CMORization of CMIP6 data: workflow from the data request to the final ESGF-publishable data

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Arthur Ramos (arthur.amaral@bsc.es)¹, Pierre-Antoine Bretonnière (pierre-antoine.bretonniere@bsc.es)¹

¹Earth Sciences Department, Barcelona Supercomputing Center (BSC)

Introduction	1 - MIPs with p	oarticipation of BSC
The process of implementing a Model Intercomparison Project (<u>MIP</u>) goes through several steps to assure the confiability of the data being produced by a	DECK	Diagnostic, Evaluation and Characterization of Klima
developed by the EC-Earth community that allow an easier approach to pre and	DCPP	Decadal Climate Prediction Project
post-process the model's inputs/outputs. Some of these tools, and how they fit in	VoIMIP	Volcanic Forcings Model Intercomparison

the workflow, are shown here.

2 - Data Request (*drq*) (https://pypi.org/project/dreqPy/)

By using a combination of the packages drg and ece2cmor3, one can run:

./generate-ec-earth-namelists.sh DCPP DCPP 1 1

It generates the xml files (for the ocean, ice and biogeochemical) to be used by the ocean/ice model NEMO, and the ppt files to be used by the atmospheric/land model IFS. Together with the input files, a series of excel tables are also generated, in which they carry the right names and metadata to be used later for the CMORization. In this case, the reference MIP is the DCPP MIP, Tier 1, Priority 1.

HiResMIP	High Resolution Model Intercomparison Project
ScenarioMIP	Scenario Model Intercomparison Project

3 - Outclass Development

As part of the workflow, the **Outclass** contains all the files and information regarding that specific MIP requested in the Data Request. In this step we can add variables, vertical levels, increase/decrease the frequency of the output, all depending on the needs of each group or project. Each MIP has its own **Outclass** files.

ESGF Publishable Data

Project

Fig. 1: Autosubmit workflow.

A python-based tool to create, manage and monitor experiments by using Computing Clusters, HPC's and Supercomputers remotely via ssh. The experiment manager is able to interact with git and svn repositories and controls the entire process, from setting up local and remote machines, going through the simulations and finally the storage.

5 - Climate Model Output Rewriter (CMOR) (github.com/PCMDI/cmor) and ece2cmor3 (github.com/EC-Earth/ece2cmor3)

6 - Diagnostics

Example of diagnostics using a customized version of Barakuda that allows CMORized data and will soon be implemented in the Autosubmit workflow.

ece2cmor3 reads and converts the output from different models, including tm5, LPJ-GUESS, NEMO and IFS, into netCDF files. Can be used online or offline.

nemo2cmor.py

NEMO netCDF

files

Can be processed by different post-processing or diagnostic tools, such as Barakuda, ECE3-POSTPROC, Earth diagnostics/ESMValTool (https://earth.bsc.es/gitlab/es /earthdiagnostics).

Acknowledgments

This project has received funding from the *European Union's Horizon 2020 research and innovation programme* under grant agreement No 641727.

Disclaimer - Any dissemination of results must indicate that it reflects only the author's view and that the Agency is not responsible for any use that may be made of the information it contains.

Get the poster here

Fig. 2: Maximum values of AMOC between 1980 and 2070 using the Spinup Outclass. .

Fig. 3: Monthly Sea Surface Temperature (SST) bias from 1991 using the Spinup Outclass. .