution satellite images
(i.e., Moderate Resolution Imaging Spectroradiometer (MODIS) and Global Inventory Modelling and Mapping Studies
(GIMMS) normalized difference vegetation index (NDVI)) with high spatial resolution datasets (China’s Land-Use/cover
Datasets (CLUDs) derived from 30-meter Landsat TM/ETM+/OLI) to generate reliable annual nominal 30 m LULC maps for
the whole of China between 1980 and 2015. We also test the performance of a statistical based change detection algorithm
(Breaks for Additive Seasonal and Trend), originally designed for tracking forest change, in classifying all-type LULC change.
As a result, a nominal 30 m annual land use/land cover datasets (CLUD-A) from 1980 to 2015 was developed for the whole
China. The mapping results were assessed with a change sample dataset, a regional annual validation sample set and a three-year
China sample set. Of the detected change years, 75.61% matched the exact time of conversion within ±1 year. Annual mapping
results provided a detail process of urbanization, deforestation, afforestation, water and cropland dynamics over the past
36 years. The consistent characterization of land change dynamics for China can be further used in scientific research and to
support land management for policy-makers.
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1. Introduction

China has undergone rapid growth in its population and
economy over the past decades, which has transformed its
land surface (Liu et al., 2005). To feed the world’s largest
population (1.36 billion in 7.06 billion globally), significant
cropland expansion has occurred in the north-east and north-
west regions, resulting in the loss of natural grassland, forest
cover and water resources (Akiyama and Kawamura, 2007;
Hu et al., 2015; Zhou et al., 2017). Urbanization, with rapid
growth in the urban population and intensive human activ-
ities, has also played a role in land surface change in China
(Schneider and Mertes, 2014). In recent decades, land re-
storation policies, such as the “Grain for Green” and “Three
North Shelterbelt” projects, have reshaped land use practice
in some ecologically vulnerable regions in China such as
Inner-Mongolia (Ding, 2003; Yin et al., 2018). So far, reli-
able dynamic land cover change information in China in-
cluding magnitude, extent, change trajectory and cause-
effect relationships remains poorly documented (Lin and Ho,
2003), which hampers an in depth understanding of the land
change trajectory and consequent land resources manage-
ment.
Remote sensing provides an efficient, economical and

consistent way to track land use/land cover (LULC) changes.
So far, many global and national mapping programs have
been launched to capture the long-term LULC dynamics
(Cotillon, 2017; Feranec et al., 2016; Jin et al., 2017; Ngcofe
and Thompson, 2015). Efforts have also been made in
studying annual land cover changes at global scale such as
Moderate Resolution Imaging Spectro-radiometer annual
Land Cover product (MODIS-LC) at 500 m resolution
(Friedl et al., 2002) and an annual 300 m global Land Cover
products by European Space Agency Climate Change In-
itiative (ESA-CCI) (Defourny et al., 2017). Song et al.
(2018) derived the longest global land cover datasets (1992–
2016) using multiple optical observations. Recently, Liu et
al. (2019) provided annual global LULC at 5 km resolution
using the Global Land Surface Satellite (GLASS) Climate
Data Records (CDRs). In the case of China, annual land use
land cover changes were mapped at 8 km using Global In-
ventory Modelling and Mapping Studies (GIMMS) nor-
malized difference vegetation index (NDVI) 3g data (He et
al., 2017). However, these studies have all been conducted at
coarse resolution (hundreds or thousands of meters) and have
failed to meet the demands of land management (Yu et al.,
2014; Zhong et al., 2014), particularly for regions like
southern China which is dominated by smallholdings and
intensive farming. Furthermore, great discrepancies have
been found in heterogeneous landscapes when comparing the
commonly used coarse LULC datasets (Bai et al., 2014;
Gong et al., 2013; Liu et al., 2005). For example, one esti-
mation of cropland area in China by Advanced Very High

Resolution Radiometer (AVHRR) is 48% higher than the
national census (Frolking et al., 1999). The complexity of
land-cover areas and quick land use modifications calls for
finer resolution LULC products in China (i.e., 30-m spatial
resolution) (Lu et al., 2016). In recent decades, 30-m Landsat
data have been widely used in forest, water and cropland
mapping and monitoring (Gong et al., 2010; Hansen et al.,
2013; Hu et al., 2014; Pekel et al., 2016; Yu et al., 2013,
2014). In China, some pilot studies explored the 30 m land
change information at yearly frequency for certain type such
as impervious surface (Gong et al., 2019; Li et al., 2015;
Zhang et al., 2017) and paddy rice (Dong et al., 2015). But
annual application to all-type land cover maps for the whole
of China at 30-m resolution require further exploration.
China’s Land-Use/cover Dataset (CLUD) at 30-m resolu-

tion for the 1980s, 1995, 2000, 2005, 2010 and 2015 using
Landsat imagery provides unprecedented LULC detail for
China (Liu et al., 2014; Ning et al., 2018). However, these
datasets are interpreted by human operators and are difficult
to apply at yearly scale because of the huge workload in-
volved. To expand multi-decadal to annual LULC dynamics,
two approaches have been commonly used: (1) time-series
analysis, which has mainly focused on a single type of
mapping (e.g., tracking the disturbance and recovery of
forest or mapping the cultivation and abandonment of
cropland) (Dong et al., 2015; Huang et al., 2010; Kennedy et
al., 2010; Verbesselt et al., 2010b; Zhao et al., 2016), and (2)
obtaining yearly LULC mapping and change information
based on annual LULC classification results (Li et al., 2015;
Xu et al., 2017). However, the former method, based on
temporal profile analysis, lacks “from-to” information.
These studies were mainly applied in a limited region with
single type of land cover change, e.g., “forest disturbance
and recovery”. The latter method requires abundant Landsat
images (>4) (Xu et al., 2018a) which were not available in
most of the regions outside the United States before 1990.
Annual classification may also lead to pseudo changes.
In the case of China, most regions in south-east and south-

west China face the challenge of insufficient Landsat data for
annual mapping and change detection (Figure S1, https://
link.springer.com). A possible approach to address the data
challenge is to combine multiple resolution satellite datasets
(Yin et al., 2018) by fusing the coarse datasets with the finer
ones (Gao et al., 2017; Kwan et al., 2018). However, data
fusion aimed at bridging gaps cannot replace actual satellite
missions (Gao et al., 2015). Here, we provide a new ap-
proach by combining CLUD (1980s, 1995, 2000, 2005, 2010
and 2015) with the Moderate Resolution Imaging Spectro-
radiometer (MODIS) and AVHRR GIMMS datasets by a
well-developed statistical boundary-based change detection
algorithm known as Breaks for Additive Seasonal and Trend
(BFAST), to track annual LULC changes over the past four
decades (1980–2015). The production of annual land cover
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dataset is based on a new and simple methodology: the six
LULC maps in CLUD provide the change information for
each period, and the final annual results can be updated by
detecting the exact change year using the time-series coarse
observations among each interval. BFAST has been widely
used in detecting the change patterns in vegetation types (de
Jong et al., 2012; Watts and Laffan, 2014), but the effec-
tiveness in the shift among all LULC types has not been
explored. The objectives of this study are threefold: (1) to
develop a breakpoint-based long-term annual LULC map-
ping approach using coarse remote sensing datasets and
high-resolution LULC datasets; (2) to evaluate the perfor-
mance of the statistical based change detection algorithm,
BFAST, in exploring all-type LULC changes; (3) to develop
annual land use/land cover datasets (called CLUD-A) for
China at nominal 30-m resolution.

2. Datasets and methods

2.1 Datasets

2.1.1 China’s Land-Use/cover Datasets
CLUD at 30 m resolution for the 1980s, 1995, 2000, 2005,
2010 and 2015 were used as the base maps for developing
nominal 30 m annual land use/land cover datasets CLUD-A
from 1980 to 2015. The CLUD were generated from the
Landsat Multispectral Scanner (MSS), Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+), and Op-
erational Land Imager (OLI), combined with multispectral
data from the Huanjing-1 satellite (HJ-1). After conducting
pre-processing steps including image fusion, geometric
correction, image enhancement and splicing, LULC maps
were derived through human-computer interaction and visual
interpretation. The datasets describe the land surface in six
first-level categories (Cropland, Forest, Grassland, Water
body, Built-up land, and Unused land) and 25 second-level
categories. The unused land includes sand, Gobi, saline land,
marshland, barren land and other land which is not used until
the mapping time. Validation of the dataset was carried out
using field surveys and the average classification accuracy of
the six primary land cover classes reached 94.3%, while the
mapping accuracy of the 25 sub-classes was above 91.2%
(Liu et al., 2014, 2005, 2003; Ning et al., 2018). Here we
assume that CLUD with above 91.2% reported accuracy can
serve as reliable base maps in subsequent processes.

2.1.2 Satellite datasets
To fully cover the entire study period, we used multi-source
remote sensing images including the MODIS and AVHRR to
derive the CLUD-A. The NDVI derived from these sensors
is a critical index for vegetation conditions, and has been
widely used in monitoring forest disturbance and recovery,
cropland phenology and other LULC change studies (Ding et

al., 2016; Forkel et al., 2013; Lunetta et al., 2006). Here,
Landsat imagery was not used because of the poor data
availability in the early stages (i.e., 1980–1990) (see the
blank path/rows in Figure S1). The spatial resolution of the
MODIS data (250 m) and GIMMS data (8 km) is coarser
than Landsat images (30 m) but these two datasets have a
denser temporal resolution.
(1) MODIS dataset.MODIS NDVI 16-day composite grid

data (MOD13Q1 collection 6, the recent updated version)
from 2000 to 2015 were provided by NASA’s Earth Obser-
ving System Data and Information System gateway (https://
earthdata.nasa.gov/). The MOD13Q1 product consists of
1200 km×1200 km tiles of 250-m resolution, which is grid-
ded in a sinusoidal projection. It was used as the main sa-
tellite data to conduct change detection within the interval
years of CLUD after 2000 (2000–2005, 2005–2010 and
2010–2015). Poor-quality pixels covered by cloud were not
used in the analysis. In total, 19 MODIS tiles were utilized to
cover the whole China.
(2) GIMMS dataset. The second dataset used in this study

for the period before 2000 was the AVHRR GIMMS NDVI
dataset. The latest version, GIMMS NDVI 3g.v1 dataset
provides the longest satellite temporal coverage from 1982 to
2015 at 8-km spatial resolution and can be used in land cover
maps. This product is composited based on the maximum
NDVI value for each pixel every 15 days (Holben, 1986).
The dataset was corrected for problems such as calibration
loss, orbital drift, and atmospheric effects such as volcanic
eruptions.

2.2 Methods

The process of producing the CLUD-A includes (1) data
preparation (both the CLUD and time-series NDVI datasets
of MODIS and GIMMS) (Section 2.2.1), (2) change-detec-
tion analysis (Section 2.2.2) and (3) annual LULC mapping
(Section 2.2.3). The validation of the LULC datasets is de-
scribed in Section 2.2.4.

2.2.1 Data preparation
Given the time of the original maps from CLUD (1980,
1995, 2000, 2005, 2010 and 2015), subsequent analysis in-
cluding the production of the change map, preparation of the
time-series NDVI datasets, change-detection analysis and
annual LULC updates were conducted in different time
periods, P1: 1980–1995, P2: 1995–2000, P3: 2000–2005, P4:
2005–2010 and P5: 2010–2015. The CLUD, in six time
phases, provide the land cover information for the start and
end year of each period and the change areas for each period
were derived based on the land cover maps from CLUD with
spatial locations and “from-to” types. For example, given the
land cover maps for 1980 and 1995 in CLUD, the change
pixels were identified using these land cover maps (e.g.,

1392 Xu Y, et al. Sci China Earth Sci September (2020) Vol.63 No.9

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/


cropland (C) converted to built-up land (U) as shown in the
top left corner of the magnified nine patch in Figure 1) while
the unchanged pixels were masked in the change map from
1980 to 1995. As a result, five change maps for the five
periods were derived for the change detection in the next
step. Here, we considered the conversion between the six
primary classes (e.g., conversions from grassland to water,
forest to cropland) without the changes in the sub-classes (e.
g., the conversions from rivers to lakes in the water class and
desert to the Gobi in unused land) in this study. The con-
version between sub-classes were not studied because of the
lower classification accuracy in level 2 land-cover categories
compared with lever 1 classes (Gong et al., 2013). The
mapping process and an example for one period, 1980–1995,
are shown in Figure 1a and 1b).
The pre-processing of the two NDVI datasets is indicated.

We first re-projected all the MODIS imagery to a geographic
grid with a WGS 1984 spheroid consistent with CLUD. Each
coarser resolution dataset was resized to 30 m using the

nearest neighbour resampling approach to match the CLUD
following the previous practice (Feng et al., 2018). Several
methods have been developed for the pre-processing of
dense satellite datasets, including the image composition
based on the thresholds (Hansen et al., 2013; Xu et al.,
2018b), temporal metrics extraction (Waldner et al., 2015)
and time-series trend analysis using all available data (Huang
et al., 2010; Kennedy et al., 2010). For the purpose of change
detection in the next step, image stacking was performed
independently for each period to keep all the observations in
the subsequent analysis. Then the pixels covered by cloud
were removed from the MODIS and GIMMS NDVI time
stacks according to the quality assurance flags of the two
datasets and spline interpolation was adopted to create a per-
pixel set of cloud-free image observations (a maximum time
interval is set of 10). Finally, a complete 16-day NDVI
profile for MODIS and half-month NDVI profile for
GIMMS were generated for each period (e.g., the MODIS
NDVI mosaics from 2000 to 2005 consist of 138 layers with

Figure 1 Workflow of annual land use/land cover (LULC) mapping process. (a) The flowchart, (b) an example for one period (1980–1995) including the
change map extraction, NDVI dataset pre-processing, change time detection and annual map production. The 3×3 grid shows the enlarged example for 9
pixels while the line graph shows the example for one change pixel. The acronyms in the nine patches represents six primary land cover types (C: Cropland,
F: Forest, G: Grassland, W: Water body, B: Built-up land, and U: Unused land).
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23 observations per year for the 6-year intervals in each
pixel).

2.2.2 Change detection analysis
To reduce the inter-annual inconsistency in annual classifi-
cation and mitigate the huge workload in collecting training
data, statistical based change-detection analysis was com-
bined in the subsequent process with a new and simple
methodology: given the change maps and “from-to” types
for the five periods, the multi-time products can be expanded
to annual LULC dataset by finding the exact change year
among the intervals. Thereafter, change detection analyses
were conducted in the pre-processed time-series (resized
MODIS and GIMMS NDVI at 30 m resolution) profiles
during different time periods for every change pixel (i.e., P1:
1980–1995, P2: 1995–2000, P3: 2000–2005, P4: 2005–2010
and P5: 2010–2015) to find the change year.
Change detection algorithms have been widely used to

detect abrupt and subtle forest changes using different
methodologies including differencing with thresholds
(Huang et al., 2010; Jin et al., 2017), temporal segmentation
(Kennedy et al., 2010) and statistical boundary analysis
(Verbesselt et al., 2010b; Zhu and Woodcock, 2014). A
comparison suggested that most of the algorithms reach high
consistency in detecting significant variance (Cohen et al.,
2017) and the season-trend model performed better than the
seasonal-adjusted approaches in detecting the breakpoints
(Forkel et al., 2013). Since the target land cover change
occurs in six general LULC types with significant spectral
variation, here we used BFAST, which considers the sea-
sonality and noise of the NDVI time series, to identify the
change time during each period.
The BFAST algorithm was originally proposed by Ver-

besselt et al. (2010a, 2010b) for monitoring forest dis-
turbance using time-series MODIS NDVI data. It has since
been modified and applied in all biomes at global and re-
gional scale using different sensors including AVHRR,
MODIS and Landsat (de Jong et al., 2012; DeVries et al.,
2015; Verbesselt et al., 2010a), but has not yet been applied
to all-type land cover types. Since a detailed description of
the algorithms was given in (Verbesselt et al., 2010b, 2012),
only a brief overview is presented here. The algorithm in-
tegrates a decomposition model which decomposes the time
series into trend, seasonality and residuals components with
an iterative algorithm to detect break points using structural
change methods (Bai and Perron, 2003; Zeileis, 2005). The
decomposition model can be expressed as

Y T S t n=  +  +  e ,  ( =  1, ..., ), (1)t t t t

where Yt is the observed value at date t. Tt is the trend
component fitted by piecewise linear models, St is the sea-
sonal component expressed by harmonic seasonal models,
and et is the noise component which represents the remaining

variation beyond seasonal and trend components. These
trend and seasonal models were fitted to sections of time
series according to the changes that had occurred and de-
tected break points. In the iterative procedure, the ordinary
least squares residuals-based moving sum test (Zeileis, 2005)
was used to test whether there were one or more breakpoints.
Then the trend and seasonal models were iteratively fitted to
sections of the time series to find the position and number of
the break points, which was determined by minimizing the
residual sum of squares and information criterion during the
iterative procedure following the multi-structural change
detection (Bai and Perron, 2003). The BFAST algorithm is
free of parameterization but requires a maximum number of
breakpoints (also regarded as the minimum time between
breakpoints according to the length of given time series).
Since there is a low probability of frequent changes such as

two or three conversions during the 5-year interval (e.g.,
forest-cropland-water or grassland-cropland-grassland-un-
used land), only one single change during each period was
explored in our study, in line with the prior changes given by
the change maps from the CLUD. Therefore, the maximum
breaks was set to 1 without considering the multi-time
changes within each period in the algorithm. Although more
changes may have occurred during the 15-year interval from
1980 to 1995, only one change was considered due to the
lack of reliable dense land cover maps. Figure 2 demon-
strates an example of detecting the breaks using the BFAST
algorithm for the conversions among three typical vegetation
types which are easily confused (forest to grassland, grass-
land to cropland and grassland to forest). The different tra-
jectory of NDVI cycles illustrates different vegetation
conditions (e.g., cropland with a single and double-cropping
practice). In general, although the NDVI cycle variation
before and after the change differs among land cover types,
the turning point when abrupt land cover change occurs can
be captured using the BFAST algorithm. It is worth to notice
that the performance of the change detection algorithm is
affected by the cloud conditions during time periods for
every change pixel. During 2000–2005, 2005–2010 and
2010–2015, changes were detected in areas with at least 13.5
(59.93%), 12 (52.45%) and 13 (57.65%) cloud-free ob-
servations annually (Figure S2). And all the pre-defined
change pixels (30 m) within a coarse resolution pixel (8 km
AVHRR or 250 m MODIS) have the same detected change
results because of the downscaling of the coarse dataset. The
impact of downscaling is more significant in AVHRR data of
~50000 30 m pixels within one coarse pixel compared with
64 pixels of MODIS NDVI.

2.2.3 LULC updates for the missing years
The final step is the land cover updating for the missing years
in each period. According to CLUD and the change maps for
the five periods, there were two cases when LULC maps
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were updated in the intervening years as followings.
(1) For the unchanged area in the change maps, the land

cover types L1 and L2 were consistent at the start (t1) and the
end (t2) year of the 5-year period, therefore, the land cover
types of the masked area in the missing period remained
unchanged in the gap years (the same as L1).
(2) For the change pixels with different L1 and L2, the exact

change year (ti) for each pixel in every period was derived
from the change detection analysis in Section 2.2.2. Then L2
was allocated from ti to t2 and L1 was assigned before ti (t1 to
ti) according to the break date. For example, if a change pixel
was grassland in the 2000 CLUD map and then turned to
cropland in the 2005 CLUD map with a detected break year
at 2004, then the land cover type from 2000 to 2003 would
remain grassland whereas in the following two years would
be updated to cropland. Thereafter, the LULC maps were
updated for the intervening years in every period and original

annual LULC datasets were generated.
Because the update of the LULCmaps in the gap years was

conducted separately for each period, there may be some
false change detection among the different periods. For ex-
ample, multiple changes in two successive years may occur
if the changes were detected both in the end year of the
previous period and the start year of the next period (i.e.,
cropland in 2004 is converted to forest in 2005 and then
converted to cropland again in 2006). Here we adopted time-
series filtering as recommended in annual land-cover maps
produced by the European Space Agency Climate Change
Initiative project at 300 m (ESA-CCI300). Each change had
to be consistent for more than 2 years and was filtered if
successive changes were detected (Defourny et al., 2017).
Apart from annual LULC maps, quality maps were also
produced based on the number of cloud-free NDVI values in
each period, the spatial resolution of the dataset (250 m or

Figure 2 The sensitivity of MODIS ((a), (b)) and GIMMS NDVI (c) time series in identifying the change of vegetation types. (a) Location: 41.27°N, 120.62°
E, the NDVI cycles differ after change occurred. The peak value of the MODIS NDVI curve for forest (before 2009) is higher than the subsequent curve, and
the land cover type has changed to cropland. (b) Location: 50.21°N, 126.06°E, a double peak is presented in MODIS NDVI temporal files after 2004, which
indicates the double cropping system after the conversion from grassland to cropland. (c) Location: 40.41°N, 79.65°E, the wave shape of grassland and forest
type is distinguishable in the GIMMS NDVI profiles. The grey lines are pre-processed NDVI curve, the black dash lines are the fitted NDVI after iterative
procedure and the black solid lines are the trend for the pre and prior segments before and after the change occurs. The break detected date is also given in the
three examples with confidence interval of the date.
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8 km), the length of each period (5-year or 15-year) and the
same breaks detected by the different break test approaches
included in BFAST (The ordinary least squares residuals-
based MOving SUM test (OLS-MOSUM), the supremum of
a set of Lagrange multiplier statistics (SupLM) and the
Bayesian information criterion test (BIC) (Zeileis, 2005)).

2.2.4 Evaluation
Because of the huge workload and difficulty in collecting
annual validation samples from 1980 to 2015 over the whole
of China, the evaluation of CLUD-Awas conducted by three
independent validation sample datasets, which were aimed at
assessing CLUD-A in temporal, spatial and change dimen-
sions.
(1) The first was a fixed sample set which aimed to eval-

uate annual mapping accuracy of CLUD-A for the entire
timespan. This independent validation sample set was from a
published study for the rapid urbanization of Beijing (BJ-
sample (Li et al., 2015)). This sample set contains 400 fixed
test samples (including forest (25.85%), cropland (24.88%)
and impervious (49.27%)) and a long time span from 1984 to
2013. In total, 12000 samples (400 samples×30 years) were
used to validate CLUD-A in Beijing. This sample set was
collected mainly based on high resolution images from
Google Earth and NDVI time series.
(2) The second sample set was extracted from the first all-

season training and validation sample sets for global land
cover mapping (Li et al., 2017), which is used to evaluate the
mapping accuracy in the spatial dimension for the whole of
China (Here we named it the three-year China sample set).
This sample dataset contains ~90000 training and ~35000
validation samples interpreted on Landsat 8 with records of
the date of image acquisition (interpreted from 2013 to
2015), spectral reflectance for each season, and level of in-
terpretation uncertainty and sample sizes (3×3, 9×9, 17×17,
33×33, 1 unit =30 m). All the samples were interpreted by 13
image interpreters using seasonal Landsat images, MODIS
EVI time series, monthly temperature and precipitation as
well as the Google Earth images. In addition, the hexagon-
based equal-area stratified random sampling scheme guar-
anteed the random and even distribution of samples.
We selected all the samples located in China with high

confidence according to the confidence level of the valida-
tion sample set and a sample size of 30 m×30 m and then
converted them to the CLUD classification system. In total,
532 and 6760 samples for 2013 and 2014 were used to va-
lidate the updated 2013 and 2014 maps in CLUD-A. The
5376 samples for 2015 were also used to assess the original
CLUD for 2015 as a comparison to see whether there had
been a decline of mapping accuracy in the updated years.
Meanwhile, we also compared the mapping performance of
CLUD-A with the other available continuous annual data-
sets, MODIS land cover product (MCD12Q1) and ESA-

CCI300 (Defourny et al., 2017).
(3) The third sample set focused on evaluating the change

year identified by the change detection analysis. We used the
41 samples which were located in the change regions in our
change maps from the 2010 global validation samples set
(Zhao et al., 2014) and then visually interpreted the exact
change years using very high-resolution (VHR) imagery
from Google Earth and Landsat time series (in the early stage
without VHR images). The detected change years using the
change detection algorithms were later compared with the
actual change year for these test samples to assess the ac-
curacy of CLUD-A within each period. Here, we adopted a
confidence interval of ±1 years in the comparison in view of
the uncertainty in visual interpretation of the change year
(Dara et al., 2018).
Apart from the quantitative comparison using the valida-

tion sample sets, visual comparison in areas with rapid
changes (e.g., urbanization, cropland changes and defor-
estation) was conducted to show the change performance
using several annual land cover datasets including Beijing
urbanization datasets (Li et al., 2015), ESA-CCI300 (http://
maps.elie.ucl.ac.be/CCI/viewer/) (Defourny et al., 2017),
MODIS land cover products at 500 m (MCD12Q1, https://
lpdaac.usgs.gov/products/mcd12q1v006/) (Friedl et al.,
2002) and 30 m forest loss map from Hansen et al. (2013).
The classification systems of ESACCI-300 and MCD12Q1
were converted to the CLUD-A classification system based
on the cross walking table in supplementary (Table S1).

3. Results

3.1 Annual LULC change in China from 1980 to 2015

Using the CLUD, and combining the coarse satellite datasets
with the change detection method, we developed annual land
use/land cover datasets (CLUD-A) from 1980 to 2015
(Figure 3). The four enlarged maps illustrate the LULC dy-
namics over the past three decades with examples from the
complete years. For instance, an expansion of built-up land
occurred in the Northern China Plain, Yangtze River Delta,
Pearl River Delta and the Sichuan Basin.
Details of the spatial-temporal dynamics of some typical

land cover conversions, both continuous or abrupt, are en-
larged and given in Figure 4 (i.e., cropland expansion, af-
forestation, reclamation, deforestation, rapid urbanization
and reservoir construction). The graded colour changes refer
to different change years over the study period and the
Google Earth images show the land change dynamics. In
Figure 4, each sub-figure represents a continuous or abrupt
change for one land cover class, including (1) cropland ex-
pansion in Qiqihaer on the SanJiang Plain, north-east China
(Figure 4a); (2) afforestation in Yan’an, Shanxi Province
following the re-vegetation project in China (as suggested by
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Google Earth images in Figure 4b, the artificial forests were
planted in arcs); (3) the transformation of unused land, also
known as desert reclamation in Peitun in the Altay region
(Figure 4c). This area is an arid and semi-arid region in
north-west China, and the major land use pattern is the de-
velopment of oasis agricultural areas based on water from the
Ulungur Lake in the north-west; (4) forest logging activities
in Heihe city in north-east China during the early stages after
reform and opening-up (Figure 4d) when expanses of forest
were cut down for agricultural areas; (5) significant built-up
land expansion and rapid urbanization process in the Yangtze
River Delta (Figure 4e); and (6) abrupt water expansion in
2004 in Yichang City, Hubei Province (Figure 4f) following
the establishment of the Three Gorges Project and water
filling since 2003.
Figure 5 demonstrates the area change for each land cover

type in China by year from 1980 to 2015. The dashed vertical
lines refer to the year with CLUD while the rest are the
interpreted CLUD-A. The yearly area changes and trend for
each land cover type in China from 1980 to 2015 were also

successive and similar to the original CLUD. These changes
prove the value of using existing CLUD and time-series
coarse datasets in deriving long-term LULC maps at yearly
scale in regions without frequent Landsat observations.
Overall, the land cover change between 1980 and 2015 can

be summarized as: (1) A rapid increase of built-up land
(45.73%) compared with the 1980s; (2) a slight but con-
tinuous increase of water by 0.91 million ha (3.34%); (3) a
successive decrease of grassland and unused land (−1.86%
and −0.86%, respectively); (4) a 2.68 million ha (1.51%)
cropland increase from 1980 to 2000, then a decrease after
2000 (−2.14 million ha); (5) a significant decreasing trend
after 1995 in forest type but recovered since 2000. The total
area of forest was relatively stable from 1980 to 1995, with a
0.18% increase in the first 5 years and a 0.08% decrease in
the following 10 years. Then, forest experienced a dramatic
decline from 1995 to 2000 (−0.46%). An increase of forest
area was found after 2000 because of the implementation of
six key forestry projects (Liu et al., 2014). However, the
forest resources have shown a declining trend over the last

Figure 3 Annual land use/land cover dataset for China (CLUD-A) from 1980 to 2015. The four selected years (1983, 1993, 2003, 2013) are enlarged.
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5 years (2010–2015).
Annual change rates also showed a similar trend to the net

land cover change amount in quantity. Built-up land shows
the highest rate of increase among all the land cover types at
(0.21 million ha yr−1) over the past 35 years, with a greater
acceleration in the last 15 years (0.37 million ha yr−1) than in
the previous 20 years (0.08 million ha yr−1). A significant
and continuous decline trend was found in grassland (−0.16
million ha yr−1), followed by unused land (−0.05 million ha
yr−1).

3.2 Mapping performance of CLUD-A

3.2.1 Mapping accuracy from temporal, spatial and
change perspectives
The mapping performance of CLUD-A was evaluated from

three temporal, spatial and change perspectives. First, annual
BJ-sample set from 1984 to 2013 which almost covers the
entire time span gives a clue to the mapping performance in
the updated years. Annual average accuracy (average of
user’s accuracy (UA) and producer’s accuracy (PA)) for
cropland, forest and built-up land was 72.10%, 78.93% and
91.89%, respectively. Figure 6 illustrates annual change of
the user’s and producer’s accuracy for these three land cover
types. The dots mark the accuracy derived from CLUD from
1995, 2000, 2005 and 2010 while the lines show the accuracy
of the updated years. Built-up land showed the highest ac-
curacy with limited fluctuations while cropland showed the
opposite pattern. The accuracy (average of UA and PA) of
the built-up land (91.89%) in our studies is also comparable
to the annual mapping results based on Landsat observations
(94%) (Li et al., 2015). Forest reached a higher average ac-

Figure 4 Typical annual land use/land cover (LULC) changes over past decades. (a) Cropland expansion in SanJiang Plain, north-east China, (b) tree
planting detected under the Three North Project, (c) desert reclamation in the south-east of Ulungur Lake, Altay Prefecture, Xinjiang, (d) forest logging
activities in Heilongjiang Province, (e) urbanization captured by annual results in the Yangtze River Delta region, (f) water expansion caused by the
construction of the Three Gorges Project.
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curacy (80.49%) before 2000 and had a lower accuracy after
2000 (76.42%). Cropland and built-up land show the higher
PA than UA, which indicated the underestimation of the two
land cover types (particularly cropland) in the mapping re-
sults. According to Figure 6, there is no significant difference
in the mapping accuracy among the four CLUDmaps and the
updated intermediate years in CLUD-A (a differences of
0.95%, 1.19% and −0.80% for cropland, forest and built-up
area, respectively).
Second, the three-year China sample set with 532, 6760

and 5376 samples for 2013, 2014 and 2015 located in China,
were used to validate the 2013, 2014 and 2015 maps in
CLUD-A. UA and PA for each land cover type are shown in
Table 1. The overall accuracies were relatively stable over
the three years with a 0.5% fluctuation. The classification
crosswalk to map one classification to another may have
caused the lower mapping accuracy (~70–78%) compared to
the reported mapping accuracy (90%). For example, marsh
covered by vegetation was change to unused land according
to the cross walking table (Table S1) in CLUD-A, which is
classified as vegetation in the original classification systems.
There is no shrub land or wetland category in CLUD-A,
which may have caused some confusion in grassland and
unused land (Table 1). However, the stability of inter-annual
accuracy over the whole of China gives a clue to the mapping
quality for the updated missing years.
The change time accuracy, validated by the third change

dataset, showed 75.61% agreement with the actual year from
high and medium resolution images (2/3 of the detected
change year matched the interpreted change time while 1/3
was within a 1-year interval). The deviation of the years is
shown in Figure 7. The validation samples from different
periods are shown in different colours. Further, the change
year is more accurate after 2000 when MODIS data of a
higher resolution was used and larger deviations (>2 years)
were mainly found in the early stages of the study period
with the longest, 15-year interval between the two CLUD
maps (i.e., the sample with the largest deviation was 7 years
from the 1980s to 1995) (for the temporal and number dis-
tribution of the deviations, please refer to Figure 7). This is
also included in the quality bands where the pre-2000 data
updated using coarse GIMMS data were of lower quality.
Figure 8 shows the direct comparison of the change maps

with the high-resolution images available from Google

Figure 5 Area change in different land cover classes in China from 1980
to 2015. The fluctuations for each land cover type are enlarged using the
different range of y-axis.

Figure 6 Annual mapping accuracy (user’s accuracy and producer’s accuracy) of cropland, forest and built-up land types in Beijing using validation
samples from 1984 to 2013 (Li et al., 2015). The lines show the accuracy of CLUD-A from 1984 to 2013, while the dots mark the accuracy derived from
CLUD in 1995, 2000, 2005 and 2010.

1399Xu Y, et al. Sci China Earth Sci September (2020) Vol.63 No.9



Earth, which document the change process. The four selected
regions represent four different land use changes. Overall,
most of the changes were captured within the range defined
by the Google Earth time lapse images, as can be seen from
the detected change years in the highlighted regions (light
blue shapes).

3.2.2 Comparison with other LULC products
We first compared the change of built-up land from our
CLUD-A with the impervious area from a published paper
(Li et al., 2015), which studied annual urbanization process
in Beijing from 1984 to 2013. Annual datasets for Beijing in
Li’s study were classified using Landsat datasets at 30 m
resolution. The overall urban expansion pattern in Beijing is
similar between the two datasets (Figure 9), with more built-
up areas concentrated in the plains in the southwest of
Beijing and urban expansion from the centre to the outskirts.
We further overlaid the detected change years in the 5 peri-
ods of CLUD-A (P1: 1980–1995, P2: 1995–2000, P3: 2000–
2005, P4: 2005–2010 and P5: 2010–2015) and urbanization

year from Li’s datasets (1984 to 2013). Among the over-
lapped change area, 22.97%, 34.69%, 27.04% and 29.68% of
the area has the same change time, while 75.34%, 75.19%,
70.88% and 76.62% of the area was in 1-year intervals
during 1995–2000, 2000–2005, 2005–2010 and 2010–2013.
The largest differences were found in years between 1983 to
1995, where only 26.77% of the change year detected in
CLUD-A coincided with Li’s datasets within 1-year inter-
vals.
The large discrepancy is probably contributed by the ap-

plication of the coarse GIMMS NDVI data and the change
detection algorithm over the longest studied temporal period
(1980–1995). The visual comparison in Figure 9b shows the
similar results, the built-up areas vary in the earlier periods
(dark blue and green area) and the expansion year was lar-
gely influenced by the use of the coarse dataset (the uniform
color in Figure 9b(ii) compared to Figure 9b(i)). The land
parcels, however, showed consistent change year in recent
periods in the two datasets. Generally, CLUD-A shows
homogeneous parcels with less “salt and pepper” because of
the manual interpretation of the CLUD.
We also compared our mapping accuracy with the other

two time-series land cover datasets, ESA-CCI300 and
MCD12Q1 using the three-year China sample set. Table 2
lists the results, including the overall accuracy, UA and PA of
the eight land cover types of the three datasets. Overall, the
CLUD-A (72.00%) and ESA-CCI300 (72.86%) had a similar
accuracy, which is ~7% higher than MCD12Q1 for the three
years. It is worth noting that the validation dataset was dif-
ferent for each of the three products and the translation/fu-
sion of different classifications may have caused the biases.
The accuracy of the three datasets also showed a similar
pattern: built-up land and forest had the highest accuracies
among all three datasets (>75%), followed by cropland,
water and unused land, and the lowest accuracy was found in
grassland (around 55%). The mapping accuracy of water and
cropland in CLUD-A and ESA-CCI300 was higher than that
of MCD12Q1, which is probably because of the higher
spatial resolution.
The two selected areas in Figures 10 and 11 depict the

Table 1 Accuracy assessment using three-year China sample set for all the land cover types in CLUD-A for 2013, 2014 and 2015a)

Year
2013 2014 2015

UA (%) PA (%) UA (%) PA (%) UA (%) PA (%)

Cropland 66.23 75.19 76.26 77.78 78.26 78.55

Forest 79.41 78.03 75.89 79.54 76.31 79.55

Grassland 50.00 53.42 45.00 64.12 43.40 63.10

Water 88.24 76.92 83.29 78.67 81.37 80.98

Built-up area 81.82 72.58 80.72 77.37 80.69 78.65

Unused land 50.00 38.46 83.75 60.68 85.71 61.65

OA (%) 72.18 71.60 72.21

a) UA, user’s accuracy; PA, producer’s accuracy; OA, overall accuracy.

Figure 7 Deviation of detected change years from the reference change
point dataset (interpreted from Google Earth and Landsat images). Nega-
tive values in the x-axis mean that the detected change years were earlier
than the actual change years and positive values show the opposite.
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disagreement of forest and cropland (both by extent and
change years) among the several existing continuous LULC
datasets. Figure 10 shows the forest extent and loss year in a
region of north-east China among five annual datasets, the
500 m MCD12Q1 product, the 300 m ESA-CCI product, the
30 m forest loss map from Hansen et al. (2013), the 30 m
Landsat-based annual North-East China maps from Zhao et

al. (2019) (Figure 10) and our CLUD-A. The base maps were
the original 2001 LULC results for the five datasets. The loss
of forest was extracted and shown from the original all-type
LULC datasets as a comparison. All the different land cover
systems were unified and converted to CLUD-A. The forest
cover extent (the light green) is similar in the three 30 m (or
nominal 30 m) datasets, with more forests found in CLUD-A
and the least in Hansen’s data, while there is less detail at the
edge of forests in the coarse datasets (MCD12Q1 and ESA-
CCI300). However, the forest loss map differs in all five
products in terms of change range and year, with most forest
loss found in Zhao’s maps and the least in Hansen’s data.
In addition, the cropland extent and change years in central

China were also compared with the 500 m MCD12Q1 pro-
duct and the 300 m ESA-CCI300 product (Figure 11). Figure
11 shows examples of two agricultural regions, one with
cropland change (the first row) and the other without sig-
nificant changes. In the first example, the marked area used
to be cropland before 2007 and then turned to water in 2008
because of a change in the river courses. However, the
change process was not captured in the ESA-CCI300 product
and the river was wrongly classified as grassland in the two
coarse datasets. The regular cropland area in the second
example is wrongly classified as forest in the MCD12Q1
product, causing incorrect recording of cropland expansion
in this area between 2002 and 2015.

4. Discussion

It is a great challenge to obtain annual LULC for the whole
country at 30-m resolution and subsequent change in-
formation. At national and continental scale, land use areas

Figure 8 Visual comparison of the detected change years (the first col-
umn) with the images from Google Earth and Landsat (the second and third
column). The highlighted areas with blue shapes were the change regions.
The four examples demonstrate different land cover changes including (a)
the conversion from cropland to urban area, (b) change from forest to
cropland, (c) sea reclamation with construction over the sea and (d) change
from forest to grassland after logging activity.

Figure 9 Comparison with the 30-m urbanization datasets from Li et al. (2015) in Beijing from 1984 to 2013.
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are commonly given in multi-decadal or yearly statistical
books, which lack spatial information and sometimes is
contradictory with land surveys (Smil, 1999). Satellite-based
studies provide a cost-saving and labour-efficient way to
continuously monitor LULC changes. But the long-term
annual information extraction at tens-of-meter resolution
(e.g., 30 m) is limited by the insufficient Landsat images
(particularly in historical change analysis, (Yu et al., 2015))

and mostly focuses on single-type conversions like forest
and impervious categories (Hansen and Loveland, 2012). In
this study, we provide a new prototype for obtaining nominal
30 m dataset by updating the discrete LULC maps (CLUD)
to annual land use/land cover datasets (CLUD-A) using a
generic change detection approach (BFAST) and time-series
NDVI data with dense temporal but coarse spatial resolution.
This method integrates the strengths of multiple satellite

Table 2 Comparison of mapping accuracy in the three land cover datasets, ESA-CCI300, MCD12Q1 and CLUD-A (our results)a)

Types

PA (%)

Our results ESA-CCI300 MCD12Q1

2013 2014 2015 2013 2014 2015 2013 2014 2015

Cropland 75.19 77.78 78.55 87.97 83.82 83.41 34.59 57.06 59.85

Forest 78.03 79.54 79.55 82.56 76.61 76.76 98.27 84.43 83.08

Grassland 53.42 64.12 63.10 57.53 63.18 62.94 56.16 75.48 76.32

Water 76.92 78.67 80.98 71.79 73.20 73.62 30.77 40.36 41.00

Built-up area 72.58 77.37 78.65 72.58 75.44 75.64 72.13 64.76 65.47

Unused land 38.46 60.68 61.65 7.69 58.66 61.78 38.46 72.46 72.07

Types

UA (%)

Our results ESA-CCI300 MCD12Q1

2013 2014 2015 2013 2014 2015 2013 2014 2015

Cropland 66.23 76.26 78.26 59.69 59.49 61.18 76.67 73.08 73.78

Forest 79.41 75.89 76.31 85.54 83.70 84.34 54.84 61.41 63.34

Grassland 50.00 45.00 43.40 70.00 43.76 43.06 56.94 44.31 42.72

Water 88.24 83.29 81.37 98.25 95.75 93.97 88.89 95.20 95.83

Built-up area 81.82 80.72 80.69 88.24 87.65 88.72 83.02 80.39 80.47

Unused land 50.00 83.75 85.71 100.00 92.91 93.22 55.56 90.76 91.48

OA (%) 72.18 71.60 72.21 75.89 70.91 71.77 62.15 67.52 68.07

a) The accuracies for the specific land cover types are the mean of the producer’s and user’s accuracy. OA refers to overall accuracy.

Figure 10 Example of disagreement in the extent and year of forest loss in the five datasets from 2002 to 2015 in North-East China. (a) MCD12Q1, 500 m;
(b) ESA-CCI 300, 300 m; (c) forest loss map from Hansen et al. (2013), 30 m. A 50% threshold was used to derive the forest extent in 2001 using the tree
cover proportion map; (d) annual North-East China maps from Zhao et al. (2019), 30 m; (e) CLUD-A, nominal 30 m.
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data, a change detection algorithm and existing LULC da-
tasets at fine resolution.
In many regions around the world, apart from the United

States, the coverage of cloud-free Landsat images is limited,
particularly in earlier years such as the 1990s. An alternative
way to trace historical LULC changes is required. One po-
tential way is to integrate coarse MODIS and GIMMS data.
Here we fully utilised the change information and prior
knowledge from the 30 m mapping results (CLUD) to reduce
the errors which may have been introduced by different
sensors, coarse resolution, false changes and misclassifica-
tion. For example, using coarse datasets (500 m and 300 m)
alone causes a loss of spatial detail while combining the fine,
reliable CLUD maps with high accuracy and coarse MODIS/
GIMMS data reduces the biases (Figure 10a, 10b, Figure
11a, 11b compared to Figure 10e and Figure11c). Also, the
stable mapping accuracy for the whole of China, annual
maps in Beijing and the change detection performance all
suggest the potential for using this approach to monitor long-
term LULC changes. More importantly, this prototype can be
transferred and applied in other regions with multiple dis-
crete LULC datasets such as the West Africa Atlas for West
African countries from 1975 to 2013 by the U.S. Geological
Survey (Cotillon, 2017), the CORINE land cover datasets for
European Countries at 6-year intervals from 1985 to 2018
(Feranec et al., 2016), National Land Cover Database Land
Cover Collection for the U.S. at 5-year interval from 2001 to
2016 (Jin et al., 2017) and other regional datasets. It is im-

portant to notice that the approach is dependent on the reli-
able CLUD datasets (with >90% accuracy) and annual
mapping accuracy will be decreased with less reliable base
maps.
Another major concern in long-term annual LULC map-

ping is discontinuity and false changes detected in annual
classification results. As is shown in Figure 10d, the over-
estimation of forest loss largely contributed to the false
changes detected. A common practice is temporal filtering in
post-processing to ensure context consistency (Cheng et al.,
2019; Xu et al., 2017). However, these filtering rules, based
on assumptions such as one-way expansion, are only suitable
for some land cover types (i.e., built-up and cropland) over
several regions and the rules may vary in different regions.
This method, combining change detection algorithm and
discrete LULC datasets with given “from-to” types can be
used to extract multi-directional land cover changes (e.g.,
cropland expansion and shrink) and in the meantime, guar-
antee context consistency.
Further, the potential of the change detection algorithm,

BFAST in all-types of land cover change, has yet to be fully
explored. Although the algorithm has been used in break
detection in cropland and fire dynamics (Dutrieux et al.,
2016; Permatasari et al., 2016; Quarfeld et al., 2016), the
wider usage was in forest disturbance and recovery (de Jong
et al., 2013; Watts and Laffan, 2014). However, since it can
be applied to detect changes in trends and seasonal compo-
nents for both abrupt and subtle changes, it can be applied in

Figure 11 Examples of disagreement for cropland change from 2002 to 2015 in the three datasets. (a) ESA-CCI 300, 300 m; (b) MCD12Q1, 500 m; (c)
CLUD-A, nominal 30 m. The first row shows cropland reduction by a riverside because of the changes in the river. The second row is a cropland area without
significant changes.
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monitoring the conversion from different land cover types
with significant signal differences. And the prototype of
combining the statistical-based change detection algorithm
and LULC mapping is not limited in BFAST but other
temporal analysis algorithms (e.g., trajectory based ap-
proaches like Landtrendr (Kennedy et al., 2010)) regarding
characteristics and specific applications. With the increase of
data volume, this approach can be applied to other satellite
data sources such as dense Sentinel and Landsat data.
As a result, CLUD-A captured the total changes within

each 5-year period and reduced the time lags between the
actual change year and the mapping time since the changes
may occur at any point during the 5-year period. For ex-
ample, if a change in land cover type occurred in CLUD
between 2000 and 2005, and the change detection analysis
showed the change had occurred in 2004, then the time lag of
the change would be defined as 1. The number of changes for
each period and the distribution of time lags are shown in
Figures 12a and 13b. For Period 2 (P2, 1995–2000) to Period
5 (P5, 2010–2015), the range of time lags were from 0 to 4.
Period 1 (P1, 1980–1995) had the maximum time lag of 12
for the longest interval. It is not surprising that most of the
changes (42.13%) occurred in P1 which covered the longest
time span. However, only 4.3% changes occurred exactly in
the mapping years of CLUD (as shown in Figure 12b), and
the rest had time lags from 1 to 12 years.
While some challenges in annual LULC mapping were

overcome, there were some uncertainties in this study. Since
the original CLUD were at 30-m resolution, the use of coarse
data (MODIS and GIMMS) at 250 m and 8 km resolution
caused the loss of spatial information (all changed pixels
within one coarse resolution pixel has the change in the same
year) in identifying the sub-grid change years (as can be seen
in Figure 9b(ii)) because there could be multiple change
times in the sub-grids. This problem was partially solved by
controlling the total changes using two CLUD maps at the
start and the end of each period. However, the Further effort

includes fusing multi-resolution satellite data which also
requires a dense frequency of fine resolution datasets (Zhang
et al., 2017). Although the fusing approach can improve the
data volume to some extent, the fused time-series is not a
good substitute for the real dense fine resolution satellite
dataset. When conducting annual LULC mapping, attention
should be paid to choose suitable satellite data for a specific
purpose.
Another uncertainty originated from the change detection

algorithm, BFAST. It is easy to capture significant changes
(e.g., water to cropland) but it may take a long time to capture
gradual change (e.g., land degradation such as forest to
grassland and grassland to unused land) and thus difficult to
identify the exact change year. The accuracy of a detected
change year within a time series is also influenced by the
signal-to-noise ratio (Verbesselt et al., 2010b). Cloud con-
tamination and fluctuating poor data quality in some regions
of the MODIS and GIMMS products reduces the amount of
valid information and the detected change accuracy (parti-
cularly in cloudy region such as Yunnan Province (Figure
S3c)). Thus, we provide a data quality layer based on the
original satellite data quality. Also, the accuracy of this
method was highly dependent on the original LULC datasets
which provided change and “from-to” information.
CLUD has a high reported accuracy at 94.3%, but de-

monstrated a lower accuracy using the China validation
sample set. The misclassified pixels could trigger cumulative
errors in the next change detection process. We used CLUD
as the base LULC maps for updating because, to the best of
our knowledge, they are the most reliable LULC datasets in
China with multi-time phases and the highest resolution. In
this study, we assumed that bi-directional and multi-direc-
tional land use conversion would not happen in a 5-year
period. In most circumstances, change of the land surface is a
slow process which requires time but this assumption does
not apply in all situations. Some rapid changes would not be
picked up, such as the land cover dynamics before and after

Figure 12 Number and distribution of detected change delays between continuous CLUD-A and discrete CLUD dataset with 5- and 15-year intervals. P1:
1980 to 1995, P2: 1995 to 2000, P3: 2000 to 2005, P4: 2005 to 2010, P5: 2010 to 2015. The time lags describe changes that occurred within the 5-/15-year
intervals but were not captured by the discrete CLUD dataset because of the temporal resolution.
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hurricane Katrina (Li et al., 2016). Further improvements
could be made to capturing multiple changes in a given
period and identifying the multiple “from-to” types using
temporal segmentation and spectral fitting methods (Yin et
al., 2018).
Overall, the proposed method can be used in several ap-

plications where there is a need to identify uncertainty and a
potential deviation of 1 to 2 years for change dates. First, this
dataset applied a basic method and suggested inputs which
will be useful for further research. For example, this method
can be either used in regions that require annual LULC maps
where reliable discrete LULC datasets are available but
without frequent Landsat observations (i.e., West Africa).
Second, annual data can be used to evaluate the effect of
government policies such as re-vegetation and serves to
supplement statistical data which is labour-intensive to col-
lect. When quantifying land-use change impacts on ecosys-
tems, LULC datasets at fine spatial-temporal resolution can
be used as better inputs in carbon cycle models. Generally,
CLUD-A has the potential to describe the process of urba-
nization, deforestation, reclamation and water changes and
could be further used in related specific disciplines.

5. Conclusions

In summary, this study developed a new approach for up-
dating existing discrete CLUD products to a yearly CLUD-A
product by integrating multiple satellite data and using a
change detection algorithm. This prototype makes full use of
the higher spatial resolution and longer time span of different
satellite data sources and therefore, provides a potential for
developing annual LULC datasets, particularly in areas with
reliable discrete LULC datasets (e.g. CORINE programme
for European countries) but insufficient Landsat observa-
tions (e.g., West Africa). By controlling the total changes
using CLUD, the dataset showed a good performance in
annual classification and change-detection accuracy
(75.61%), which also suggest the use of generic BFAST al-
gorithm in all-type LULC change detection. The developed
CLUD-A provides insights and details on dynamic LULC
changes for China from the perspective of remote sensing,
reducing the time lags of detected changes compared to the
discrete CLUD and can serve as a supplement for national
statistics. Further application of the datasets includes, but is
not limited to, regional carbon studies, urban planning, water
and agricultural management, and policy evaluation.
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