

TECHNICAL REPORT

OPTIMIZATION OF AN OCEAN MODEL

USING PERFORMANCE TOOLS

BSC-CES-2015-002

NEMO, Computational Performance, Analysis,

Optimization

Oriol Tintó Prims, Miguel Castrillo, Kim Serradell,

Oriol Mula-Valls, Francisco J. Doblas-Reyes

Earth Sciences Department

Barcelona Supercomputing Center - Centro Nacional

de Supercomputación (BSC-CNS)

08 September 2015

Technical Report

BSC-CES-2015-002

 Copyright

Series: Earth Sciences (ES) Technical Report

A full list of ES Publications can be found on our website under:

http://www.bsc.es/projects/earthscience/ES-CFU/doku.php?id=start

® Copyright 2015

Barcelona Supercomputing Center–Centro Nacional de

Supercomputación (BSC-CN)

C/Jordi Girona, 31 | 08034 Barcelona (Spain)

Library and scientific copyrights belong to BSC and are reserved in all countries. This

publication is not to be reprinted or translated in whole or in part without the written

permission of the Director. Appropriate non-commercial use will normally be granted under

the condition that reference is made to BSC. The information within this publication is given

in good faith and considered to be true, but BSC accepts no liability for error, omission and

for loss or damage arising from its use.

http://www.bsc.es/projects/earthscience/ES-CFU/doku.php?id=start

Technical Report

BSC-CES-2015-002

Summary

The Barcelona Supercomputing Center-Earth Sciences department uses great amounts of
computational resources in simulations involving the NEMO ocean model, in stand-alone mode
or as part of a climate model. This technical report explains the work done in analysing and
optimizing the NEMO computational performance to make a better usage of computational
resources and collaborate with the Nemo System Team to help improving the model by
improving the efficiency and the throughput. By optimizing the model bottlenecks, in a low
resolution grid we achieved simulations twice faster than before, going from 11 to 23
simulated years per hour of maximum model throughput being able to use more resources,
with an overall increase on the efficiency, saving up to 40% of resources in a 128-core run.
To do so, we used the state-of-the-art performance tools developed by the BSC Computer
Sciences department.

Technical Report

BSC-CES-2015-002

Page 1

Contents
1. Introduction .. 2

2. Experimental setup ... 3

2.1. Model Description .. 3

2.2. Model Configuration ... 3

2.3. Experiment design ... 4

2.4. Environment .. 4

3. Analysis ... 5

3.1. Simulation speed and efficiency ... 5

3.2. Detailed analysis ... 6

3.3. Trace collection .. 6

3.4. Trace analysis .. 6

3.4.1. Function profile ... 6

3.4.2. Sensitivity analysis ... 7

3.4.3. Bottleneck analysis ... 8

4. Optimizations ... 11

4.1. Message packing... 11

4.2. Reduction of the convergence check frequency ... 11

4.3. Sea-ice horizontal diffusion routine reordering .. 12

5. Impact of the optimization ... 12

5.1. Simulation speed and efficiency .. 12

5.2. Trace analysis ... 13

5.2.1. Function profile .. 13

5.2.2. Sensitivity analysis .. 13

5.2.3. Bottleneck analysis .. 14

6. Conclusions .. 15

7. Acknowledgements ... 16

8. References .. 16

Technical Report

BSC-CES-2015-002

Page 2

1. Introduction

In this technical memorandum, we will present a computational performance analysis and
an optimization of bottlenecks of the NEMO ocean model, to find why the model fails to
scale and to improve both model throughput1 and efficiency.

The NEMO [1] (Nucleus for European Modelling of the Ocean) model is a state-of-the-art ocean
global circulation model used for oceanographic research, climate studies, seasonal
forecasting and also for operational oceanography, where the time-to-solution2 is crucial due
the time limitation to provide forecasts. It has been used in 5 of the 28 Earth system models
involved in the CMIP5 project. The total amount of computing resources used in NEMO
simulations worldwide can easily exceed a billion of computing hours per year. Moreover,
NEMO has limited throughput and its scalability3 is a well-known issue, which ultimately
affects the performance of Earth system models that use it [3]. For these reasons, model
developments targeting the computational performance are mandatory and this work does a
step in that direction.

The model includes many different modules and options that have an impact on the
computational behaviour of the application. Computationally speaking, one of the most
determining parameters of the model is the resolution of the grid, as the computational
workload and the length of the time-step depend on that. The use of higher resolutions
implies more computational workload and also requires shorter time-step for dynamical
stability reasons. This means that each time-step needs more wall-clock time to be computed
and also more time-steps are needed to simulate a specific period of time. On the other
hand, more workload increases the scalability of the model, as a bigger proportion of time is
spent in computation against the time spent in communication. In this work, we focused on
one of the NEMO reference configurations, that consists in the ocean (OPA) and sea-ice (LIM [2]
version 3) modules on a low resolution grid (details can be seen in section 2.2). The
advantage of performing an analysis using a low resolution grid is that problems related with
small sub-domains that limit the scalability of the model are already visible using a small
number of CPUs. Therefore, the issues that will be relevant at higher resolutions using
hundreds of thousands of cores can be identified and faced with a lower cost. On the other
hand, problems related with higher resolutions such the memory usage or the output size are
less determinant and therefore may not be extrapolated.

In this technical report, we illustrate the methodology that we use to identify bottlenecks,
develop optimizations and evaluate their impact on the performance with an operational
ocean model. To summarize the impact of this work, with the used configuration, the
optimized version of NEMO can simulate more than two times faster than before, going from
11 to 23 simulated years per hour as a maximum model throughput, and improving the
efficiency, saving up to 40% of time in a 128-core run. This methodology can be extended
to any Earth system model running on a high-performance computing (HPC) platform.

1 Throughput: The amount of simulation years that the model can produce in a specific time.
2 Time-to-solution: The time required to finish the simulation.
3 Scalability: The capacity to use more computational resources efficiently as they are increased.

Technical Report

BSC-CES-2015-002

Page 3

All the simulations were performed in the Marenostrum 3, the HPC hosted by the Barcelona
Supercomputing Center (BSC).

2. Experimental setup

2.1. Model Description

NEMO is a state-of-the-art modelling framework for oceanographic research, operational
oceanography seasonal forecast and climate studies. It includes:

● five major components:
o the blue ocean (ocean dynamics, NEMO-OPA);
o the white ocean (sea-ice, NEMO-LIM);
o the green ocean (biogeochemistry, NEMO-TOP) ;
o the adaptive mesh refinement software (AGRIF) ;
o the assimilation component NEMO_TAM;

● some reference configurations allowing to set-up and validate the applications ;
● A set of scripts and tools (including pre- and post-processing) to use the model.

The model has been written in Fortran90 and uses MPI for the parallelization, so it can run in
parallel in HPC clusters. Since version 3.6, it can use an input/output library called XML Input
Output Server (XIOS) that allow the use of I/O dedicated servers and minimized the I/O
problems that existed at earlier versions of the model.

The evolution and reliability of NEMO are organized and controlled by a European Consortium
created in 2008.

2.2. Model Configuration

For our analysis, we used one of the NEMO reference configurations included in the stable
release of the model. We have chosen a low-resolution configuration for the analysis. This
allows us to study the scalability problems of the model related with small sub-domains by
using a relatively low number of CPUs. Therefore, the problems that would arise in higher
resolutions with thousands of cores are already visible with a lower cost.

Technical Report

BSC-CES-2015-002

Page 4

Configuration name ORCA2/LIM3

Grid ORCA

Resolution 2 degrees (low resolution

Modules OPA and LIM3

Time Step 5760 seconds (450 time-steps for one month of simulation)

Compilation keys

key_trabbl key_lim3 key_vvl key_dynspg_ts key_diaeiv key_ldfslp
key_traldf_c2d key_traldf_eiv key_dynldf_c3d key_zdftke

key_zdfddm key_zdftmx key_iomput key_mpp_mpi key_asminc
key_diaobs

Compiler Intel v13

MPI library Intel MPI v4.1.3

Compiler Flags -i4 -r8 -O3 -fp-model precise –xHost

Table 1: Description of the configuration used

2.3. Experiment design

Our analysis consists in two parts that have been done in the original code and with the
optimized code:

i) First set of simulations of 1200 time-steps (corresponding to 80 simulated days)
using from 1 to 8 nodes (16-cores per node), where we only measure the
overall speed of simulation by getting the timestamp of each time-step. This is
done by a simple implementation inside the code with no simulation overhead.
For this set of simulations we did 10 executions for each case.

ii) Second set of simulations of 40 time-steps (corresponding to 2 days and 16
hours) using 1, 2, 4 and 8 nodes with Extrae instrumentation to collect detailed
execution information into traces for a post-mortem analysis. In this second set
we selected only a single iteration for each case, so the variability in the time-
step time is not reflected.

2.4. Environment

All the simulations were performed in the Marenostrum 3, the HPC hosted by the Barcelona
Supercomputing Center (BSC). Marenostrum 3 is a 1.1 PetaFLOPs supercomputer composed by
3056 nodes with 16 cores (2 x SandyBridge-EP 8-core 2.6 GHz processors) with 32 GB of
memory per node.

Technical Report

BSC-CES-2015-002

Page 5

The system uses a LSF queue system and we use a set of scripts in order to automatize the
job submission, the trace collection and several other tasks necessaries to carry out the
analysis.

3. Analysis

Basic information about model executions with different number of processor cores have been
collected to obtain a first guess of the model performance in a strong scaling test. After this
first analysis, we collected and analysed model traces using the BSC performance tools to
investigate the reasons that explain the behaviour observed in the first tests.

3.1. Simulation speed and efficiency

In order to have a reference of the model throughput and scalability, we measured the time-
step duration for different executions done with 1 to 8 computer nodes of 16 processor cores
each. From the time-step time we derived the metrics simulated years per hour (syph) and
normalized efficiency, where syph is the amount of years that the model can simulate per
hour of wall-clock time, and the normalized efficiency is the relation between the number of
years that the model can simulate for a given amount of total CPU-time 4with a given number
of cores and the quantity of years that the model can simulate using the same total CPU-time
in the reference simulation (16-cores).

Figure 1 - Throughput and efficiency of simulations done with different number of cores.

We can see that the model reach a maximum throughput of 11.8 syph and there is no
improvement in speed above 128-cores.

In figure 1B we can see the normalized efficiency. It means the quantity of years that we can

4 Total CPU-time: the sum of CPU time consumed by all of the CPUs used by the computer program.

Technical Report

BSC-CES-2015-002

Page 6

simulate with a given number of computational hours in relation to the quantity of years that
we can simulate with the reference execution using a single node (16-cores). We can observe
an efficiency drop and, when the model reaches the maximum throughput (128-cores), the
efficiency is under 50%.

3.2. Detailed analysis

With the outcome of the previous analysis we designed an experiment to analyse in more
detail the causes of the loss of efficiency and the bad scalability. As the model reaches a peak
when using 128-cores, we decided to analyse different simulations doubling the number of
cores from 16-cores (the reference simulation), to 128-cores (the peak).

3.3. Trace collection

As it was explained in section 2.3, we used the Extrae [4] tool to collect information from the
execution and store it in traces for a post-mortem analysis.

From each one of the traces we “cut” the smallest repetitive pattern which corresponds to 5
ocean time-steps and one sea-ice time-step. Using this approach we discarded both
initialization and finalization of the execution, but we can afford that, given that these parts
are negligible in simulations of the typical length (from one to several years).

3.4. Trace analysis

We used several tools to analyse the information contained in the traces. The most important
one is Paraver [5], a tool to visualize the information contained in the traces. With this tool is
possible to see with high detail what happened during the execution. One can also compute
metrics based on hardware counters such as parallel efficiency5, instruction per cycle (IPC),…

The Dimemas tool is used to simulate the performance of an application in a different
machine. Based in a real trace previously collected, it allows simulating distinct scenarios in
order to see the impact of different parameters in the overall performance. For this study we
used this tool to analyse the model sensitivity to the network latency6 and bandwidth.

To complete our analyses, we used the tools Clustering, Tracking and Folding to evaluate the
computational phases.

3.4.1. Function profile

Looking at a function profile generated by Paraver, we can measure the time spent in each
routine. Hence, comparing the function profiles of different configurations, we can observe
how they behave and identify if the scalability problems are caused by specific routines or
otherwise are a general issue.

5 Parallel efficiency: In this context, average percentage of the total execution time (computation + communication), from all

the CPUs, spent in computation in a parallel run.
6 Network Latency: the amount of time it takes for a packet to cross the network from a device that created the packet to the

destination device.

Technical Report

BSC-CES-2015-002

Page 7

In the reference case (first row in the figure 2), we can see that the routine dynspg takes
31% of the execution time. Apart from this routine, the profile is very flat and any other
routine reaches 5% of the time at much.

When we observe the function profile for the subsequent cases, we can see that the
proportion of time spent by dynspg keeps increasing so in the 128-cores case it reaches a 53%
of the time. The main change is that now the profile of the other functions is not flat
anymore since now limhdf takes 15% and limrhg 9% of the time. Both functions belong to the
sea-ice module.

The dynspg, limhdf and limrhg routines are considered the main bottlenecks of the model for
its bad scalability as their total amount of time increases from 38% of the time in the 16-
cores case to 77% of time in the 128-cores case.

Figure 2- NEMO’s function timeline comparison for 16, 32, 64 and 128 cores. Different colours represent different functions. The
most time-consuming functions are dynspg in red, limhdf in blue and limrhg in black.

3.4.2. Sensitivity analysis

Using the Dimemas simulator we imitate the behaviour of the model in different scenarios, to

learn the influence of the different network parameters to the model’s performance.

Doing different simulations by varying the network latency, we observed that the latency has

a huge impact on the performance.

The simulations show a linear influence of the latency, so the model’s time-step time follows

the subsequent relation:

𝑡𝑡𝑠 = 𝑡𝑙𝑎𝑡0 + 𝐿𝑛 · 𝑙𝑎𝑡

Where 𝑡𝑡𝑠is the time-step time, 𝑡𝑙𝑎𝑡0is the time-step time in an ideal case with latency 0, 𝐿𝑛is

what we define as latency coefficient and 𝑙𝑎𝑡 is the latency.

This equation is valid for all of the cases, but the coefficient 𝐿𝑛 increases with the number of

processes.

It is also important to remark that while the value of 𝑇𝑙𝑎𝑡0 decreases when the number of

processes increase, the proportion of time related with the latency is bigger and consequently

the parallel efficiency is lower.

Technical Report

BSC-CES-2015-002

Page 8

Figure 3- Latency impact on the different runs with 16, 32, 64 and 128 cores.

By plotting the syph one can easily observe the impact that the latency has. The more cores

we use, the bigger this impact is, and also it determines how much the model can scale up.

However, the network bandwidth sensitivity analysis showed that the influence of the

network bandwidth in the model performance is very small and therefore the transmission

time is negligible.

In conclusion, the network sensitive analysis showed a very high impact of the latency and a

very low impact of the bandwidth. This is usually related with a big number of small

messages.

3.4.3. Bottleneck analysis

As it can be seen in the section 2.2.1, the dramatic loss of efficiency is not a general problem

for the entire model but instead is localized in few specific routines. Therefore, we focused

our detailed analysis on the routines identified as bottlenecks, given that improving these

routines will have a higher impact in the performance of the model.

In order to know if the bottleneck problems are related with communication or with

computation, we measured the parallel efficiency of the model, since it gives information

about the proportion of time spent in useful computation and communication. Analysing the

bottlenecks, we can see that even in the 16-cores case the parallel efficiency is bad,

especially for the limhdf, and it gets worse when we increase the number of cores.

Technical Report

BSC-CES-2015-002

Page 9

Figure 4: Parallel efficiency of the routines limhdf (blue) and dynspg (red) for executions done with 16, 32, 64 and 128 cores.
Region 1 corresponds to the routine limhdf and Region 2 corresponds to the routine dynspg.

The figure above clearly demonstrates that the reason for the bad scalability of the model is

the big proportion of the time spent in communication.

If we look in detail what happens inside dynspg (the surface pressure gradient routine), we

can see that there is a loop consisting in three computation phases separated by three

communication phases. The duration of that computation phases is really short (under 100

microseconds in the 16-cores case), and in the communication phases seven border

interchanges between neighbours are performed, distributed in two consecutive interchanges

in the first and the second communication phases and three interchanges in the third

communication phase. In every interchange, each sub-domain interchanges messages with the

border neighbours. For the average sub-domain, this interchange supposes sending 4 messages

and receiving 4 messages. In addition to that, the sub-domains placed at the north fold have

to perform extra communications, and some coastal sub-domains have less communications.

On average, one interchange with the neighbour in the 16-cores case lasts 60 𝜇𝑠(4 sends + 4

receives + 4 waits + buffer movements), which means a total of 420 𝜇𝑠 for each loop

iteration. As a single iteration in the 16-cores case on average lasts 721𝜇𝑠, this means that

the parallel efficiency in this routine is a 42%.

With the Clustering and Tracking tools we analysed the computational phases inside dynspg.

We can observe that the number of instructions of these phases decrease when we increase

the number of cores but not at the ideal rate, so the total number of instructions increases.

This is caused by two main reasons. First, there is part of the code that cannot be parallelized

and so it’s replicated in all the processes. Second, the domain decomposition method being

used implies an overlapping of the borders between neighbour sub-domains. In addition to

that, we can also see that the IPC decreases with the core number increase. These two

phenomena imply a loss of efficiency that reaches a 50% loss in the 128-cores case (Figure 3).

The second region targeted as bottleneck is limhdf, the sea-ice horizontal diffusion routine.

Technical Report

BSC-CES-2015-002

Page 10

We can see that there are 41 consecutive calls to this routine in every sea-ice time-step, with

high differences in the duration between the different calls. If we look with more detail, we

can guess a loop structure, and the differences in time between different calls come from

different number of loop iterations. Looking at the loop structure, iterations have two

computation phases with very short duration, separated by two communication phases. The

first communication phase is a border interchange of values with the neighbours and the

second communication phase is a global communication that requires synchronization of all

the sub-domains, not only the neighbourhood. In the 16-cores case, the computation phases

represent only 22.4% of the iteration time (22/97𝜇𝑠of the iteration) while the computation

regions take 61.8% (60/97𝜇𝑠) and 15.4% (15/97𝜇𝑠) time respectively. This analysis leaves clear

that the problem in this routine is the fine granularity of the tasks and the communications.

Studying also the 128-cores case, it is revealed that the time does not improve at all but gets

worse, rising to 128 𝜇𝑠 (32% more time). If we look for a reason for this increase, we have

that the time spent in the neighbour border interchanges remains almost the same (around 60

𝜇𝑠) while the computation time decreases with an acceptable efficiency (Figure 3). However,

the time spent in collective communication increases a lot (from 15 to 60𝜇𝑠).

Figure 5: Efficiency of the computational regions in different cases compared with the 16-cores case

Finally, the problems in the limrhg routine are very similar to the problems found in dynspg.

Finally, from the analysis of the bottlenecks we can conclude that only a very small part of

the efficiency loss comes from computation issues (mainly code replication due the

overlapping), and the major part comes from the communication issues, mainly a lack of

parallel efficiency due to low computational work charge with high frequency of

communication and synchronization.

Technical Report

BSC-CES-2015-002

Page 11

4. Optimizations

The diagnostic from the analysis was that the biggest problems constraining the model

scalability were located mainly in two regions. Some of them were related with shared

problems between them (short computational regions with high frequency of communication)

and the others are local issues (collective communications, consecutive interchanges). This

diagnostic suggests that the best way to increase the model’s performance is improving the

communication.

As it was shown before, almost all the time spent in communication is related with the

network latency. To reduce this time, the most easy and effective way is to reduce the

number of messages interchanged.

We sought a way to reduce the number of messages without changing the model algorithms

and found several exploitable spots. Here we present the three optimizations: message

packing, reduction of convergence check frequency and reordering of the sea-ice horizontal

diffusion routine.

4.1. Message packing

In the routines dynspg, limrhg and limadv there are several consecutive interchanges with

no calculation between them. In this case, our solution consists in packing the messages that

have the same recipient into one single message.

As almost all the communication time is due to the latency, when we pack messages the time

per message remains constant, so if we pack n messages into only one, we reduce the time

spent in this communication by a factor of n.

For example, the structure of the dynspg inner iteration is composed by three computation

phases separated by three communication phases with 7 interchanges in total. By using the

message packing optimization, we can pack the consecutive interchanges and therefore

reduce the 7 interchanges per iteration to only 3.

This optimization can be implemented in every single part of the model’s code where

consecutive interchanges are performed. The final improvement is directly related with the

number of messages that we can avoid using this.

4.2. Reduction of the convergence check frequency

In the limhdf routine there is a convergence check at each one of the inner loop iterations

that can go from a few to hundred iterations. As the convergence check requires a collective

communication, synchronization between all the model processes is required, with a high

negative impact on the performance.

From the physical point of view, the fact that the limhdf routine performs a few more

Technical Report

BSC-CES-2015-002

Page 12

iterations does not degrade the quality of the simulation. Taking this into account, our

solution was to reduce the frequency at which the convergence checks are performed in order

to reduce the huge payoff of the collective communications. The convergence check

frequency can be configured in the model namelist in order to give to the user the possibility

to use it or not.

This very simple optimization is expected to have a big impact when using a high number of

CPUs

4.3. Sea-ice horizontal diffusion routine reordering

As we could see during the analysis, at every sea-ice time-step there are 41 calls to limhdf,

being each one of these calls independent from each other. In order to be able to use the

message packing optimization inside this routine our solution consisted in reordering the

code.

In the original case, the limtrp routine calls limhdf passing different fields one after another,

and at each limhdf call it performs several iterations including computation and

communication.

Our optimization consists in making the limtrp routine call limhdf for all the variables at the

same time. With this approach we compute the inner loop calculations for all the variables

before starting the communication. Therefore, in the communication phase now it is possible

to interchange all the 41 variables in one single interchange. The convergence check can be

also done for all the 41 variables in one single collective communication and in the posterior

iterations, we only perform the calculations for the variables that still have not reached the

convergence.

This optimization allows us to reduce dramatically the number of messages and achieve

coarser granularity of the computation phases.

5. Impact of the optimization

We did similar analyses with the optimized version of the code to evaluate the impact of the

optimizations.

5.1. Simulation speed and efficiency

Measuring the simulation speed and efficiency with the optimizations applied, we can see

that our improvements have had a massive impact in the performance.

As the figure 4a) shows, the optimized version is faster even in the 16-cores case. While the

original version reached a maximum of 11.8 syph using 128-cores, the optimized version can

keep using more resources and reach 23 syph, which is more than double of the original

speed. Looking at the efficiency we also have a nice improvement, having in the 128-cores

Technical Report

BSC-CES-2015-002

Page 13

case 60% more simulated years.

Figure 6: a) Model throughput comparison. b) Normalized efficiency comparison. In green the original model and in blue the

optimized one. In green the no-optimized version of the model, in blue the optimized version of the model.

5.2. Trace analysis

5.2.1. Function profile

Comparing the optimized version function profile with the original one, we can see that the

total time improvement comes from the time reduction in the bottleneck routines, as we

expected.

Figure 7 - Function timeline for the optimized version of 5 ocean time-steps and one sea-ice time-step. The dotted line

represents the time of the no-optimized version of the model.

5.2.2. Sensitivity analysis

The sensitivity analysis for the optimized version shows a reduction of the variability of the

time-step duration dependent on the latency of the network. Even with the 8 us scenario the

model keeps scaling.

Technical Report

BSC-CES-2015-002

Page 14

Figure 8- Comparison of the latency impact on the time-step duration of the original and the optimized version.

5.2.3. Bottleneck analysis

Looking again at the parallel efficiency of both regions, we can see that there is a big

improvement, especially at the region 2.

Figure 7: Parallel Efficiency comparison. The region 1 corresponds to the routine limhdf and the region 2 corresponds to the

routine dynspg

While both regions experiment an important increment of the parallel efficiency, this is still

low for

The efficiency of the computational phases shows the same behaviour than the original case.

Technical Report

BSC-CES-2015-002

Page 15

6. Conclusions

The amount of computational resources dedicated to simulations involving the NEMO ocean

model, as well as the need of faster simulations, constitute the main motivation for analysing

the model and investing in its optimization. Our performance analysis on NEMO with the

ORCA2/LIM3 configuration showed that the bottlenecks constraining the scalability of the

model are related with a lack of parallel efficiency. This lack of parallel efficiency is mostly

due to the bad suitability of some of the model algorithms for small sub-domains, where the

relation computation/communication is really low. The computation time is reduced as the

size of the sub-domains decreases while the communication time does not, and since this size

is determined by the resolution of the grid and the number of cores used for the simulation,

we have that lower resolutions have worse scalability than higher ones. To increase the

parallel efficiency without changing the algorithms used to solve the equations neither

increase the resolution of the grid, our solutions aim to increase the

computation/communication ratio by reducing the communication overhead. This can be

achieved by decreasing the number of messages. With the optimizations proposed in this

document the number of messages was reduced without changing the algorithm, preserving,

at the same time, the results. The resulting performance shows a great improvement,

increasing the maximum simulation speed from 11 to 23 simulated years per hour for this

configuration, and increasing considerably the efficiency, saving up to 40% of resources in a

128-core run. We expect these optimizations to save hundreds of millions of computing hours

from now on. The optimizations have not been tested in higher resolutions, but are expected

to have a positive impact when using an enough number of cores. Taking the present work as

a base, besides testing the impact of these optimizations in higher resolutions, our further

studies go in the line of analysing and optimizing the particular computational problems that

arise when using bigger grids.

Technical Report

BSC-CES-2015-002

Page 16

7. Acknowledgements

We would like to acknowledge the people from the Computer Science department of the BSC

for their help, especially German Llort, Harald Servat and Jesús Labarta. We also want to

acknowledge the people from the Nemo System Team for making our work easier and take

into account our suggestions.

8. References

[1] Madec G. 2014: "NEMO ocean engine" (Draft edition r5171). Note du Pôle de modélisation, Institut Pierre-

Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619.

[2] Vancoppenolle M., Bouillon S., Fichefet T., Goosse H., Lecomte O., Morales Maqueda M.A., and Madec G.,

2012 :" LIM The Louvain-la-Neuve sea Ice Model". Note du Pole de modélisation, Institut Pierre-Simon Laplace

(IPSL), France, No 31 ISSN No 1288-1619.

[3] Asif, M., A. Cencerrado, O. Mula-Valls, D. Manubens, A. Cortés and F.J. Doblas-Reyes , 2014:” Case study
in large scale climate simulations: Optimizing the speedup/efficiency balance in supercomputing
environments.”14th International Conference on Computational Science and Its Applications,
doi:10.1109/ICCSA.2014.57

[4] Barcelona Supercomputing Center, 2015: “Extrae user guide”

[5] Labarta, J., Girona S., Pillet, V., Cortés, T., Gregoris, L., 1996: “DiP: A Parallel Program Development
Environment”. Euro-Par, Vol. II pages 665-674.

