Apply.R 4.07 KB
Newer Older
Alasdair Hunter's avatar
Alasdair Hunter committed
#' Wrapper for Applying Atomic Functions to Arrays.
Alasdair Hunter's avatar
Alasdair Hunter committed
#'
Alasdair Hunter's avatar
Alasdair Hunter committed
#' A wrapper for applying a function, taking one or more arrays (or vectors or matrices), potentially with different dimensions. The user can input one or more arrays, and specify the dimensions of each of the arrays over which the function should be looped. This is an extension of the apply paradigm to the case where the data being considered are distributed across multiple numeric objects.
#' @param data A single numeric object (vector, matrix or array) or a list of numeric objects. They must be in the same order as expected by AtomicFun.
#' @param margins List of vectors containing the margins for the input objects to be split by. Or, if there is a single vector of margins specified and a list of objects in data, then the single set of margins is applied over all objects.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @param AtomicFun Function to be applied to the arrays.
#' @param ... Additional arguments to be used in the AtomicFun.
#' @param parallel Logical, should the function be applied in parallel.
#' @param ncores The number of cores to use for parallel computation.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @details When using a single numeric object as input, Apply is almost identical to the apply function. For multiple input objects, the output array will have dimensions equal to the dimensions specified in 'margins'.
#' @return Array or matrix or vector resulting from AtomicFun.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @references Wickham, H (2011), The Split-Apply-Combine Strategy for Data Analysis, Journal of Statistical Software.
#' @export
#' @examples
Alasdair Hunter's avatar
Alasdair Hunter committed
#' #Change in the rate of exceedance for two arrays, with different 
#' #dimensions, for some matrix of exceedances.
#' data = list(array(rnorm(2000), c(10,10,20)), array(rnorm(1000), c(10,10,10)), 
#'             array(rnorm(100), c(10, 10)))
#' test_fun <- function(x, y, z) {((sum(x > z) / (length(x))) / 
#'                                (sum(y > z) / (length(y)))) * 100}
#' margins = list(c(1, 2), c(1, 2), c(1,2))
#' test <- Apply(data, margins, AtomicFun = "test_fun")
Apply <- function(data, margins = NULL, AtomicFun, ..., parallel = FALSE, ncores = NULL) {
Alasdair Hunter's avatar
Alasdair Hunter committed
  if (!is.list(data)) {
    data <- list(data)
  }
  if (!is.null(margins)) {
    if (!is.list(margins)) {
      margins <- rep(list(margins), length(data))
    }
  }
  if (!is.logical(parallel)) {
    stop("parallel must be logical")
  }
Alasdair Hunter's avatar
Alasdair Hunter committed
  names <- names(dim(data[[1]]))[margins[[1]]]
Alasdair Hunter's avatar
Alasdair Hunter committed
  input <- list()
  if (!is.null(margins)) {
    .isolate <- function(data, margin_length, drop = TRUE) {
      eval(dim(environment()$data))
      structure(list(env = environment(), index = margin_length, subs = as.name("[")), 
                class = c("indexed_array"))
    }
Alasdair Hunter's avatar
Alasdair Hunter committed
    for (i in 1 : length(data)) {
      margin_length <- lapply(dim(data[[i]]), function(x) 1 : x)
      margin_length[-margins[[i]]] <- ""
      margin_length <- expand.grid(margin_length, KEEP.OUT.ATTRS = FALSE, 
                                   stringsAsFactors = FALSE)
      input[[i]] <- .isolate(data[[i]], margin_length)
Alasdair Hunter's avatar
Alasdair Hunter committed
    }
Alasdair Hunter's avatar
Alasdair Hunter committed
    dims <- dim(data[[1]])[margins[[1]]]
    i_max <- length(input[[1]])[1] / dims[[1]]
Alasdair Hunter's avatar
Alasdair Hunter committed
    k <- length(input[[1]]) / i_max
    if (parallel == TRUE) {
      if (is.null(ncores)) {
        ncores <- availableCores() - 1
      } else {
        ncores <- min(availableCores() - 1, ncores)
      }
Alasdair Hunter's avatar
Alasdair Hunter committed
      registerDoParallel(ncores)  
Alasdair Hunter's avatar
Alasdair Hunter committed
    }
Alasdair Hunter's avatar
Alasdair Hunter committed
    f <- splat(get(AtomicFun))
Alasdair Hunter's avatar
Alasdair Hunter committed
    WrapperFun <- llply(1 : i_max, function(i)
      sapply((k * i - (k - 1)) : (k * i), function(x) f(lapply(input, `[[`, x),...), simplify = FALSE),
      .parallel = parallel)
Alasdair Hunter's avatar
Alasdair Hunter committed
    if (parallel == TRUE) {
      registerDoSEQ()
    }
Alasdair Hunter's avatar
Alasdair Hunter committed
    if (is.null(dim(WrapperFun[[1]][[1]]))) {
      WrapperFun <- array(as.numeric(unlist(WrapperFun)), dim=c(c(length((WrapperFun[[1]])[[1]])),
Alasdair Hunter's avatar
Alasdair Hunter committed
                                                                dim(data[[1]])[margins[[1]]]))
    } else {
      WrapperFun <- array(as.numeric(unlist(WrapperFun)), dim=c(c(dim(WrapperFun[[1]][[1]])),
                                                                dim(data[[1]])[margins[[1]]]))
    }
  } else {
    WrapperFun <- f(data, ...)
  }
Alasdair Hunter's avatar
Alasdair Hunter committed
  names(dim(WrapperFun)) <- c(AtomicFun, names)
Alasdair Hunter's avatar
Alasdair Hunter committed
  out <- WrapperFun
}