

Barcelona Supercomputing Center Centro Nacional de Supercomputación

ENVIRONMENTAL GEOCHEMISTRY AND ATMOSPHERIC RESEARCH

"Experimentally-constrained organic aerosol chemical and absorption properties in the atmospheric chemistry MONARCH model"

Hector Navarro-Barboza

Directors:

28/09/2021

Oriol Jorba¹ Marco Pandolfi²

¹Barcelona Supercomputing Center (BSC), Earth Sciences, Barcelona, Spain ²Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Spain

Outline

- Introduction
- Motivation
- Objectives
- Methods
 - Observational dataset
 - MONARCH model
 - Simulation setup
- Results
- Summary

Introduction: Atmospheric aerosols

Atmospheric aerosols: Solid or liquid particles suspended in the atmosphere to the exception of all hydrometeors (cloud droplets, ice crystals, raindrops, snowflakes, and graupel); their aerodynamic radius can ranges from $0.002 \mu m$ to about $100 \mu m$.

Motivation

Atmospheric aerosols can alter the balance of energy in the atmosphere. Depending on their chemical composition, aerosols cool or warm the atmosphere. From all aerosol types, organic aerosols (OA) represent a significant fraction.

Aerosol chemical composition (Jimenez et al., 2009)

Motivation

OA has been classically treated in atmospheric models as mainly scattering particles; however, the findings of researchers through laboratory experiments have demonstrated that a fraction of OA is absorbent, even recent research has found certain compounds of secondary origin (SOA) tend to change their color from white to brown while are aged in the atmosphere. The term "brown carbon" (BrC) has emerged to describe this type of OA characterized by an absorption spectrum that increases from visible to UV wavelengths.

F1: $\alpha P/Tol$

F2: αP/Tol/Isop

F3: aP/Tol/SO2

F4: aP/Tol/Isop/SO₂

Effect of mixture changes in filter appearance (Jaoui et al., 2008)

Objectives

- Ongoing work to experimentally constrain the absorption property of OA simulated by the Multiscale Online Nonhydrostatic Atmosphere Chemistry (MONARCH) model.
- Evaluation of the chemical composition of aerosols and OA optical properties at three in-situ super-sites in northeast Spain.

Methods: observational dataset

IDAEA-CSIC gas-phase and aerosols measurements:

Measurements has been made by IDAEA-CSIC group and still continues.

- 1. Two techniques are used to get the data: Off-line and On-line.
- 2. Measuring sites are Barcelona (BCN), Montseny (MSY), Montsec (MSA).
 - Offline filter analysis of PM chemical composition: PM1, PM2.5, PM10.
 - Online analysis: Aethalometer, Multi Angle Absorption Photometer, Aerosol Chemical Speciation Monitor.

EGAR

NVIRONMENTAL EOCHEMISTRY ND ATMOSPHERIC ESEARCH

Methods: MONARCH model

- Fully on-line coupling: weather-chemistry feedback processes
- Multiscale: global to regional (up to 1km) scales (nesting capabilities)
- Data assimilation system
- Ready to be coupled with Urban model

Multiscale Online AtmospheRe CHemistry (MONARCH) model

Locel Multiescala Global Regional Local

Methods: MONARCH aerosol representation

Mass-based scheme described in Spada (2015)

Period simulation: 2018

Methods: sensitivity tests

• Perturbing BrC/OA fraction and imaginary refractive index (ni)

	Mass fraction	Imaginary refractive index (ni)		
	BrC/OA %	Hydrophobic Primary-BrC	Hydrophilic Primary-BrC	SOA-BrC anthro./biomass
Case 1 - no BrC	0.			
Case 2 - Strongly P and S BrC absorption	100./50./20.	1e-1	1e-1	1e-2
Case 3 - Moderately P and S BrC absorption	100./50./20.	1e-1	1e-2	1e-2
Case 4 - Moderately P and weakly S BrC abs.	100./50./20.	1e-1	1e-2	1e-3
Case 5 - Moderately P and very weakly S BrC abs.	100./50./20.	1e-1	1e-2	1e-4
Case 6 - Weakly P and very weakly S BrC abs.	100./50./20.	1e-2	1e-3	1e-4

P: primary; S: secondary

Results

- Next slides show results for May 2018 (Barcelona site) and July 2018 (Montseny and Montsec)
 - Months with good agreement with BC observations
 - BC model biases in other periods attributed to uncertainties on emissions and lifetime
 - Allows isolating the effect of BrC

Results: PM chemical composition

PM10, PM2.5 model composition and sum of off-line PM chemistry observation

Results: Sulfate, nitrate, and ammonium

Results: BC and OA mass

Observations: BC derived from MAAP, OA (ACSM BCN, filter MSY/MSA)

July

Results: BC and BrC absorption 520nm

Observations: BC and BrC (derived from aethalometer)

Absorption explained by large abundance of BrC with a mix of primary strongly and secondary weakly absorbing aerosol in urban site

Regional (MSY) and remote (MSA) sites likely not dominated by a large abundance of BrC

Results: sensitivity BrC

Perturbing BrC/OA fraction and imaginary refractive index

100% BrC/OA

50% BrC/OA

20% BrC/OA

Summary

- Exploring different treatments of BrC in an atmospheric chemistry model
- Evaluation of the chemical composition and optical properties in three super-sites in northeast Spain
- Periods with a good characterization of BC and OA mass result with good agreement of absorption assuming a large BrC/OA fraction (urban site) and lower fraction (regional/remote site) with mixtures of weakly to strongly absorbing BrC
- The combination of different types of measurements allows identifying which components deserve further refinement in the model: secondary inorganic aerosols (sulfate, nitrate)
- The Organic Aerosol scheme in MONARCH performs very well
- Future work will extend the analysis to other European sites and global scale.

Barcelona Supercomputing Center Centro Nacional de Supercomputación

Thank you! Any question?

06/07/2021

Acknowledgments

- Severo Ochoa Program, awarded by the Spanish Government [grant: SEV-2015-0493-18-I]
- Spanish Ministry of Economy and Competitiveness [grant: RTI2018-099894-B-I00]
- H2020 FORCES [grant: 821205]
- 'FPI SO' grant: PRE2018-084988]
- High Performance Computer resources of the "Red Española de Supercomputación" (AECT-2020-1-0007, AECT-2021-1-0027).