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A time series of annual land use and land cover (LULC) maps that cover an extended period of time is a key
dataset for climatological studies investigating land-atmosphere interaction. Change in LULC can influence re-
gional climate by altering the surface roughness, soil moisture, heat flux partition, and terrestrial carbon storage.
Although annual global LULC maps are generated from Moderate-resolution Imaging Spectroradiometer
(MODIS) data, the earliest MODIS LULCmap is for 2001, which limits the potential time period for climatological
analyses. This study produced a continuous series of annual LULCmaps of China from1982 to 2013 using random
forest classification of 19 phenological metrics derived from Advanced Very High Resolution Radiometer
(AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) third generation NDVI (NDVI3g) data. The
classifier was trained using reference data derived from the MODIS land cover type product (MCD12Q1).
Based on a comparison with Google Earth images, the overall accuracy of a simplified eight-class version of our
2012 LULC map is 73.8%, which is not significantly different from the accuracy of the MODIS map of the same
year. Our maps indicate that for the three decades studied, the area of croplands and forests in China increased,
and the area of grasslands decreased. These annualmaps of land coverwill be an important dataset for future cli-
mate studies, and themethodologies used in this study can be applied to other geographical regionswhere avail-
ability of continuous time series of LULC maps is limited.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Land surface condition is an important factor in determining climate
through both biophysical and biogeochemical processes (Foley et al.,
2003). Recent changes in land surface conditions (e.g., albedo, soil mois-
ture, and surface roughness) and atmospheric composition (e.g., CO2

and methane) due to land use and land cover change (LULCC) have
had significant effects on regional and global climates (Bonan et al.,
1992; Foley et al., 2005; Lee et al., 2015; Mahmood et al., 2014;
McPherson, 2007; Pielke, 2005). For example, Bonan et al. (1992)
found that replacing bare ground and tundra with boreal forest results
in warming of both winter and summer air temperatures. In a more re-
cent study, He and Lee (2016) found that vegetation growth in the Sahel
may have induced the recent trend of increasing rainfall in that region.

There have been many attempts to explore the effects of LULCC on
climate based on observational (Kaufmann and Stern, 1997; Lee et al.,
2009; Lee et al., 2015) and modeling (Douglas et al., 2006; Eltahir,
1996; Lawrence and Chase, 2010; Lawrence et al., 2012; Lee et al.,
2011) studies across the globe (Pielke et al., 2011). Both observational
and modeling studies require as an input land use and land cover
(LULC) maps that characterize the pattern of changing LULC over time.
However, due to the limited length of time for which such LULC maps
are available, previous climate studies have often made simplifying as-
sumptions, for example, using a potential vegetation map (Fu, 2003)
or a single map of a specific year (Zhu, 2012) to represent the LULC of
the entire study period. For instance, Zhu (2012) employed a single
map of irrigation for the year 2000 to examine the impacts of irrigation
on climate during the period of 1978 to 2008, despite the tremendous
change in irrigation infrastructure during those three decades. There-
fore, obtaining a continuous sequence of annual LULCmaps over an ex-
tended time period, for at least multiple decades, is critical for
quantifying the effects of LULCC on climate.

Townshend et al. (1991) and Running et al. (1994) have noted that
only remotely sensed data can potentially provide accurate and repeat-
able global land use and land cover for monitoring change. Since then, a
number of studies have generated LULC maps in China using remotely
sensed data. For instance, Wang et al. (2012) classified urban areas
based on Landsat TM/ETM+ data during the years 1986–1994, 1999–
2002, and 2008–2010, and examined urban expansion in China from
the 1990s to 2010s. Liu et al. (2014) used Landsat and Huanjing-1 satel-
lite data from the late 1980s, 1995, 2000, 2005, and 2010 to generate a
sequence of LULCmaps of China every five years, which they used to in-
vestigate the spatiotemporal change patterns of LULC. However, these
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datasets have relatively low temporal frequency of acquisition. Finding
cloud-free images to cover all of Chinamay require imagery from sever-
al different years or a combination of data from different satellites.
These problemsmay result in inconsistent periods of time in the analy-
sis and biased results because of inconsistent data sources. Another re-
motely sensed dataset that is particularly useful for such work is
cloud-minimized multi-temporal composites (Holben, 1986) derived
from high temporal frequency images acquired at a coarse/moderate
spatial scale (pixels 250 m or larger). This coarse/moderate spatial
scale is better suited to the coarse scale typically used in climate model-
ing (e.g. 0.05° (approximately 5 km) or larger (Lawrence and Chase,
2007)) compared to the finer scale sensors with global coverage, such
as Landsat (Kim et al., 2014; Sexton et al., 2013). An example of a dataset
generated from a moderate-scale sensor that has been used for climate
work is the Moderate-resolution Imaging Spectroradiometer (MODIS)
land cover type product (MCD12Q1) (Lawrence and Chase, 2007). Un-
fortunately, however, global LULC data from MODIS is only available
since 2001, thus limiting the time span that can be studied, an important
consideration in climate studies.

Fortunately, there is a datasetwith coarse spatial resolution and high
temporal frequency that does provide global data for an extended peri-
od: NOAA Advanced Very High Resolution Radiometer (AVHRR) imag-
ery (James and Kalluri, 1994). Often combined with MODIS data,
AVHRR data have been widely used for monitoring land surface condi-
tions at coarse scales (Andres et al., 1994; Lunetta et al., 2006). The
early AVHRR instruments had just 4 spectral bands, although this was
later increased to 5 in some subsequent sensors (Tucker et al., 2005).
One of the most important derived datasets from AVHRR data is based
on the Normalized Difference Vegetation Index (NDVI), a normalized
ratio of the visible red and near infrared spectral bands (Rouse et al.,
1974). Water is generally associated with negative NDVI values, bare
soil with values near zero (Sabins and Lulla, 2007), and vegetation
with high positive values that are broadly indicative of the amount of
photosynthesizing vegetation present (Dappen, 2003).

There is a long history of using AVHRR imagery for continental
(Townshend et al., 1987; Tucker et al., 1985) and even global scalemap-
ping (DeFries et al., 1995; DeFries and Townshend, 1994; Hansen et al.,
2000; Loveland et al., 2000). For example, Gitas et al. (2004) used
AVHRR imagery to map burned areas in the Spanish Mediterranean
coast region after a large forest fire. More recently, Zhang et al. (2016)
generated a global climatic vegetation map from AVHRR imagery.
These studies typically usedNDVI data alone, or in combinationwith re-
flectance values in each spectral band as well as temperature variables
from the AVHRR thermal bands. However, in a study of the importance
of different variables in discriminating classes for producing a global
land covermapusingAVHRR,DeFries et al. (1995) found summarymet-
rics describingNDVI phenologywere by far themost important formost
vegetation classes. Nevertheless, for LULC classes for which vegetation
phenology is of limited diagnostic use, such as the urban, snow, water,
and barren classes, ancillary data such as digital cartographic informa-
tionwas found to be necessary (e.g. Loveland et al., 2000). Significantly,
these early efforts focused on producing single maps, and to our knowl-
edge, AVHRRdata has not yet beenused to produce a time series of LULC
maps over broad regions. In recent years less attention has been paid to
AVHRRdata classification due to the availability of improved, higher sig-
nal to noise, and higher spatial resolution remotely sensed data, such as
fromMODIS (Schneider et al., 2009;Muhammad et al., 2015). However,
AVHRR data comprise the longest global image time-series, and thus
provide the potential to generate a long-term time-series of LULC
maps, a key input for climatological analysis.

The aim of this study is to produce annual land use and land cover
maps of Mainland China for the three decades covering the period
from 1982 to 2013. The maps are produced based on a random forest
classification using phenological metrics derived from the AVHRR Glob-
al InventoryModeling andMapping Studies (GIMMS)NDVI third gener-
ation (NDVI3g) dataset and trained using land cover information from
the MODIS MCD12Q1 dataset. The key attribute of our classified land
cover maps is that they comprise a continuous time series covering
three decades, which contrasts with the limited temporal information
previously available for use in climate studies.

2. Data and methods

2.1. Data

The primary dataset in this study is AVHRR GIMMS NDVI3g, first ver-
sion, with data covering the period from 1982 to 2013, which were ac-
quired from https://nex.nasa.gov/nex/projects/1349/. GIMMS NDVI3g
data havebeennormalized to account for issues such as sensor calibration
loss, orbital drift, and atmospheric effects such as volcanic eruptions
(Pinzon and Tucker, 2014). The spatial resolution of the data is 1/12°.
Each layer in the dataset is a bimonthly (15 days) composite produced
using the maximum NDVI value for each pixel (Holben, 1986). We re-
projected NDVI3g data onto a geographic grid, withWGS 1984 spheroid.

The second major dataset used is MODIS MCD12Q1 collection 5 data
(Channan et al., 2014), which we utilized as a reference source for identi-
fication of training areas and class labels for the AVHRR classification. The
MODIS MCD12Q1 data with a WGS 1984 spheroid were obtained from
University of Maryland http://glcf.umd.edu/data/lc/. The data comprise
annualmaps of landuse classes keyed to the InternationalGeosphere-bio-
sphere Programme (IGBP) classification system, covering the period 2001
to 2012. MODIS MCD12Q1 collection 5 data are generated from MODIS
bands 1–7 and enhanced vegetation index data using an ensemble super-
vised classification algorithm (Friedl et al., 2010). The original MODIS
MCD12Q1 data were resampled by the University of Maryland to 1/12°
pixels, the resolution of the AVHRR GIMMS NDVI3g dataset, using a ma-
jority aggregation method (Channan et al., 2014). In this approach, each
new pixel was labeled as the class that most frequently occurred in the
original resolution data, for the area encompassing that new pixel.

The Chinese Land-Use/cover (CLU) dataset for 1995, 2000, 2005, and
2010 were obtained from the Data Center for Resources and Environ-
mental Sciences (RESDC), Chinese Academy of Sciences (http://www.
resdc.cn). CLU data were compared with our classified LULC maps in
order to assess the 32-year time series of LULC dataset more robustly.
The CLU data are produced mainly from 30 m Landsat TM data, as
well as 30 m Huangjing-1 satellite imagery and 20 m China-Brazil
Earth Resources Satellite-1 imagery using a human-computer interac-
tive interpretation method (Liu et al., 2003a; Liu et al., 2010; Liu et al.,
2014). The CLU data have 6 classes: cropland, woodland, water body
(which includes water, snow, and ice), built-up land, and unused land.
The accuracy of the six classes of land use is about 94.3% (Liu et al.,
2014). RESDC provides the CLU data with spatial resolution of 1 km.
To be consistent with our classified maps, we resampled the data to 1/
12° spatial resolution, using a majority aggregation approach.

2.2. Data pre-processing

Although the temporal compositing process used in producing the
NDVI3g dataset greatly reduces cloud and other atmospheric effects, re-
sidual noise remains (de Jong et al., 2011; Reed et al., 1994). Cleaning
and smoothing NDVI data is therefore necessary (Fig. 1) (A second ver-
sion of GIMMS NDVI3g dataset, including data up to 2015, has recently
beenmade available. However, this new dataset is not directly compat-
ible with the original dataset, and for that reason, we did not incorpo-
rate the new data. Specifically, the binary VI3g data format of the first
version was changed to the Network Common Data Form (NetCDF)
for the second version, and the 1 to 7 range of the quality flag for the
first version was adjusted to 0 to 2 for the second version.)

1) Cleaning AVHRR GIMMS NDVI3g data - The quality information flags
for NDVI3g data range from 1 to 7. Flag values of 1 and 2 represent
good data, 3 indicates the application of a spline interpolation (i.e.
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Fig. 1. Flowchart for pre-processing the GIMMS NDVI3g data.
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a data gap that has been filled), 4 and 6 indicate possible snow, 5 in-
dicates a gap filled through averaging the seasonal profile, and 7 in-
dicatesmissing data.We retained data with flag values of 1, 2, and 3,
following Chen et al. (2016), and excluded data with flag values of 4
to 7 by assigning those locations a “no data” value.

2) Smoothing the cleaned AVHRR GIMMS NDVI data - Even after remov-
ing pixels that are flagged as having low quality, smoothing is
Fig. 2. Spatial patterns for Julian day 75 of 2011 of (a
required to reduce the noise. This was done using the program
TIMESAT (Jönsson and Eklundh, 2002, 2004). TIMESAT is a software
package for analyzing time-series of satellite sensor data and avail-
able from http://web.nateko.lu.se/timesat/timesat.asp. Numerous
studies have employed TIMESAT for phenological analysis (Boyd et
al., 2011; Heumann et al., 2007; Palacios-Orueta et al., 2012;
Palmer et al., 2015). TIMESAT offers multiple outlier removal
methods: median filtering, approaches using weights from the Sea-
sonal-Trend decomposition procedure based on Loess (STL)-decom-
position (Cleveland et al., 1990) or weights from STL-decomposition
multiplied with the original weights assigned based on the ancillary
data, and three smoothing functions (a Savitzky-Golay filter, an
asymmetric Gaussian filter, and a double logistic smoothing func-
tion) (Jönsson and Eklundh, 2004). Following He et al. (2015), we
selected median filtering to remove outliers that deviate more than
two standard deviations from the median in a moving window
(Eklundh and Jönsson, 2015) and the double logistic method to
smooth the time-series.

TIMESAT smoothing requires the user to specify the number of grow-
ing season per year. In China, two growing seasons are common in some
locations (e.g., cropland areas in Southern China), and only one growing
season predominates elsewhere (e.g., deciduous forest and cropland in
Northern China). In order to identify the appropriate number of seasons,
we first smoothed the entire NDVI time-series with two growing seasons
(Smoothed NDVI_2) (Fig. 1). Each resulting smoothed time-series was
checked to determine if there were at least four points of increasing
NDVI before the NDVI peak (i.e., where the first derivative is zero) and
four points of decreasing NDVI points after the peak, in each year. We
chose these criteria as the potential growing season for cropland in
China is approximately four months. If the time-series for a particular
year did not meet these criteria, it was replaced with a smoothing based
on the assumptionof a single growing season (SmoothedNDVI_1) (Fig. 1).

For the time series of a single pixel, any year with missing data that
comprises a continuous period longer than 0.2 years, is not smoothed by
TIMESAT. Similarly, the entire 32 year time-series for any pixel is also
not smoothed if 25% of the data is missing (Gao et al., 2008). These
pixels were labeled “no data” in our classified LULC maps, and covered
3.7% of the area of China.

Fig. 2 displays the spatial patterns of cleaned, and cleaned and
smoothed NDVI for Julian day 75 of 2011 as an example. Pixels with
flag values 4 to 7, which were excluded in the cleaning processes, are
) cleaned and (b) cleaned and smoothed NDVI.

http://web.nateko.lu.se/timesat/timesat.asp


Fig. 3. Raw, and cleaned and smoothed NDVI time-series of mixed forest, croplands, and grasslands.
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mostly found in Northeast China andWestern China, as shown in white
in Fig. 2 (a). The smoothing processes discussed above improves the
completeness of the NDVI, reducing, but not entirely eliminating, the
number of no data pixels, as shown in Fig. 2 (b). This is due to the lim-
itation of TIMESAT, as mentioned above.
Fig. 4. Flowchart of the land use and la
Fig. 3 displays the raw NDVI and cleaned and smoothed NDVI time-
series for a single year of randomly selected individual pixels from
Northeast China representing mixed forest, croplands, and grasslands.
After cleaning and smoothing, the NDVI profiles provide generalized
overall patterns of the NDVI time-series.
nd cover classification approach.



Table 1
Number of pixels for each unchanged LULC type in each region in China. These pixels were randomly split, with 25% used for training, and 75% for validation.

MODIS MCD12Q1 class Number of pixels Class for AVHRR classification

Western Northeast Central Southern

Water 313 60 135 260 Water
Evergreen needleleaf forest 20 0 0 0 Evergreen needleleaf forest
Evergreen broadleaf forest 141 0 0 1432 Evergreen broadleaf forest
Deciduous needleleaf forest 0 0 0 0
Deciduous broadleaf forest 0 117 75 0 Deciduous broadleaf forest
Mixed forest 496 2702 1832 10,032 Mixed forest
Closed shrublands 0 0 2 0
Open shrublands 210 0 43 0 Open shrublands
Woody savannas 0 1 0 2949 Woody savannas
Savannas 0 0 0 0
Grasslands 16,062 5387 12,530 3628 Grasslands
Permanent wetlands 0 0 0 2
Croplands 450 3947 7751 6177 Croplands
Urban and built-up 4 25 138 233 Urban and built-up
Cropland and natural vegetation mosaic 7 556 102 521 Cropland and natural vegetation mosaic
Snow and ice 432 0 1 5 Snow and ice
Barren or sparsely vegetated 23,881 0 5159 0 Barren or sparsely vegetated

Fig. 5. Unchanged pixels of LULC for Mainland China, 2001 to 2010 derived fromMODIS MCD12Q1, and used for training the random forest classifier.
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Table 4
Class for comparing with CLU data.

Class for comparing with CLU data Class for AVHRR classification

Water Water
Snow and ice

Forest Evergreen needleleaf forest
Evergreen broadleaf forest
Deciduous broadleaf forest
Mixed forest
Open shrublands
Woody savannas

Grasslands Grasslands
Croplands Croplands

Cropland and natural vegetation mosaic
Urban and built-up Urban and built-up
Barren or sparsely vegetated Barren or sparsely vegetated

Table 2
The 19 phenological metrics used as input for the random forest classification.

Phenological metrics

1: Maximum NDVI value
2: Minimum NDVI value
3: Julian day of maximum NDVI value
4: Julian day of minimum NDVI value
5: Integral of NDVI between Day 105 and Day 315
6: Integral under the NDVI curve
7: Maximum derivative of NDVI curve
8: Minimum derivative of NDVI curve
9: Julian day of maximum derivative of NDVI curve
10: Julian day of minimum derivative of NDVI curve
11: Julian day of start season
12: Julian day of end season
13: NDVI value of start season
14: NDVI value of end season
15: Integral between maximum derivative and minimum derivative
16: Integral between start season and maximum value
17: Integral between end season and maximum value
18: Maximum NDVI value - minimum NDVI value
19: Maximum NDVI value/integral under the NDVI curve
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2.3. Land use and land cover classification methods

Pixels identified as having two growing seasons (as described in
Section 2.2) were directly labeled as croplands, since natural vegetation
should have only one growing season. The remaining pixels, which
comprise those with one growing season, were classified following the
procedures in Fig. 4.
2.3.1. Classification
Our aim in selecting a method for obtaining training data for the

classification was to develop a method that provided many examples
of each land cover class, from multiple years, in order to capture both
geographic and temporal variability. We therefore used as a reference
data source pixels of unchanged land cover during the period from
2001 to 2010 in the MODIS MCD12Q1 dataset (Fig. 4). The reference
data were randomly split, with 25% used as training data (25%) and
the remaining 75% used as validation data (75%) for an initial evaluation
of the classification.

Prior to carrying out the classification, China was divided into four
separate regions generally based on vegetation zones, as suggested by
Hou (1981) (Fig. 5), and each region was classified separately. This seg-
mentation was applied because the characteristics of phenological pat-
terns of the mapping classes vary geographically. For example,
croplands in Central and Southern Chinamay have two growing seasons
and spring green-up occurs typically in March, while croplands in
Northeast China only have one growing season and green-up occurs
Table 3
Allowed and disallowed class transitions.

Class Year n + 1

Water Forest Open
shrublands

Woody
savannas

Grasslan

Year n and
n + 2

Water Yes No No No No
Forest No Yesa No No No
Open Shrublands No No Yes Yes Yes
Woody Savannas No No Yes Yes Yes
Grasslands No No No No Yes
Croplands No No No No Yes
Urban and Built-up No No No No No
Cropland and Natural
Vegetation Mosaic

No No No No Yes

Snow and Ice No No No No No
Barren or Sparsely
Vegetated

No No No No Yes

a Transitions of the same forest type: “Yes”, transitions between different types of forest: “N
only in May (Wu et al., 2010). Similarly, natural vegetation spring
green-up occurs later, moving from south to north (Zhang et al.,
2006). The boundaries of the sub-regions were chosen along arbitrary
N-S and E-W lines, and not along previously mapped ecological bound-
aries. Our choice for doing so reflected our philosophical concern not to
impose a simple viewof sharp ecotonal boundaries that have notmoved
over the more than three decades of the study. An added advantage of
using simple, relatively arbitrary sub-region boundaries is that it made
for simpler processing, which could potentially easily be applied to the
production of a global map, where the issue of identifying simple
sharp ecotonal boundaries between regions would be even more prob-
lematic. A potential drawbackwith our approach as it perhaps increases
the chance for classification inconsistencies across the sub-region
boundaries.

The four zones chosen were: Western China, Northeast China, Cen-
tral China, and Southern China. In Western China, barren or sparsely
vegetated land and grasslands dominate, with some minor croplands.
In Northeast China, themain vegetation types are grasslands, croplands,
and mixed forest. In Central China, the dominant classes are barren or
sparsely vegetated, grasslands, and croplands. Southern China has the
most diverse vegetation types, including grasslands, croplands, forest,
and savanna (Fig. 5).

The numbers of pixels for each unchanged LULC type in each region
are shown in Table 1. For some LULC types, the numbers of pixels are
zero or close to zero. For example, there are no unchanged pixels in
the deciduous needleleaf forest class and only two pixels of permanent
wetlands and closed shrublands. These LULC types of limited extent
were excluded from further analysis, reducing the original 17 classes
down to 13 LULC classes that were mapped (Table 1, class for AVHRR
classification).

The cleaned and smoothed 1982–2013 AVHRRGIMMSNDVI dataset
(Section 2.2) was used to generate a total of 19 phenological metrics
ds Croplands Urban and
built-up

Cropland and natural
vegetation mosaic

Snow
and ice

Barren or
sparsely vegetated

No No No No No
No No No No No
Yes No Yes No No
Yes No Yes No No
Yes No Yes No Yes
Yes No Yes No Yes
No Yes No No No
Yes No Yes No No

No No No Yes No
No No No No Yes

o”.



Table 5
Class for Google Earth validation.

Class for Google Earth validation Class for AVHRR classification

Water Water
Forest Evergreen needleleaf forest

Evergreen broadleaf forest
Deciduous broadleaf forest
Mixed forest
Open shrublands
Woody savannas

Grasslands Grasslands
Croplands Croplands
Urban and built-up Urban and built-up
Cropland and natural vegetation mosaic Cropland and natural vegetation mosaic
Snow and ice Snow and ice
Barren or sparsely vegetated Barren or sparsely vegetated
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(Table 2), including start of growing season, end of growing season, and
maximum and minimum NDVI values, for each pixel. Maximum and
minimum NDVI value, Julian day of maximum and minimum NDVI
value, NDVI value of start and end of season, and Julian day of start
and end of the season are commonly used phenological variables for
land cover characterization (Knight et al., 2006; Vuolo et al., 2011;
Xue et al., 2014; Yan et al., 2015) because they capture the gross pattern
of the annual NDVI cycle. For instance, in Fig. 3, the maximum NDVI
value is greatest formixed forest, followed by croplands, and then grass-
lands, which have the lowest value. The croplands in Fig. 3 are distin-
guished by an earlier green-up than mixed forest and grasslands.
Additional key summary metrics were generated from integrated
NDVI values. According to Liu et al. (2015) and Vuolo et al. (2011), inte-
grated phenological metrics are important in classifying crops, thus we
included several integrated values, such as the integral under the NDVI
curve, and the integral between start season andmaximumvalue. Other
metrics, for example those based on themaximumandminimumderiv-
ative of the NDVI curve, were chosen in order to capture properties re-
lated to the rate and timing of phenological change, such as green-up
(Alcantara et al., 2012; DeFries and Townshend, 1994; Klein et al.,
2012; Nellis et al., 2009).

Classification was carried out using the R randomForest package
(Liaw et al., 2009). Ensemble learning algorithms such as random for-
ests have received increasing attention, because they are simple to im-
plement, with few user-specified parameters, tend not to be sensitive
to noise or overtraining, and therefore do not need pruning, and are
generally found to be more robust than single classifiers (Gislason et
al., 2006; Pal, 2005; Rodriguez-Galiano et al., 2012). The random forest
classifier consists of a combination of a large number of classification
trees, which “vote” to produce a single outcome for each pixel
Fig. 6. Relative importance of 19 phenological metrics as indicated by mean decrease in accura
metric number).
(Breiman, 2001). Each individual tree is generated from a random sub-
set of the training data, as well as a random subset of the variables. In
this way, the individual trees have reduced accuracy, but also reduced
correlation, resulting in a more reliable overall classification. The ran-
dom forest classifier can handle thousands of variables without variable
deletion (Rodriguez-Galiano et al., 2012), and can even be appliedwhen
the number of variables is much larger than the number of samples
(Dahinden, 2011). A further benefit is that the classifier provides an es-
timate of the importance of each variable by summarizing the accuracy
of trees that don't use that variable. The random forest classifier
(Breiman, 2001) has been widely used inmany fields, including remote
sensing (Baudron et al., 2013; Cutler et al., 2007; Maxwell and Warner,
2015; Maxwell et al., 2016; Speiser et al., 2015). Random forest classifi-
cation requires two user-defined parameters: the number of decision
trees produced (ntree) and the number of variables available for split-
ting at each node (mtry). In general, the value of ntree simply has to
be large enough to give a stable result; we chose a value of 500 based
on prior experience (Maxwell et al., 2016). For mtry, we chose the de-
fault value, in the randomForest package (Liaw et al., 2009), the square
root of the number of predictor variables (i.e., 4), following Liu et al.
(2016), though Shi and Yang (2016) advocate for a larger number of
variables, combined with a smaller number of trees. The importance
of the 19 phenological variableswasmeasured using themean decrease
in accuracy (MDA) derived from the random forest classifier. The larger
mean decrease in accuracy means themore the accuracy of the random
forest decreased due to the exclusion of a variable, thus the greater the
assumed importance of that variable (Breiman, 2001). Separate random
forest classifications were generated to map the LULC for each of the
four regions.

2.3.2. Temporal filtering
In order to try to improve the overall quality of the map time series,

short-term, unreasonable land cover transitions were identified and
suppressed (Baker et al., 2013; Clark et al., 2010). For example, it
would be unlikely that a forested pixel would be converted to urban
cover, and then subsequently changed back to forest cover in the fol-
lowing year. Therefore, we used a temporal filter with a 3-year moving
window to remove the disallowed land use and land cover transitions
(Clark et al., 2010). Specifically, we tested to see if the classes from
year n and n + 2 were the same. If the classes were the same and
class n + 1 was a disallowed transition as specified by Table 3, then
class n + 1 was replaced with the class from year n.

2.3.3. Inter-comparisons and accuracy evaluation
To assess the reliability of the classifiedmaps, we chosemultiple ap-

proaches because the 32-year time series of land use and land cover
cy (larger values indicate higher importance). (See Table 2 for associated metric for each
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maps represent such a complex dataset. These included inter-compari-
son with the validation data (75%), the entire 2001–2010 MODIS
MCD12Q1 LULC maps (years that were used in training the classifier),
as well as the entire MODIS MCD12Q1 LULC maps for 2011 and 2012
(years that were excluded from the reference dataset), and the 1995,
2000, 2005, and 2010 CLU data. In addition, we undertook amore tradi-
tional error evaluation (Olofsson et al., 2014) usinghigh resolution 2012
Google Earth images as a reference source.

We chose to compare our maps against the MODIS data in order to
benchmark our approach against the input MODIS data. This compari-
son can potentially provide insight regarding how successful the
Fig. 7. Percentage of pixels for each class for which the filtering operation changed the labeled c
last year data, i.e., 1982 and 2013).
AVHRR NDVI data are in reproducing the overall patterns as identified
with MODIS, a sensor with superior spectral and radiometric resolution
(Tucker et al., 2005). We compared ourmaps with CLU dataset, because
it was a typical LULC dataset of China generated from high resolution
imageries, such as Landsat and Huanjing−1 data. The CLU dataset has
a classification system that differs from ours, as mentioned in Section
2.1. Thus, we combined our classes of evergreen needleleaf forest, ever-
green broadleaf forest, deciduous broadleaf forest, mixed forest, open
shrubland, and woody savannas, into a single forest class; water and
snow and ice into the water class; and croplands and the cropland and
natural vegetation mosaic into the croplands class (Table 4, see column
lass, per year from 1983 to 2012 (Note: the filtering operation does not affect the first and
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“class for comparing with CLU data”). It is important to note, however,
that the inter-comparisonswithMODIS and CLU data are not an accura-
cy evaluation, since the MODIS and CLU data themselves have errors.
For example, the global overall accuracy of MODIS MCD12Q1 has been
estimated as approximately 75% (Zhao et al., 2013).

Comparisons with other land cover classifications provide useful in-
sight into the similarities of the results with different sensors. However,
only an assessment using independent referencedata can provide an es-
timate of themap accuracy. We therefore undertook an accuracy evalu-
ation using a manual interpretation of Google Earth imagery, focusing
on land cover for the year 2012. This year was chosen because there
were relatively abundant images in Google Earth for that year, and
also this was a year not used in training the random forest classifier
used to produce the AVHRR LULC maps.

A random sampling strategy with stratification was chosen to select
sample points (Olofsson et al., 2014). The strata were the mapped classes.
Based on multinomial sampling theory, we estimated a minimum of 150
random samples would be required in order to generate an estimate
with 10% precision and 15% confidence (Jensen, 2016). An initial random
sampleof 300 samplepointswith aminimumof15points for each stratum
was selected across the study area. Samplepoints for thefinal analysis after
points without appropriate high resolution imagery for 2012 in Google
Earth were removed, leaving a final total of 256 points, many more than
the 150 points we set as a minimum. Although we had concerns that
onlyusing locations forwhich2012 imagerywas availablemight introduce
bias, there was no obvious pattern to the availability of such imagery.

A visual estimate was made of the dominant land cover within a 1/
12° × 1/12° square, representing the AVHRR pixel dimensions, which
was drawn around each sample point in Google Earth. Because it was
not always possible to visually differentiate between all classes, we
combined evergreen needleleaf forest, evergreen broadleaf forest, de-
ciduous broadleaf forest, mixed forest, open shrubland, and woody sa-
vannas to form a single forest class (Table 5, class for Google Earth
validation). Thus, although the original map has 13 classes, the accuracy
evaluation is based on only eight of those classes, and therefore the ac-
curacy we estimated is for a simplified map that does not differentiate
forest classes. The accuracy of the map with the original 13 classes will
of course be lower than that of the eight classes map we evaluated.

Because the samplingdesign is stratified randomusing themap clas-
ses as strata, the cell entries of the error matrix are estimated using
(Olofsson et al., 2014):

Pij ¼ Wi
nij

niþ
ð1Þ

where Pij denotes the proportion of area for the population that is class i
according to the classification information, and class j according to the
Table 6
Random forest user's accuracy (UA), producer's accuracy (PA), and overall accuracy for each re

Western China North

UA PA UA

Water 44.4% 2.1% 66.7%
Evergreen needleleaf forest 25.0% 7.1%
Evergreen broadleaf forest 76.0% 51.4%
Deciduous broadleaf forest 42.6%
Mixed forest 76.5% 79.0% 89.0%
Open shrublands 40.0% 3.8%
Woody savannas
Grasslands 89.3% 92.9% 94.9%
Croplands 71.5% 50.0% 91.7%
Urban and built-up 50.0%
Cropland and natural vegetation mosaic 62.8%
Snow and ice 66.7% 3.5%
Barren or sparsely vegetated 93.6% 94.9%
Number of validation pixels 28,502 9518
Overall accuracy 91.4% 91.5%
reference information. Wi is the proportion of area mapped as class i.
nij is the number of samples in class i according to the classification,
and class j according to the reference information. ni+ denotes the
row totals.

Recent research has called into questioning the value of the kappa
statistic (Pontius and Millones, 2011), consequently we instead calcu-
lated allocation disagreement and quantity disagreement, measuring
which divide overall error into components related to errors in class lo-
cation and proportion, respectively (Pontius andMillones, 2011). Based
on the error matrix generated from Eq. (1), the overall allocation dis-
agreement (A) and overall quantity disagreement (Q) were calculated
as follows (Pontius and Millones, 2011; Warrens, 2015):

ai ¼ 2 min piþ;pþi

� �
−2pii ð2Þ

A ¼ 1
2

XC

i¼1

ai ð3Þ

qi ¼j piþ−pþi j ð4Þ

Q ¼ 1
2

XC

i¼1

qi ð5Þ

where C is the number of classes. pi+ and p+i denote the row and col-
umn totals, respectively. ai is the allocation disagreement for class i. qi is
the quantity disagreement for class i.

The same points were used to estimate the accuracy of our 2012
AVHRR map and the MODIS MCD12Q1 2012 map. McNemar's test (de
Leeuw et al., 2006) was used to assess whether our classified LULC
was significantly different from that of the MODIS classification.

3. Results and discussion

3.1. Relative importance of 19 phenological metrics

The importance of the 19 phenological metrics as predictors mea-
sured using the mean decrease in accuracy of the random forest classi-
fier is showed in Fig. 6. It is notable that the lowest mean decrease in
accuracy is approximately 18%, indicating all the metrics appear to be
useful for all regions, and that there is not a great deal of redundancy
in the 19 metrics. This finding is most evident for Southern China,
where excluding any single metric seemed to have a particularly large
effect (no b30% mean decrease in accuracy). The other major observa-
tion from Fig. 6 is that there is little consistency in the importance of in-
dividual metrics for the different regions of China. However, in general,
themost importantmetrics are Julian dates of phenological events, such
gion based on the validation data (75%).

east China Central China Southern China

PA UA PA UA PA

8.3% 75.0% 5.3% 25.0% 3.2%

64.2% 46.4%
29.9% 85.7% 20.7%
97.9% 85.0% 89.9% 79.1% 88.4%

100.0% 3.6%
66.9% 58.1%

97.2% 94.0% 96.6% 85.4% 86.5%
89.2% 92.9% 92.5% 85.3% 84.6%
5.9% 25.0% 1.0% 52.4% 15.4%
37.4% 63.0% 22.4% 55.4% 37.0%

96.7% 95.5%
19,653 16,518
93.5% 79.0%



Fig. 9. Consistency between classified LULC maps and MODIS MCD12Q1 from 2001 to
2012.

Fig. 8. Comparisons of the classified LULC maps with MODIS MCD12Q1 in (a) 2011 and (b) 2012.
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as the start of season (metric number 11), probably due to differences in
the growth calendars of different vegetation cover types. For example,
croplands start green-up earlier than mixed forest and grasslands (Fig.
3). In Northeast China and Southern China, actual NDVI values are also
important (e.g. the maximum NDVI value, metric number 1). As North-
east China and Southern China have mixed forest and other vegetation
classes (Fig. 5), maximum NDVI may differentiate less productive non-
forest biomes from more highly productive forests. In Central China,
the integral of NDVI over time (e.g. between the maximum value and
the end of season, metric number 17) is also important. Barren or
sparsely vegetated areas, grasslands, and croplands are dominant in
Central China (Fig. 5). Integrated NDVI values, such as integral between
maximum value and the end of season, may separate croplands from
other vegetation cover types, such as grasslands, since croplands are
usually characterized by a high rate of green-up and senescence.

3.2. Temporal filtering of time-series of LULC maps

Comparing the classified maps before and after temporal filtering,
the percentage of pixels replaced varies among different classes and
years (Fig. 7). Water, evergreen needleleaf forest, deciduous broadleaf
forest, open shrublands, urban and built-up, snow and ice, and barren
or sparsely vegetated are replaced less than other classes, while mixed
forest, woody savannas, grasslands, and croplands are replaced more
frequently. This is likely due to the relatively large area of the latter
classes.

3.3. Inter-comparison and accuracy evaluation

In this section, we first evaluate the reliability of the AVHRR classifi-
cations. This is done by a comparison with the validation data (75%),
and comparisons with the entire 2001–2012 MODIS classifications and
1995, 2000, 2005, and 2010 CLU data. These inter-comparisons with
the validation data (75%) and MODIS data are based on 13 classes (i.e.,
the column “class for AVHRR classification” in Table 1), the inter-com-
parison with the CLU data is based on six classes (i.e., the column
“class for comparing with CLU data” in Table 4). After these compari-
sons, we then report the results of the more traditional accuracy evalu-
ation,which is based on the eight classes in the column “class for Google
Earth validation” in Table 5. After the accuracy evaluation we summa-
rize the geographic and temporal trends in the 32-year time series in
the following section. The focus of temporal trend analysis is on the
areas of land cover classes in individual date and not change maps.

3.3.1. Inter-comparison of classified LULC with validation data (75%)
The user's accuracy and producer's accuracy vary among different

classes and different regions (Table 6). It is apparent that the user's
and producer's accuracies tend to be lower for most classes in Southern
China compared to the other regions, possibly a result of cloud contam-
ination. Some classes, for example, the barren or sparsely vegetated,
grasslands, and mixed forest, are consistently mapped with relatively
high accuracy (defined as here as N75% user's and producer's accura-
cies). In contrast, water and evergreen needleleaf forest are mapped
generally (though not always) with lower reliability (user's and
producer's accuracies b50%). It is notable that the classes with higher
accuracies, such as mixed forest, tend to cover larger areas, and thus
have larger number of training samples (Table 1). The overall accuracy
of validation data (75%) is also shown in Table 6. All of regions have
high accuracy (N91%), except for southern China, which has 79.0% over-
all accuracy.

3.3.2. Inter-comparison of classified LULC with MODIS MCD12Q1
The comparison of our classification with the entire MODIS

MCD12Q1 maps for the years not used in training the classifier (2011
and 2012) indicates a consistency of 71.0% for 2011, and 69.3% for
2012. Inconsistency is high in Northeast China and Southern China
(Fig. 8), whereas the two datasets are generally much more consistent
in Western China. It is notable that the areas of inconsistent land
cover are common where cloud cover is more frequent, including
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parts of the humid Southeastern China, and some of the relatively
mountainous regions of Northeastern and Western China, as well as
the places where land use and land cover change appears to be more
common. However, for the Tibetan Plateau, inconsistent regions are
more common on the edges of the region than the interior. This may
be due to the fact that the interiors of region tend to be dominated by
more homogenous LULC (e.g., grasslands), while the edges of the region
are transitional areas for different LULC types. For example, in Southeast
edge of Tibetan Plateau, mixed forest and grasslands coexist. Further-
more, the inconsistency between these two land use and land cover
datasets may be also related to the different data sources (i.e., NDVI in
this study and reflectance of bands 1–7 in MCD12Q1) and
Fig. 10. User's and producer's consistencies for each class between c
methodologies (i.e., random forest in this study and ensemble super-
vised classification algorithm in MCD12Q1) for producing these two
datasets.

Notably, the consistency values for 2011 and 2012 are only slightly
lower than the average of the consistency values observed for 2001–
2010, years that were used for training the classifier (Fig. 9). This result
is encouraging, because it provides some evidence that the classifier is
able to extrapolate to years other than those used in training. If the
training data, or the classifier, were not adequate to capture the overall
patterns, we would expect a much greater drop in years not used in
training, when the annual patterns of rainfall or temperature, for exam-
ple, might be slightly different than the years used for training.
lassified LULC maps and MODIS MCD12Q1 from 2001 to 2012.



Fig. 11. User's and producer's consistencies for each class between classified LULC and CLU maps for 1995, 2000, 2005, and 2010.

212 Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217
To further explore the consistency for different classes between
these two LULC datasets, we display a time-series of user's consistency
(calculated as the consistent pixels for class i/all pixels for class i in
our classified map) and producer's consistency (calculated as the con-
sistent pixels for class i/all pixels for class i in MODIS data) for each
class from 2001 to 2012 (Fig. 10). The classes with the highest user's
and producer's consistencies for each year tend to be those of mixed for-
est, woody savannas, grasslands, croplands, and barren or sparsely vege-
tated. This may be due to the better performance of the random forest
classification for the classes with a larger number of training samples
(Table 1 and Table 6). The classes with the lowest consistencies are
water, evergreen needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, open shrublands, urban and built-up, and snow and ice.

3.3.3. Inter-comparison of classified LULC with CLU dataset
The overall consistency values between our classified LULC and the

CLU dataset, for years 1995, 2000, 2005, and 2010, are 64.3%, 64.3%,
Table 7
Error matrix of Google Earth data and classified LULC.

Reference LULC (from Google Earth interpretation)

Water Forest Grasslands Croplands Urban
built-u

Classified
LULC

Water 0.00049 0.00000 0.00000 0.00000 0.0000
Forest 0.00000 0.15101 0.00000 0.04066 0.0000
Grasslands 0.00000 0.01921 0.19211 0.07684 0.0000
Croplands 0.00000 0.03800 0.01900 0.16623 0.0047
Urban and built-up 0.00000 0.00011 0.00004 0.00008 0.0001
Cropland and natural
vegetation mosaic

0.00000 0.00000 0.00000 0.00082 0.0000

Snow and Ice 0.00000 0.00000 0.00000 0.00000 0.0000
Barren or sparsely
vegetated

0.00000 0.00000 0.00427 0.00000 0.0000

Total 0.00049 0.20833 0.21542 0.28463 0.0049
Producer's accuracy 100% 72% 89% 58% 3%
63.0%, and 64.4%, respectively. Compared to the consistency values of
our classified LULC maps and MODIS MCD12Q1, the consistency values
for the CLU maps are generally lower. The very different spatial resolu-
tions (i.e., 30 m for original CLU maps and 1/12° for our classified LULC
maps) and different classification systems may have contributed to the
lower consistency values.

Fig. 11 summarizes the user's and producer's consistencies for our
classified LULC and CLU maps for each class for 1995, 2000, 2005, and
2010, calculated as in Fig. 10. Forest, grasslands, croplands, and barren
or sparsely vegetated classes have relatively higher consistencies,
while water and urban and built-up have lower consistencies.

3.3.4. Accuracy evaluation of the 2012 classification using Google earth
imagery

The error matrix for the accuracy assessment of the 2012 AVHRR
map, using the visual interpretation of eight classes from 256 samples
of Google Earth images from 2012 as reference data, is shown in Table
and
p

Cropland and natural
vegetation mosaic

Snow
and Ice

Barren or
sparsely vegetated

Total User's
accuracy

4 0.00004 0.00000 0.00000 0.00057 86%
0 0.02323 0.00000 0.00000 0.21491 70%
0 0.00480 0.00000 0.01441 0.30737 63%
5 0.01425 0.00000 0.00000 0.24223 69%
5 0.00011 0.00000 0.00000 0.00049 31%
0 0.00905 0.00000 0.00000 0.00988 92%

0 0.00000 0.00053 0.00177 0.00230 23%
0 0.00000 0.00000 0.21799 0.22226 98%

4 0.05149 0.00053 0.23417 1.00000
18% 100% 93% 73.8%



Fig. 12. Annual LULC maps of China, produced by random forest classification. (a) 1982, (b) 1992, (c) 2002, and (d) 2012.

Table 8
Error matrix of Google Earth data and MODIS LULC.

Reference LULC (from Google Earth interpretation)

Water Forest Grasslands Croplands Urban and
built-up

Cropland and natural
vegetation mosaic

Barren or sparsely
vegetated

Total User's
accuracy

MODIS
LULC

Water 0.00619 0.00000 0.00000 0.00000 0.00077 0.00000 0.00000 0.00696 89%
Forest 0.00000 0.15929 0.01493 0.02489 0.00000 0.04480 0.00498 0.24889 64%
Grasslands 0.00441 0.03531 0.18098 0.05738 0.00000 0.02207 0.01766 0.31782 57%
Croplands 0.01035 0.00000 0.00345 0.13106 0.01035 0.01380 0.00000 0.16900 78%
Urban and built-up 0.00000 0.00000 0.00000 0.00119 0.00238 0.00000 0.00000 0.00358 67%
Cropland and natural
vegetation mosaic

0.00000 0.00332 0.00000 0.00996 0.00000 0.01661 0.00000 0.02989 56%

Barren or sparsely
vegetated

0.00000 0.00000 0.00367 0.00367 0.00000 0.00000 0.21652 0.22386 97%

Total 0.02095 0.19793 0.20303 0.22816 0.01350 0.09728 0.23915 1.00000
Producer's accuracy 30% 80% 89% 57% 18% 17% 91% 71.3%

213Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217



214 Y. He et al. / Remote Sensing of Environment 199 (2017) 201–217
7. The overall accuracy is 73.8%. The producer's and user's accuracies for
urban and built-up, as well as producer's accuracy for cropland and nat-
ural vegetationmosaic and user's accuracy for snowand ice, are low, but
these estimates are based on a relatively small number of samples, and
thus the uncertainty in these estimates is comparatively large. Another
possible reason for the low accuracy of urban and built-up class may be
the coarse spatial resolution of GIMMS NDVI data. As mentioned in Liu
et al. (2003c) and Loveland et al. (2000), the urban class may easily be
confusedwith other classes due to the complexmixtures of surfacema-
terials within each pixel. The low accuracy for cropland and natural veg-
etation mosaic and snow and ice may be due to the similarity of
phenological characteristics with other classes (i.e., croplands and bar-
ren or sparsely vegetated, respectively). For instance, Guan et al.
(2014) noted that in Africa, most croplands were fragmented and
mixed with natural savannas, resulting in generally similar phenology
patterns. The barren or sparsely vegetated class, which has a distinctive
low NDVI year-round, has user's and producer's accuracies N90%. Over-
all, the allocation disagreement (16.2%) is higher than the quantity dis-
agreement (10.0%), which indicates the disagreement between our
classified LULCmap andGoogle Earth reference data ismainly due to er-
rors in the location of themapped classes, rather than their proportions
in the map. Improving the quality of the training data might improve
the spatial consistency of themap and thus improve the overall accura-
cy of our classified map.

Using the same samples from Google Earth as reference data, the
MODIS MCD12Q1 2012 error matrix is shown in Table 8. Because
there is no snow and ice class for the sample points in 2012 MODIS
data, it is impossible to calculate the proportion of area Pij for snow
and ice in error matrix. Therefor, we deleted the snow and ice class, re-
maining seven classes with 253 sample points for validating 2012
MODISMCD12Q1. Aswith our 2012 AVHRRmap, theMODIS producer's
accuracies for the urban and built up land, as well as cropland and nat-
ural vegetation mosaic classes, are very low. The allocation disagree-
ment and quantity disagreement are 12.1% and 16.6%, respectively,
indicating the disagreement betweenMODISmap andGoogle Earth ref-
erence data is mainly due to errors in the proportions in the map. The
overall accuracy of the 2012 MODIS LULC for the seven classes is esti-
mated as 71.3%, 2.5% lower than the accuracy of our classified LULC.
However, the McNemar's statistic (de Leeuw et al., 2006) based on the
comparison of the two accuracy assessments is approximately 0.4,
Fig. 13. Temporal changes in area of grasslands, croplands, and forest
indicating that this difference is not statistically significant at the 95%
confidence level.

3.4. Spatial patterns and temporal trends of annual LULC in China

Example classifications for 1982, 1992, 2002, and 2012 are shown in
Fig. 12. It is worth noting that the classification was carried out in four
separate regions, with arbitrary boundaries (Fig. 5). Nevertheless, a
close examination of the final classifications (Fig. 12) indicates no obvi-
ous evidence of artifacts or errors across these boundary lines. Themaps
show that in Western China, LULC appears broadly similar during the
period 1982 to 2012. Croplands in Xinjiang province increase a little
from 1982 to 2002, and then decrease from 2002 to 2012. The initial in-
crease in croplands in Xinjiang may be attributed to the successful pro-
motion of modern agronomic technology (Yin, 2008), whilst the recent
decrease, also observed by Liu et al. (2008), may reflect the conversion
of croplands to built-up land, associated with the policy of increased
Western China development. In Northeast China croplands increase no-
tably during the three decades, while grasslands and mixed forest de-
crease. In Central China, croplands first increase from 1982 to 1992,
then decease along the upper reach of Yellow River basin from 1992
to 2002, followed by an increasing trend during the last decade. In con-
trast, grasslands in Central China decrease from 1982 to 1992, followed
by an increasing trend from 1992 to 2002 and a decreasing trend from
2002 to 2012. The recent increase in croplands, and reduction in other
classes, is supported by the observations of Xu et al. (2015) in Central
China, who noted, in a study that focused on the period since 2000, a
conversion of wetlands, barren areas, and woody shrubland to crop-
lands. In Southern China, croplands area decreases during the entire pe-
riod from 1982 to 2012. Mixed forest and evergreen broadleaf forest
increase, especially along the Yangtze river and tropical regions, such
as the south part of Yunnan province. Woody savannas first increase
from 1982 to 2002, then decrease during the last decade. The overall
changing patterns in croplands documented in these maps, an increase
in Northern China and decrease in Southern China, are broadly consis-
tent with Liu et al. (2014). However, although a thorough analysis of
the underlying reasons for different patterns of LULC over different re-
gions in China is needed, this is beyond the scope of this paper.

Based on abovementioned analyses, croplands, forest, and grass-
lands show the clear spatial change patterns. In Fig. 13, we show the
classes from 1982 to 2013. Dotted lines represent overall trend.
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overall trends of these three classes across the entire 32 years of the
study for further analysis. In here, the forest class means evergreen
needleleaf forest, evergreen broadleaf forest, deciduous broadleaf forest,
andmixed forest in the column “class for AVHRR classification” in Table
1.Weused the R nlmepackage (Pinheiro et al., 2014) to conduct the lin-
ear regression trend analysis accounting for temporal autocorrelation.
The significance of the trend was tested by Student's t-test. The overall
trend for grasslands is a significant decrease at the 1% level. This is con-
sistent with Liu et al. (2014), who used Landsat TM/ETM+ data ac-
quired in intervals of five years to explore LULCC in China since the
late 1980s. The overall trend for forest is increasing, which may be due
to afforestation efforts, such as the “Grain for Green” and “Three-North
Shelterbelt” projects (Liu et al., 2014). The overall trend of croplands is
an increase during the three decades. However, the standard errors of
the trends for forest and croplands are larger than that of grasslands,
and thus the uncertainty of these trends may be bigger. The trends for
both forest and croplands are not significant at the 10% level. While
the overall trends of these three classes are generally consistent with
previous studies, there are some short-term variations in the three
times series that seem inconsistently large, such as the large temporary
increase in grasslands in 1984 as well as the decline in forest and in-
crease in croplands in 1993. The latter short-term anomaly was also
identified by He and Shi (2015), but the reasons for these variations
do need to be explored further. Absent an obvious physical explanation,
such as unusual weather patterns, or other national policy changes or
pressures (Liu et al., 2003b), our assumption is that these variations
may be artifacts, such as the result of temporal inconsistent variations
of GIMMSNDVI time-series due to sensor drift. Previous studies have re-
vealed the temporal inconsistency of GIMMS NDVI dataset (Detsch et
al., 2016; Fensholt et al., 2009; Fensholt and Proud, 2012; Tian et al.,
2015). For example, Tian et al. (2015) found that the abrupt increase
of NDVI around 1994 coincided with the sensor shift from NOAA-11 to
NOAA-9. The coarse spatial and temporal resolution of GIMMS dataset
may also contribute to the artifacts. Alcaraz-segura et al. (2010) stated
that GMMMS NDVI dataset failed to capture long-term ecosystem
changes in someplaces, such as central Canada,while theywere evident
by using higher spatial resolution NDVI datasets, such as Canadian Cen-
tre for Remote Sensing (CCRS) NDVI dataset.
4. Conclusions

Both observational and modeling studies have shown that LULCC
can significantly affect the climate system (Takata et al., 2009;
Webster, 1987). This may happen through biogeophysical (changes in
water and energy balance) and biogeochemical (changes in CO2 and
methane) processes that modify surface wetness, partition surface en-
ergy between sensible and latent heat fluxes, alter roughness of the
land surface, and change terrestrial carbon storage (Foley et al., 2003;
McPherson, 2007). China has experienced extensive LULCC, including
cropland expansion, desertification, deforestation, afforestation, and ur-
banization (Ge et al., 2004; Houghton and Hackler, 2003; Lin and Ho,
2003; Liu et al., 2005a; Liu et al., 2005b). However, due to the limited pe-
riod for which time-series of annual land use and land cover maps are
available, LULCC information in China has been normally used in climate
modeling in only a simplified manner.

To address this need for an extended time-series of LULC data, we
constructed a three-decade continuous time series of annual land use
and land cover maps of China from 1982 to 2013 using AVHRR
GIMMS NDVI3g data. The reference data for training the classifier was
a 25% sample of the pixels of constant LULC class in the MODIS
MCD12Q1 annual land cover maps from 2001 to 2010. Classes for
which the number of reference pixels were zero, or close to zero, were
excluded, reducing the number of classes from 17 to 13 (Table 1). 19
phenological features were derived from the AVHRR data, and used as
attributes in the random forest classification.
Based on the validation data (75%), the overall accuracy of the
AVHRR classification for 2001 to 2010 was N91% for each region, except
Southern China, for which it was 79%. This result is strong evidence that
the AVHRR phenological features are broadly able to differentiate the
differentMODIS LULC classes. The higher user's accuracy and producer's
accuracy for mixed forest, grasslands, croplands, and barren or sparsely
vegetated in all of the four regions indicate the performance of random
forest classifier is better in separating classes with larger reference data.

In the comparison with the MODIS classification across all of China
for 2011 and 2012, years not used in training the classifier, consistency
was 71.0% and 69.3%, respectively. It is not surprising that these num-
bers are lower than the accuracies for the unchanged pixels in the
2001 to 2010 reference data, since the latter data are presumablymostly
pixels with consistent land cover with relatively distinct remote sensing
spectral characteristics. Furthermore, we would expect slightly lower
accuracy of land cover classification in years not used for training,
since the climatic variations and thus phenological patterns from 2001
to 2010 may not have captured the entire range of possible conditions.
However, comparisons of our AVHRR classification and the MODIS
MCD12Q1 data from 2001 to 2010 (years that were used for training)
show only 0–3% improvement, indicating that this effect is small. The
relatively low consistency for Southern China may be due to extensive
clouds in the relatively humid Southern China. For instance, An et al.
(2015) found that poor relationships between MODIS and SPOT NDVI
datasets in Southern China may be attributed to greater cloud cover in
that area. In summary, we regard the broad consistency with MODIS
data as one line of evidence of the ability of the classifier to be extended
over time. The comparisons between our classified maps and CLU data
show the lower consistency values, ranging from 63.0% to 64.4%. It is
in our expectation, because converting the very different spatial resolu-
tions (i.e., 30 m for original CLU and 1/12° for our classified LULC) and
classification systems may induce additional inconsistencies.

An overall accuracy assessment of the AVHRR classification was car-
ried for 2012, a year not used for training. The reference data were de-
rived from a visual interpretation of stratified random samples of
Google Earth imagery. This accuracy assessment combined all the forest
classes, resulting in a simplified map with just eight classes. The overall
accuracy of this eight-class map was 73.8%. In comparison, the MODIS
MCD12Q1 product, which has been estimated to have a global accuracy
of approximately 75% (Zhao et al., 2013), was found to have an accuracy
of 71.3% for China in 2012. The McNemar's test indicated no significant
difference between the MODIS LULC and AVHRR LULC accuracies. We
regard this finding as particularly notable.MODIS is a sensorwith great-
er spectral and radiometric resolution than AVHRR (Tucker et al., 2005),
and thus achieving an accuracywith AVHRR that is similar to theMODIS
product is encouraging. On the hand, it is important to acknowledge
that the MODIS MD12Q1 is generated through a global classification,
whereas our classification is based on four regional classifications, a
much simpler mapping task.

Several areas of future work seem promising. First, using as refer-
ence data areas in the MODIS MD12Q1 maps that do not change over
an extended period of time, an approach previously also successfully
employed by others, including Klein et al. (2012) and Wohlfart et al.
(2016), provides a simple approach that can easily be applied to other
regions. In particular, we plan to investigate ways to scale the method
up to a global approach, since having annual land cover maps of the en-
tire world for N30 years could be particularly valuable to the climate
modeling community. A second line of researchwould be to consider al-
ternative methods for generating the reference data. Although the
MODIS data provide a very effectivemethod for selecting large numbers
of training samples overmultiple years, the reliability of theMODIS data
is not that high (Zhao et al., 2013). Moreover, since pixels of some un-
changed classes are not present in some of the regions in the training
data (e.g., deciduous broadleaf forest in Western and Southern China)
(Table 1), the final classification maps in these regions do not have
these classes. In addition, the reference data does not distribute evenly
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across different classes. Some classes have larger numbers of reference
data, such as grasslands, while other classes have much less reference
data, such as water (Table 1). These influence the classification accura-
cies of the classes (Table 6). It is possible that if we could generate
more reliable training data, we might improve the accuracy of the
AVHRR classification. The final area of possible future research would
be to establish statistically robust approaches to investigate the time se-
ries of LULC maps for its potential to produce change maps. This would
require an evaluation of the accuracy of the change information itself,
rather than only an evaluation of the accuracy of the individual dates,
as we have done in this study.

In summary, this study generated annual land use and land cover
maps in China from 1982 to 2013 using AVHRR GIMMS NDVI3g data.
The overall accuracy from random forest classifier was high for all of
the regions, except for Southern China. Based on a comparison of visual
interpretation of images from Google Earth, the overall accuracy of the
simplified eight-class LULC map was 73.8%, which was not statistically
different from that of the simplified seven-class MODIS MCD12Q1
LULC map (71.3%). Based on temporal evolution of areas for forest,
grasslands, and croplands during the last three decades, the overall
trend was consistent with previous studies (He and Shi, 2015; Liu et
al., 2014). These thirty-two years of annual maps of land cover will be
an important dataset for quantifying the associations of recent LULCC
with changes in the regional climate systems in East Asia, and the pre-
processing, classification, and validation methods used in this study
could be applied to other geographical regions where the availability
of continuous LULC maps is limited.
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