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1. Introduction 

Agriculture has been heavily influenced by recent alterations in the frequency and severity of 

extreme climate events such as heat waves, heavy precipitation and droughts, and the 

impacts is expected to further increase due to anthropogenic climate change in the upcoming 

decades (Füssel et al., 2017). This indicates that effective planning of agricultural mitigation 

and adaptative actions to the near-term (understood as the time period from one year up to a 

decade ahead) climate variability and change is highly desirable.  

Until recently, the only source of near-term climate change information available to the 

interested users for assessing the impact of climate change on the crop yield and crop 

productivity were climate projections (referred to as non-initialized climate simulations, in 

this report). These projections provide a future outlook on the evolution of the Earth’s 

climate system, covering a continuous temporal period ranging from the past century to the 

end of this century (or beyond). The evolution of a climate system represented in such 

simulations are solely driven by prescribed changes in the atmospheric composition and other 

external forcings. Over the course of the last few years, initialized decadal climate 

predictions have been made available for users as a potential source of near-term climate 

information with the aim of supporting climate-related decisions in key societal sectors such 

as agriculture. These decadal predictions are initialized with observation-based data and then 

run for a decade or so under the influence of contemporaneous changing external forcings, 

similar to climate projections (for instance, with increasing greenhouse-gas concentration).  

In this context, the present collaboration between JRC and BSC aims to explore the usage of 

these recent decadal predictions and illustrate the added-value of initialized predictions over 

non-initialized climate simulations for building a reliable climate service for agricultural 

needs on a multi-annual to decadal timescale. Two deliverables were planned for this 

project. The first deliverable provided the synthesis of the state-of-the-art knowledge on 

multiannual to decadal climate predictability and prediction, and summarized the current use 

of decadal climate predictions in a climate service context, in particular for applications 

relevant to the agriculture sector. This report was submitted to the JRC on June 26th 2018 

under the name “Overview of near-term decadal climate prediction and its applications”. The 

current report corresponds to the second deliverable (due on M12), in which we present the 

forecast quality assessment of a few selected agro-climatic indices using initialized decadal 

predictions at the multi-annual time scale. In addition, we present an illustration of the 

improvement in predictive skill of these indices in initialized predictions compared to non-

initialized simulations. Finally, we conclude this study by including a set of recommendations 

for the operationalization of these forecasts, discuss the possibility of generating a service for 

the agriculture sector and suggest the way forward in the context of the Coupled Model 

Intercomparison Project 6 (CMIP6).  
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2. Data 

2.1. Decadal forecast data  

This study uses decadal hindcasts from two different climate models that were produced as 

part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). The two  climate models 

considered are: EC-Earth (Hazeleger et al., 2012), which is developed by the EC-Earth 

consortium, counting close to 20 European institutions and the GFDL-CM2.1 (Delworth et al., 

2006), which is developed by the Geophysical Fluid Dynamics Laboratory (GFDL). A summary 

of the CMIP5 decadal prediction experimental design can be found in Taylor et al. (2012; see 

also https://pcmdi.llnl.gov/mips/cmip5/).  

Since the main objective of this study is to assess the skill of the climate forecast systems, 

only the hindcasts are chosen. Hindcasts are the reforecasts of the past, where observations 

are available to evaluate the forecast skill. For this study, two types of simulations are 

considered.  
 

1) Near-term initialized decadal simulations (INIT): These are a set of 10-year long 

initialized hindcasts that were run by explicitly prescribing the contemporaneous state 

of the climate system at the start of the simulation  (November 1 of each year from 

1960 to 2011 in the case of EC-Earth; January 1 of each year from 1961 to 2012 in the 

case of GFDL-CM2.1), while also accounting for changes in radiative forcings (both 

natural and anthropogenic; prescribed with the estimates of observed changes in 

radiative forcing until 2005, and estimated forcing according to the RCP4.5 scenario 

thereafter). This experiment will be simply referred to as ‘INIT’ in this study.  

2) Long-term historical experiments (No-INIT): These are non-initialized simulations, 

which do not include the details of the contemporaneous state of the climate system. 

These simulations are usually started from an arbitrary initial condition derived from 

the multi-century preindustrial control simulation and then run by forcing the 

observed atmospheric composition changes (reflecting both anthropogenic and natural 

sources) over the period 1861-2100. However, in this study, we restrain our analysis to 

the period corresponding to the ‘INIT’ simulations. These simulations use the same 

changes in radiative forcing as prescribed in ‘INIT’ simulation, and are primarily 

intended to estimate the forced response of the climate system. We refer to these 

simulations as the ‘No-INIT’ experiments.  
 

EC-Earth runs both simulations at 1.25°x1.25° resolution and include 5 ensemble members 

whereas GFDL-CM2.1 simulations are run with a 2.5°x2.5° global grid and include 10 

ensemble members. In this study, for each climate model, monthly data of temperature and 

precipitation for the first 5 forecast years of the INIT and No-INIT hindcasts between the 

period 1961-2010 over the European domain (33°N-75°N, 15°W-44°E) were considered. These 

two models were chosen from a larger pool of models primarily due to the availability of 

simulations initialized every year between 1961-2011/2012. 
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2.2. Reference forecast 

In this study, we focus on evaluating the forecast quality of agro-climatic indices based on 

two-meter temperature and precipitation. For this, the reference datasets used are GHCN-

CAMS Version 2 (Fan and van den Dool, 2008) for two-meter temperature and GPCC Version 7 

(Schneide et al., 2016) for precipitation. GHCN-CAMS Version 2 is a gridded dataset, where 

the temperature data are taken from GHCN version 2 (Peterson and Vose, 1997) and CAMS 

(Ropelewski et al., 1984). This dataset is available on a global 0.5°x0.5° grid from 1948 to 

near present. GPCC Version 7 provides monthly totals of precipitation from 1901 to near 

present on a global 2.5°x2.5° grid. These two datasets are selected due to their temporal and 

geographical coverage and their spatial resolution.  

In order to compare the dataset, the values of the climate variables are interpolated using 

conservative approach, from their original grid to a grid with 2.5° spatial resolution, as this 

was identified as the coarsest grid among the model and reference dataset considered here.  

3. Methodology 

This section provides the details on the research methodology and approach followed in this 

study. 

3.1. Bias adjustment  

The climate model data suffer from systematic errors and biases due to their inability in 

resolving some of the climate processes that occur at a spatial scales finer than that of the 

grid cells (e.g. evaporation of moisture from the Earth’s surface, cloud formation and 

turbulence). This causes the model’s climatology to be different than that of the observed 

reference. For this reason, it is necessary to carefully remove these biases in order to extract 

useful information (in terms of usability by end users) from the simulations.  

In this study, the lead-time dependent biases in temperature and precipitation are adjusted 

using a simple mean bias-adjustment technique (as recommended by ICPO, 2011) in leave one 

out cross-validation (CV) mode. Figure 1 provides the steps involved in a typical leave one out 

cross validation technique used to compute the monthly average of temperature and 

precipitation climate variables. In CV mode, each variable (temperature or precipitation) is 

split into two parts: test year and training period. The training period is the entire period 

neglecting the test year. Following which, the average over the entire training period of the 

observed (𝑋CV_obs) and forecasted (𝑋CV_fsct, along each forecast year and member) variables 

(temperature ‘T’ or precipitation ‘P’) is obtained.  
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Figure 1. Schematic illustrating the step-by-step procedure of the cross validation technique applied 

in this study. 
 

The cross-validated monthly averages were then used to bias-adjust the model output. For 

temperature, we used an additive correction along the forecast year (for all the members 

individually), to adjust the monthly mean values in the forecast to the observed 

climatological monthly mean values, as shown in equation (1).   

TCV_fsct(j) =  T(j) - (𝑇CV_fsct-  𝑇CV_obs)   ; where j = 1,..,’n’ years       (1) 

For precipitation data, a multiplicative correction is applied, as shown in equation (2).  

PCV_fsct(j) =  P(j) * (𝑃CV_fsct / 𝑃CV_obs)   ; where j = 1,..,’n’ years      (2) 

3.2. Computation of agro-climatic indices  

This study considers the following three indicators: the Standardized Precipitation 

Evapotranspiration Index (SPEI6; Vicente-Serrano et al., 2010), the six-month mean 

temperature index (T6) and the six-month precipitation mean index (P6). All the above-

mentioned indices are based on monthly mean temperature and total precipitation datasets.  

3.2.1. Drought indicator (SPEI6)  

In this work, we have assessed the skill of the climate model at forecasting drought conditions 

over the forecast years 2 to 5. These drought conditions are estimated using the standardized 

precipitation evapotranspiration index over a 6 month temporal scale (SPEI6; Vicente-Serrano 

et al., 2010). The process of computing the SPEI6 index can be distilled down to two steps: 

accumulation and standardization. First, the accumulation step involves an estimation of 

monthly climatic water balance (di,j), which provides a measure of the water surplus or 

deficit for a specific month ‘i’ in the year ‘j’. It is estimated as follows: 

  di,j = (Pi,j  – PETi,j )       (3)  
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where, P is the precipitation and PET is the Potential Evapotranspiration. Figure 2(a) shows 

the schematic of a simplified climatic water balance. In this study, we chose Thornthwaite 

method for estimating PET (Thornthwaite, 1948) owing to its simplicity and limited data 

requirements (monthly mean temperature and the latitudinal coordinates of each considered 

grid). Then, for each available year ‘j’ and each month ‘i’ for which SPEI6 will be estimated, 

the di,j values are accumulated over a period of six-months. In this study, we focus on the 

accumulated values for the summer months June (i=6), July (i=7), August (i=8) and September 

(i=9) of each year. For example, D6,j (accumulated value for the month of June) is obtained as 

the sum of estimated January to June ‘d’ values for a specific year ‘j’. The general 

expression for any month “i” is as follows:      

Di,j =  di,j+ di-1,j+ .. + di- 5,j     (4) 

The standardization step fits the six-month accumulated Di,j data to a suitable parametric 

probability distribution and then transform the data into a standardized series (with mean = 0 

and standard deviation = 1), where the standardized value is referred to the SPEI6i,j. These 

two steps are carried out individually for each ensemble member and start date of the 

hindcast dataset. Positive values of SPEI6 corresponds to conditions of above-normal 

precipitation whereas negative values correspond to dry periods. Figure 2(b) illustrates the 

observed SPEI6 index of August for the year 2003, which was found to be one of the driest 

year in Europe. In this study, we use the three-parameter shifted log-logistic probability 

distribution function to fit the Di,j series, in which the parameters used to build the 

distribution were computed using the method of unbiased probability weighted moments 

(Vicente-Serrano et al., 2010). In addition to this, we have also attempted the 

standardization step based on the non-parametric approach (as used in Turco et al., 2017), 

where the accumulated Di,j is fitted to a standard gaussian distribution with mean 0 and 

standard deviation 1. No significant difference was found in the forecast quality between 

these two methods over Europe. Appendix I (Figure A1) compares the results obtained with 

the parametric and non-parametric approaches.  

Since the primary goal of this study is to assess the multi-annual predictive skill of SPEI6 over 

the forecast years 2 to 5, two multi-annual averaging techniques were devised.  

1. Applying multi-annual averaging (forecasted years 2 to 5) on the accumulated “D” 

data immediately after the accumulation step. In this approach, the probability 

distribution fitting and standardization is performed over the multi-annual averaged 

accumulation “D” data. 

2. Applying multi-annual average after the standardization step. In this method, the 

SPEI6i,j index were averaged over the forecasted years 2 to 5.   

The difference in forecast quality between these two approaches were assessed and no 

significant changes was found. Appendix I (Figure A2) presents the forecast quality 

assessment of the above-mentioned multi-averaging techniques. 
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   (a)         (b) 

 
Figure 2. (a) Schematic diagram of a simplified climatic water balance  (b) Observed SPEI6 for August 

2003, which was an extremely dry year in Europe (extreme drought event). 

3.2.2. Six-month mean temperature and precipitation 

indices (T6, P6) 

To evaluate the SPEI6 forecast quality and the contribution of temperature and precipitation 

to the skill, two agro-climatic indices: six-month mean temperature (T6) and precipitation 

(P6), are formulated. The monthly mean temperature and precipitation values that are 

involved in estimation of T6 and P6 indices are combinedly used in the computation of the 

six-month accumulated climate water balance ‘D’ values (see Eq. 3 and 4).   

 

T6 is defined as the six-month running mean of monthly temperature along the forecast time 

dimension. It provides an extended seasonal climate outlook of the variations in temperature. 

For instance, for the January 1st 1961 start date, the value of T6 for the month 6 of the first 

forecast year (June 1961) is the average of monthly temperatures for months 1 to 6 (i.e., 

January to June 1961); the value of T6 for the month 7 for the first forecast year (July 1961) 

is the average monthly temperatures of months 2 to 7 (February to July, 1961), and so on. 

The same procedure is repeated for each start date in the hindcast dataset and each 

ensemble member is treated independently. 

 

Since we aim to analyze the skill of this index at the multi-annual timescale (forecasted years 

2 to 5), a four‐year average of the index is performed over forecast years 2 to 5 for each 

month, start date and ensemble member individually. For example, considering the start date 

January 1st 1961, the multi-annual average (forecast years 2-5) of T6 for the month of June is 

the average of T6 June values for the years between 1962-1965. We choose to use 4 year 

average, as it has been widely accepted as a compromise to potentially remove any 

unpredictable interannual variability present in the near-term decadal climate information 

(Goddard et al., 2013). This procedure is repeated for each start date and ensemble member. 
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The observed (T6obs) or forecasted (T6CV_fsct) 6-month mean temperature index for a particular 

month ‘i’, ensemble member and start date for average years 2-5 can be obtained using the 

following equation:  

 

(T6CV_fsct)i,j2to5 = 
1

4
∑5

𝑗 = 2

1

6
[(TCV_fsct)i,j + (TCV_fsct)i-1,j + .. + (TCV_fsct)i- 5,j]       (4) 

(T6obs)i,j2to5 = 
1

4
∑5

𝑗= 2

1

6
[(Tobs)i,j + (Tobs)i-1,j + .. + (Tobs)i- 5,j]       (5) 

In order to compute the six-month mean precipitation index (P6), the same methodology is 

followed, but we use the monthly total in precipitation instead of the monthly mean 

temperature.   

3.3. Verification  

Forecast quality assessment is considered to be a fundamental step in climate predictions. It 

measures how well the predicted climate variables (or the agro-climatic indices) match the 

verification data (observations in this case). In this report, we use the Pearson correlation 

coefficient (r) to assess the forecast quality of the SPEI6, six-month mean temperature and 

precipitation indices. r measures the linear relationship between the predicted and observed 

indices time series. It is important to note that the Pearson correlation is computed using the 

ensemble mean time series of each index along with the corresponding observational time 

series data. The confidence interval for r between a hindcast dataset and the observational 

reference is computed by performing a t-test, after a Fisher Z-transformation whereas the 

significance of correlation differences between two hindcast simulations (INIT and No-INIT) is 

estimated using the methodology proposed by Siegert et al. (2017).  

4. Results  

This section presents the forecast quality of multi-annual average (forecast years 2-5) of the 

agro-climatic indices over Europe and illustrates the improvement in multi-annual predictive 

skill by using initialized decadal prediction (INIT) over non-initialized historical simulation 

(No-INIT) with two forecast systems: EC-Earth and GFDL-CM2.1.  

 

4.1. Predictive skill of drought index (SPEI6)  

The ensemble-mean correlation of the SPEI6 index is shown in Figure 3. Overall, initialized 

decadal simulations yield positive correlation values for SPEI6 over most of the domain (INIT; 

first and third columns of Figure 3) for both EC-Earth and GFDL-CM2.1. In particular, 

significant values of correlation (95% confidence level) have been found over the 

Mediterranean region (Southern Europe and Northern Africa in GFDL-CM2.1 and Northern 

Africa in EC-Earth). The rest of Europe presents areas with non-significant positive or negative 
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values, which varies depending on the month and the model. GFDL-CM2.1 shows slightly 

better skill than EC-Earth, which could be partly linked to the difference in number of 

ensemble members between the two forecast systems (10 in the case of GFDL-CM2.1; 5 for 

EC-Earth).  

Figure 3. Ensemble-mean correlation coefficients of the SPEI6 index for the summer months (June to 

September) averaged over forecast years 2 to 5. The first and third columns corresponds to the 

correlation of the initialized decadal simulations (INIT) while the second and fourth columns show the 

difference in correlation between initialized and non-initialized climate simulations (INIT-NoINIT) 

performed with the EC-Earth (left) and GFDL-CM2.1 (right) decadal forecast systems. Dotted grids 

represent values statistically significant at 95% confidence level for SPEI6.  
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The second and fourth columns of Figure 3 show the difference in correlation between 

initialized decadal simulations and non-initialized simulations (INIT-NoINIT). GFDL-CM2.1 

shows significant improvement (dotted red coloured areas) over most of Central Europe and 

the Balkan region in all four summer months considered whereas EC-Earth has improved skill 

over Northern Central Europe from June to August.  

Results of the ensemble mean correlation values for SPEI6 index obtained for the remaining 

months of the year can be found in the Appendix II (Figure A3-A4). These maps have been 

estimated in order to find a window of opportunity in skillfully predicting the extreme 

drought or extreme wet period. 

4.2. Predictive skill of six-month mean temperature and 

precipitation (T6, P6) 

 

Figure 4 displays the ensemble mean correlation of six-month mean temperature index (T6) 

averaged over the forecast years 2 to 5 for the summer months (June, July, August and 

September). For both EC-Earth and GFDL-CM2.1, initialized decadal simulations show 

statistically significant positive correlation values (95% confidence level) over most of the  

region considered (INIT; first and third columns of Figure 4). 
 

The second and fourth columns of Figure 4, which present the correlation difference between 

the initialized decadal simulations and the non-initialized simulations (INIT-NoINIT), show that 

initializing the decadal forecast system has improved the T6 predictive skill for the months of 

June and July over most part of Europe with both EC-Earth and GFDL-CM2.1. However, the 

differences are not statistically significant. For the months of August and September EC-Earth 

displays non-significant negative correlation values over Europe whereas GFDL presents non-

significant positive correlation values over Central and Northern Europe during the same 

period. 
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Figure 4. Same as Figure 3 but for the six-month mean temperature index T6. The hindcasts are 

verified against GHCN-CAMS version 2 dataset. 

Figure 5 presents the ensemble mean correlation of six-month mean precipitation index (P6) 

averaged over the forecast years 2-5 for the four summer months (June, July, August and 

September). In comparison to T6, the correlation values for P6 are relatively lower over most 

parts of the domain. GFDL-CM2.1 shows higher and significant positive correlation values over 

Southern Europe, Central Europe and Scandinavia for most of the same 4 months. EC-Earth 

shows similar spatial patterns of correlation but with a smaller fraction of significant values 

and larger areas of negative correlations, in particular over Southern Europe. 
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Figure 5. Same as figure 3 but for the six-month precipitation average index P6. The hindcasts are 

verified against GPCC version 7. 

The second and fourth columns of Figure 5 display differences between correlation values 

obtained with the INIT and No-INIT simulations. For most months, EC-Earth exhibits positive 

and significant differences over Northern Central Europe whereas GFDL-CM2.1 shows positive 

and significant differences over Southern Europe, Eastern Central Europe and the Balkan 

region. In addition, non-significant positive values are consistently found over UK with EC-

Earth and over Scandinavia with GFDL-CM2.1. 

 

By comparing the forecast quality of agro-climatic indices (SPEI6, T6 and P6) obtained with 

initialized decadal simulations (i.e., the first and third columns of Figures 3-5), we can 

evaluate the contribution of temperature and precipitation to the SPEI6 skill. It is evident 
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from this comparison that the high predictive skill of six-month mean temperature (and 

partly, precipitation) has significantly contributed to the positive skill in forecasting SPEI6 

over the Mediterranean region (Southern Europe and Northern Africa). From the second and 

fourth columns of Figure 3-5, the spatial pattern of correlation difference between six-month 

mean precipitation index and SPEI6 indicates that the observed improvement in precipitation 

skill in initialized decadal simulations with respect to non-initialized simulations is primarily 

responsible for the enhancement in SPEI6 predictive skill. 

 

This analysis of both T6 and P6 has been further extended for the remaining months of the 

year in Annex II (Figure A5-A8). 

 

5. Conclusion 

In this study, we have assessed the forecast quality of initialized decadal climate predictions 

for the summer months (June, July, August and September) over Europe of agro-climatic 

indices (SPEI6, T6 and P6). In all the cases, we have compared the initialized experiments 

with the non-initialized simulations in order to show the added-value of initialization. The 

results show reasonable skill in predicting the multi-annual averages of these agro-climatic 

indices over most of the studied region with both EC-Earth and GFDL-CM2.1. We also showed 

that initialized decadal simulations have improved the predictive skill with respect to the 

non-initialized simulations across various European regions during the summer months. In 

particular, a significant improvement in predictive skill of SPEI6 and P6 are found over the 

Northern Central Europe with EC-Earth and GFDL has improved predictive skill over Central 

Europe, Balkan region.  

This study is the first of its kind because decadal climate prediction has only been recently 

considered for specific applications, but the encouraging results found suggest further 

analyses. For instance, a multi-model study would provide an idea of the robustness of the 

positive impact of the initialization of the simulations. At the same time, combining the 

predictions from all the individual systems into a single source of information might provide a 

more reliable and skilful forecast, as it has already been shown for climate predictions at 

other time scales. Such a multi-model exercise will be based on the simulations produced by 

the contribution of the Decadal Climate Prediction Project to the Sixth Phase of the Coupled 

Model Intercomparison Project (CMIP6). In this contribution, more than ten institutions will 

perform decadal prediction experiments with at least ten members and with up to five 

forecast years initialized once a year over the period 1960 to 2015. They will also provide 

actual forecasts for the period 2016 to 2020. 

Beyond 2020, the access to decadal climate predictions will be ensured by the initiative set 

by the World Meteorological Organisation (WMO) to establish global producing centres, 

mimicking what was established more than a decade ago for seasonal climate prediction. This 
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initiative is being developed as part of the World Climate Research Programme Grand 

Challenge on Near-Term Climate Prediction, which is creating the exchange infrastructure 

and standards for the future global producing centres to share their forecasts with the lead 

centre at the Met Office. In preparation, the BSC has already been recognized by WMO as one 

of the four existing global producing centres. An important aspect of this evolution of decadal 

climate prediction is the access to the real-time forecasts, which at this stage has been 

defined as only available to meteorological services and public agencies working closely with 

them. The BSC is committed to keep working with representatives of the public and private 

sector to illustrate the benefits of decadal climate prediction and is ready to share its 

forecasts and the multi-model gathered by the lead centre under collaboration agreements. 

Much more research and development is still missing to improve decadal climate prediction 

systems. Adequate solutions for the problems of the multi-model combination, forecast post-

processing, merging of both dynamical and empirical systems into a single source of 

information, robust forecast quality assessment, downscaling, etc. are required. And this is 

without mentioning the need to reduce systematic model errors and improving the forecast 

initialization. The collaboration with key actors like JRC will be fundamental to make quick 

progress in many of these challenges. 
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Appendix I 

(i) Parametric Vs Non-parametric approach for standardizing the six-month accumulated 

climate balance ‘D’ values. 

(a) EC-Earth / Non-parametric approach

 
(b) EC-Earth / Parametric approach 

 

(c) EC-Earth / Parametric - Non parametric  

 

 
 

Figure A1. Ensemble-mean correlation coefficients of the initialized decadal simulations (INIT; 
performed with EC-Earth decadal forecast system) for the SPEI6 index for the summer months (July to 
September) averaged over forecast years 2 to 5 . SPEI6 standardization based on (a) non-parametric 
approach (b) parametric approach (c) difference between parametric and non-parametric approach. 
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(ii) Performing multi-annual averaging (forecast years 2 to 5) before and after 

standardization step.  

(a) EC-Earth / Approach 1: Multi-annual averaging of Accumulate ‘D’ values 

 
(b) EC-Earth / Approach 2: Multi-annual averaging of SPEI6 index 

 

Figure A2. Ensemble-mean correlation coefficients for the initialized decadal simulations (INIT; 
performed with EC-Earth decadal forecast system) for the SPEI6 index for the summer months (July to 
September) averaged over forecast years 2 to 5. Multi-annual average technique applied on (a) the 
accumulated climate balance ‘D’ values (b) the computed SPEI6 index. 

Summary: 

The result presented in Appendix I aim to illustrate that no noticeable changes are observed 

by using an ensemble mean correlation coefficient (as a verification measure) derived from 

either (a) the parametric and non-parametric approach, or (b) by performing the multi-annual 

averaging immediately after the accumulation step or by performing the multi-annual 

averaging with the computed SPEI6 index, i.e., after the standardization step. Note that this 

analysis was performed using a different number of members and slightly different start dates 

and as such are not directly commensurable with the results presented in the main part of the 

report. 
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Appendix II 

Predictive skill of SPEI6 

(a) INIT                        (b) INIT - NoINIT 

Figure A3. Same as figure 3, but for all the months of the year. (a) the correlation of the initialized 
decadal simulations (INIT) (b) the difference in correlation between initialized and non-initialized 
climate simulations (INIT-NoINIT) performed with EC-Earth  
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(a) INIT                        (b) INIT - NoINIT 

Figure A4. Same as figure 3, but for all the months of the year. (a) the correlation of the initialized 
decadal simulations (INIT) (b) the difference in correlation between initialized and non-initialized 
climate simulations (INIT-NoINIT) performed with GFDL-CM2.1.  
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Predictive skill of six-month mean temperature index (T6)  

(a) INIT                        (b) INIT - NoINIT 

 
Figure A5. Same as figure 4, but for all the months of the year. (a) the correlation of the initialized 
decadal simulations (INIT) (b) the difference in correlation between initialized and non-initialized 
climate simulations (INIT-NoINIT) performed with EC-Earth  
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(a) INIT                        (b) INIT - NoINIT 

 
Figure A6. Same as figure 4, but for all the months of the year. (a) the correlation of the initialized 
decadal simulations (INIT) (b) the difference in correlation between initialized and non-initialized 
climate simulations (INIT-NoINIT) performed with GFDL-CM2.1.  
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Predictive skill of six-month mean precipitation index (P6)  

 

(a) INIT                        (b) INIT - NoINIT 

 
Figure A7. Same as figure 5, but for all the months of the year. (a) the correlation of the initialized 
decadal simulations (INIT) (b) the difference in correlation between initialized and non-initialized 
climate simulations (INIT-NoINIT) performed with EC-Earth 
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(a) INIT                        (b) INIT - NoINIT 

 
Figure A8. Same as figure 5, but for all the months of the year. (a) the correlation of the initialized 
decadal simulations (INIT) (b) the difference in correlation between initialized and non-initialized 
climate simulations (INIT-NoINIT) performed with GFDL-CM2.1. 
 

 

 

 

 

 

 

 


