Newer
Older
#' A wrapper for applying a function, taking one or more arrays (or vectors or matrices), potentially with different dimensions. The user can input one or more arrays, and specify the dimensions of each of the arrays over which the function should be looped. This is an extension of the apply paradigm to the case where the data being considered are distributed across multiple numeric objects.
#' @param data A single numeric object (vector, matrix or array) or a list of numeric objects. They must be in the same order as expected by AtomicFun.
#' @param margins List of vectors containing the margins for the input objects to be split by. Or, if there is a single vector of margins specified and a list of objects in data, then the single set of margins is applied over all objects.
#' @param AtomicFun Function to be applied to the arrays.
#' @param ... Additional arguments to be used in the AtomicFun.
#' @param parallel Logical, should the function be applied in parallel.
#' @param ncores The number of cores to use for parallel computation.
#' @details When using a single numeric object as input, Apply is almost identical to the apply function. For multiple input objects, the output array will have dimensions equal to the dimensions specified in 'margins'.
#' @return Array or matrix or vector resulting from AtomicFun.
#' @references Wickham, H (2011), The Split-Apply-Combine Strategy for Data Analysis, Journal of Statistical Software.
#' @export
#' @examples
#' #Change in the rate of exceedance for two arrays, with different
#' #dimensions, for some matrix of exceedances.
#' data = list(array(rnorm(2000), c(10,10,20)), array(rnorm(1000), c(10,10,10)),
#' array(rnorm(100), c(10, 10)))
#' test_fun <- function(x, y, z) {((sum(x > z) / (length(x))) /
#' (sum(y > z) / (length(y)))) * 100}
#' margins = list(c(1, 2), c(1, 2), c(1,2))
#' test <- Apply(data, margins, AtomicFun = "test_fun")
Apply <- function(data, margins = NULL, AtomicFun, ..., parallel = FALSE, ncores = NULL) {
if (!is.list(data)) {
data <- list(data)
}
if (!is.null(margins)) {
if (!is.list(margins)) {
margins <- rep(list(margins), length(data))
}
}
if (!is.logical(parallel)) {
stop("parallel must be logical")
}
.isolate <- function(data, margin_length, drop = TRUE) {
eval(dim(environment()$data))
structure(list(env = environment(), index = margin_length, subs = as.name("[")),
class = c("indexed_array"))
}
margin_length <- lapply(dim(data[[i]]), function(x) 1 : x)
margin_length[-margins[[i]]] <- ""
margin_length <- expand.grid(margin_length, KEEP.OUT.ATTRS = FALSE,
stringsAsFactors = FALSE)
input[[i]] <- .isolate(data[[i]], margin_length)
dims <- dim(data[[1]])[margins[[1]]]
i_max <- length(input[[1]])[1] / dims[[1]]
k <- length(input[[1]]) / i_max
if (parallel == TRUE) {
if (is.null(ncores)) {
ncores <- availableCores() - 1
} else {
ncores <- min(availableCores() - 1, ncores)
}
WrapperFun <- llply(1 : i_max, function(i)
sapply((k * i - (k - 1)) : (k * i), function(x) f(lapply(input, `[[`, x),...), simplify = FALSE),
.parallel = parallel)
WrapperFun <- array(as.numeric(unlist(WrapperFun)), dim=c(c(length((WrapperFun[[1]])[[1]])),
dim(data[[1]])[margins[[1]]]))
} else {
WrapperFun <- array(as.numeric(unlist(WrapperFun)), dim=c(c(dim(WrapperFun[[1]][[1]])),
dim(data[[1]])[margins[[1]]]))
}
} else {
WrapperFun <- f(data, ...)
}