Apply.R 22.9 KB
Newer Older
Alasdair Hunter's avatar
Alasdair Hunter committed
#' Wrapper for Applying Atomic Functions to Arrays.
Alasdair Hunter's avatar
Alasdair Hunter committed
#'
Alasdair Hunter's avatar
Alasdair Hunter committed
#' The Apply function is an extension of the mapply function, which instead of taking lists of unidimensional objects as input, takes lists of multidimensional objects as input, which may have different numbers of dimensions and dimension lengths. The user can specify which dimensions of each array (or matrix) the function is to be applied over with the margins option. 
#' @param data A single object (vector, matrix or array) or a list of objects. They must be in the same order as expected by AtomicFun.
#' @param target_dims List of vectors containing the dimensions to be input into AtomicFun for each of the objects in the data. These vectors can contain either integers specifying the dimension position, or characters corresponding to the dimension names. If both margins and target_dims are specified, margins takes priority over target_dims.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @param AtomicFun Function to be applied to the arrays.
#' @param ... Additional arguments to be used in the AtomicFun.
#' @param margins List of vectors containing the margins for the input objects to be split by. Or, if there is a single vector of margins specified and a list of objects in data, then the single set of margins is applied over all objects. These vectors can contain either integers specifying the dimension position, or characters corresponding to the dimension names. If both margins and target_dims are specified, margins takes priority over target_dims.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @param parallel Logical, should the function be applied in parallel.
#' @param ncores The number of cores to use for parallel computation.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @details When using a single object as input, Apply is almost identical to the apply function. For multiple input objects, the output array will have dimensions equal to the dimensions specified in 'margins'.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @return Array or matrix or vector resulting from AtomicFun.
Alasdair Hunter's avatar
Alasdair Hunter committed
#' @references Wickham, H (2011), The Split-Apply-Combine Strategy for Data Analysis, Journal of Statistical Software.
#' @export
#' @examples
Alasdair Hunter's avatar
Alasdair Hunter committed
#' #Change in the rate of exceedance for two arrays, with different 
#' #dimensions, for some matrix of exceedances.
#' data = list(array(rnorm(2000), c(10,10,20)), array(rnorm(1000), c(10,10,10)), 
#'             array(rnorm(100), c(10, 10)))
#' test_fun <- function(x, y, z) {((sum(x > z) / (length(x))) / 
#'                                (sum(y > z) / (length(y)))) * 100}
#' margins = list(c(1, 2), c(1, 2), c(1,2))
#' test <- Apply(data, margins, AtomicFun = "test_fun")
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
Apply <- function(data, target_dims = NULL, AtomicFun, ..., output_dims = NULL,
                  margins = NULL, parallel = FALSE, ncores = NULL) {
  # Check data
Alasdair Hunter's avatar
Alasdair Hunter committed
  if (!is.list(data)) {
    data <- list(data)
  }
  if (any(!sapply(data, is.numeric))) {
    stop("Parameter 'data' must be one or a list of numeric objects.")
  }
Nicolau Manubens's avatar
Nicolau Manubens committed
  is_vector <- rep(FALSE, length(data))
  for (i in 1 : length(data)) {
    if (is.null(dim(data[[i]]))) {
      is_vector[i] <- TRUE
      dim(data[[i]]) <- length(data[[i]])
    }
  }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed

  # Check AtomicFun
  if (is.character(AtomicFun)) {
    try({AtomicFun <- get(AtomicFun)}, silent = TRUE)
    if (!is.function(AtomicFun)) {
      stop("Could not find the function '", AtomicFun, "'.")
    }
  }
  if (!is.function(AtomicFun)) {
    stop("Parameter 'AtomicFun' must be a function or a character string ",
         "with the name of a function.")
  }
  output_dims <- NULL
  if ('startR_step' %in% class(AtomicFun)) {
    if (is.null(target_dims)) {
      target_dims <- attr(AtomicFun, 'target_dims')
    }
    if (is.null(output_dims)) {
      output_dims <- attr(AtomicFun, 'target_dims')
    }
  }

  # Check target_dims and margins
  if (is.null(margins) && is.null(target_dims)) {
    stop("One of 'margins' or 'target_dims' must be specified.")
  }
Alasdair Hunter's avatar
Alasdair Hunter committed
  if (!is.null(margins)) {
    target_dims <- NULL
Alasdair Hunter's avatar
Alasdair Hunter committed
  }
Nicolau Manubens's avatar
Nicolau Manubens committed
  margins_names <- vector('list', length(data))
  target_dims_names <- vector('list', length(data))
  if (!is.null(margins)) {
  # Check margins and build target_dims accordingly
    if (!is.list(margins)) {
      margins <- rep(list(margins), length(data))
    }
    if (any(!sapply(margins, 
Nicolau Manubens's avatar
Nicolau Manubens committed
                    function(x) is.character(x) || is.numeric(x) || is.null(x)))) {
      stop("Parameter 'margins' must be one or a list of numeric or ",
           "character vectors.")
    }
    duplicate_dim_specs <- sapply(margins, 
      function(x) {
        length(unique(x)) != length(x)
      })
    if (any(duplicate_dim_specs)) {
      stop("Parameter 'margins' must not contain duplicated dimension ",
           "specifications.")
    }
    target_dims <- vector('list', length(data))
    for (i in 1 : length(data)) {
Nicolau Manubens's avatar
Nicolau Manubens committed
      if (length(margins[[i]]) > 0) {
        if (is.character(unlist(margins[i]))) {
          if (is.null(names(dim(data[[i]])))) {
            stop("Parameter 'margins' contains dimension names, but ",
                 "some of the corresponding objects in 'data' do not have ",
                 "dimension names.")
          }
Nicolau Manubens's avatar
Nicolau Manubens committed
          margins2 <- margins[[i]]
          margins2_new_num <- c()
          for (j in 1 : length(margins2)) {
            matches <- which(names(dim(data[[i]])) == margins2[j])
Nicolau Manubens's avatar
Nicolau Manubens committed
            if (length(matches) < 1) {
Nicolau Manubens's avatar
Nicolau Manubens committed
              stop("Could not find dimension '", margins2[j], "' in ", i, 
Nicolau Manubens's avatar
Nicolau Manubens committed
                   "th object provided in 'data'.")
            }
Nicolau Manubens's avatar
Nicolau Manubens committed
            margins2_new_num[j] <- matches[1]
Nicolau Manubens's avatar
Nicolau Manubens committed
          }
          margins_names[[i]] <- margins[[i]]
Nicolau Manubens's avatar
Nicolau Manubens committed
          margins[[i]] <- margins2_new_num
Nicolau Manubens's avatar
Nicolau Manubens committed
        }
        if (!is.null(names(dim(data[[i]])))) {
          target_dims_names[[i]] <- names(dim(data[[i]]))[- margins[[i]]]
        }
Nicolau Manubens's avatar
Nicolau Manubens committed
        target_dims[[i]] <- (1 : length(dim(data[[i]])))[- margins[[i]]]
Nicolau Manubens's avatar
Nicolau Manubens committed
      } else {
        target_dims[[i]] <- 1 : length(dim(data[[i]]))
        if (!is.null(names(dim(data[[i]])))) {
          target_dims_names[[i]] <- names(dim(data[[i]]))
    }
  } else {
  # Check target_dims and build margins accordingly
    if (!is.list(target_dims)) {
      target_dims <- rep(list(target_dims), length(data))
    }
    if (any(!sapply(target_dims, 
                    function(x) is.character(x) || is.numeric(x)))) {
      stop("Parameter 'target_dims' must be one or a list of numeric or ",
           "character vectors.")
    }
    if (any(sapply(target_dims, length) == 0)) {
      stop("Parameter 'target_dims' must not contain length-0 vectors.")
    duplicate_dim_specs <- sapply(target_dims, 
      function(x) {
        length(unique(x)) != length(x)
      })
    if (any(duplicate_dim_specs)) {
      stop("Parameter 'target_dims' must not contain duplicated dimension ",
           "specifications.")
    }
    margins <- vector('list', length(data))
      if (is.character(unlist(target_dims[i]))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
        if (is.null(names(dim(data[[i]])))) {
          stop("Parameter 'target_dims' contains dimension names, but ",
               "some of the corresponding objects in 'data' do not have ",
               "dimension names.")
        }
Nicolau Manubens's avatar
Nicolau Manubens committed
        targs2 <- target_dims[[i]]
        targs2_new_num <- c()
        for (j in 1 : length(targs2)) {
          matches <- which(names(dim(data[[i]])) == targs2[j])
Nicolau Manubens's avatar
Nicolau Manubens committed
          if (length(matches) < 1) {
Nicolau Manubens's avatar
Nicolau Manubens committed
            stop("Could not find dimension '", targs2[j], "' in ", i, 
Nicolau Manubens's avatar
Nicolau Manubens committed
                 "th object provided in 'data'.")
          }
Nicolau Manubens's avatar
Nicolau Manubens committed
          targs2_new_num[j] <- matches[1]
Nicolau Manubens's avatar
Nicolau Manubens committed
        target_dims_names[[i]] <- target_dims[[i]]
Nicolau Manubens's avatar
Nicolau Manubens committed
        target_dims[[i]] <- targs2_new_num
Nicolau Manubens's avatar
Nicolau Manubens committed
      if (!is.null(names(dim(data[[i]])))) {
        margins_names[[i]] <- names(dim(data[[i]]))[- target_dims[[i]]]
      }
Nicolau Manubens's avatar
Nicolau Manubens committed
      margins[[i]] <- (1 : length(dim(data[[i]])))[- target_dims[[i]]]
Alasdair Hunter's avatar
Alasdair Hunter committed
    }
  # Reorder dimensions of input data for target dims to be left-most
Nicolau Manubens's avatar
Nicolau Manubens committed
  # and in the required order.
  for (i in 1 : length(data)) {
    if (is.unsorted(target_dims[[i]]) || 
        (max(target_dims[[i]]) > length(target_dims[[i]]))) {
      marg_dims <- (1 : length(dim(data[[i]])))[- target_dims[[i]]]
Nicolau Manubens's avatar
Nicolau Manubens committed
      data[[i]] <- .aperm2(data[[i]], c(target_dims[[i]], marg_dims))
      target_dims[[i]] <- 1 : length(target_dims[[i]])
      margins[[i]] <- (length(target_dims[[i]]) + 1) : length(dim(data[[i]]))
Alasdair Hunter's avatar
Alasdair Hunter committed
    }
  }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  # Check output_dims
  if (!is.null(output_dims)) {
    if (!is.list(output_dims)) {
      output_dims <- list(output1 = output_dims)
    }
    if (any(sapply(output_dims, function(x) !is.character(x)))) {
      stop("Parameter 'output_dims' must be one or a list of vectors of character strings.")
    }
    if (is.null(names(output_dims))) {
      names(output_dims) <- rep('', length(output_dims))
    }
    missing_output_names <- which(sapply(names(output_dims), nchar) == 0)
    if (length(missing_output_names) > 0) {
      names(output_dims)[missing_output_names] <- paste0('output', missing_output_names)
  # Check parallel
Alasdair Hunter's avatar
Alasdair Hunter committed
  if (!is.logical(parallel)) {
    stop("Parameter 'parallel' must be logical.")
Alasdair Hunter's avatar
Alasdair Hunter committed
  }
  # Check ncores
  if (parallel) {
    if (is.null(ncores)) {
      ncores <- availableCores() - 1
    }
    if (!is.numeric(ncores)) {
      stop("Parameter 'ncores' must be numeric.")
    }
    ncores <- round(ncores)
    ncores <- min(availableCores() - 1, ncores)
  }

Nicolau Manubens's avatar
Nicolau Manubens committed
  # Consistency checks of margins of all input objects
  #  for each data array, add its margins to the list if not present.
  #    if there are unnamed margins in the list, check their size matches the margins being added 
  #                                              and simply assing them a name
  #    those margins present, check that they match
  #      if unnamed margins, check consistency with found margins
  #        if more mrgins than found, add numbers to the list, without names
  #  with this we end up with a named list of margin sizes
  #  for data arrays with unnamed margins, we can assume their margins names are those of the first entries in the resulting list
  all_found_margins_lengths <- afml <- list()
Nicolau Manubens's avatar
Nicolau Manubens committed
  for (i in 1:length(data)) {
    if (!is.null(margins_names[[i]])) {
      if (length(afml) > 0) {
        matches <- which(margins_names[[i]] %in% names(afml))
Nicolau Manubens's avatar
Nicolau Manubens committed
        if (length(matches) > 0) {
          margs_to_add <- as.list(dim(data[[i]])[margins[[i]]][- matches])
          if (any(dim(data[[i]])[margins[[i]][matches]] != unlist(afml[margins_names[[i]][matches]]))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
            stop("Found one or more margin dimensions with the same name and ",
                 "different length in some of the input objects in 'data'.")
          }
        } else {
          margs_to_add <- as.list(dim(data[[i]])[margins[[i]]])
        }
        unnamed_margins <- which(sapply(names(afml), nchar) == 0)
Nicolau Manubens's avatar
Nicolau Manubens committed
        if (length(unnamed_margins) > 0) {
          stop_with_error <- FALSE
          if (length(unnamed_margins) <= length(margs_to_add)) {
            if (any(unlist(afml[unnamed_margins]) != unlist(margs_to_add[1:length(unnamed_margins)]))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
              stop_with_error <- TRUE
            }
            names(afml)[unnamed_margins] <- names(margs_to_add)[1:length(unnamed_margins)]
Nicolau Manubens's avatar
Nicolau Manubens committed
            margs_to_add <- margs_to_add[- (1:length(margs_to_add))]
          } else {
            if (any(unlist(afml[unnamed_margins[1:length(margs_to_add)]]) != unlist(margs_to_add))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
              stop_with_error <- TRUE
            }
            names(afml)[unnamed_margins[1:length(margs_to_add)]] <- names(margs_to_add)
Nicolau Manubens's avatar
Nicolau Manubens committed
            margs_to_add <- list()
          }
          if (stop_with_error) {
            stop("Found unnamed margins (for some objects in parameter ",
                 "'data') that have been associated by their position to ",
                 "named margins in other objects in 'data' and do not have ",
                 "matching length. It could also be that the unnamed ",
                 "margins don not follow the same order as the named ",
                 "margins. In that case, either put the corresponding names ",
                 "to the dimensions of the objects in 'data', or put them ",
                 "in a consistent order.")
          }
        }
        afml <- c(afml, margs_to_add)
Nicolau Manubens's avatar
Nicolau Manubens committed
      } else {
        afml <- as.list(dim(data[[i]])[margins[[i]]])
Alasdair Hunter's avatar
Alasdair Hunter committed
    } else {
Nicolau Manubens's avatar
Nicolau Manubens committed
      margs_to_add <- as.list(dim(data[[i]])[margins[[i]]])
      names(margs_to_add) <- rep('', length(margs_to_add))
      if (length(afml) > 0) {
Nicolau Manubens's avatar
Nicolau Manubens committed
        stop_with_error <- FALSE
        if (length(afml) >= length(margs_to_add)) {
          if (any(unlist(margs_to_add) != unlist(afml[1:length(margs_to_add)]))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
            stop_with_error <- TRUE
          }
        } else {
          if (any(unlist(margs_to_add)[1:length(afml)] != unlist(afml))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
            stop_with_error <- TRUE
          }
          margs_to_add <- margs_to_add[- (1:length(afml))]
          afml <- c(afml, margs_to_add)
Nicolau Manubens's avatar
Nicolau Manubens committed
        }
        if (stop_with_error) {
          stop("Found unnamed margins (for some objects in parameter ",
               "'data') that have been associated by their position to ",
               "named margins in other objects in 'data' and do not have ",
               "matching length. It could also be that the unnamed ",
               "margins don not follow the same order as in other ",
               "objects. In that case, either put the corresponding names ",
               "to the dimensions of the objects in 'data', or put them ",
               "in a consistent order.")
        }
      } else {
        afml <- margs_to_add
Alasdair Hunter's avatar
Alasdair Hunter committed
    }
  }
  # afml is now a named list with the lenghts of all margins. Each margin 
  # appears once only. If some names are not provided, they are missing, 
  # e.g. ''.
Nicolau Manubens's avatar
Nicolau Manubens committed

Nicolau Manubens's avatar
Nicolau Manubens committed
  # Now need to check which margins are common for all the data arrays. 
  # Those will be used by llply.
  # For the margins that are not common, we will need to iterate manually 
  # across them, and use data arrays repeatedly as needed.
  margins_afml <- margins
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  for (i in 1:length(data)) {
    if (!is.null(margins_names[[i]])) {
      margins_afml[[i]] <- sapply(margins_names[[i]], 
        function(x) {
          sapply(x, 
            function(y) {
              which(names(afml) == y)
            }
          )
        }
      )
    }
  }
  common_margs <- margins_afml[[1]]
  if (length(margins_afml) > 1) {
    for (i in 2:length(margins_afml)) {
Nicolau Manubens's avatar
Nicolau Manubens committed
      non_matches <- which(!(common_margs %in% margins_afml[[i]]))
      if (length(non_matches) > 0) {
        common_margs <- common_margs[- non_matches]
      }
    }
  }
  non_common_margs <- 1:length(afml)
  if (length(common_margs) > 0) {
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
    non_common_margs <- non_common_margs[- common_margs]
  }
  # common_margs is now a numeric vector with the indices of the common 
  # margins (i.e. their position in afml)
  # non_common_margs is now a numeric vector with the indices of the 
  # non-common margins (i.e. their position in afml)

Nicolau Manubens's avatar
Nicolau Manubens committed
  .isolate <- function(data, margin_length, drop = FALSE) {
    eval(dim(environment()$data))
    structure(list(env = environment(), index = margin_length, 
                   drop = drop, subs = as.name("[")), 
              class = c("indexed_array"))
  }
  .consolidate <- function(subsets, dimnames, out_dimnames) {
    lapply(1:length(subsets), 
      function(x) {
        dims <- dim(subsets[[x]])
        names(dims) <- dimnames[[x]]
        dims <- dims[out_dimnames[[x]]]
        array(subsets[[x]], dim = dims)
      })
  }

  data_indexed <- vector('list', length(data))
  data_indexed_indices <- vector('list', length(data))
  for (i in 1 : length(data)) {
    non_common_margs_i <- which(names(dim(data[[i]])) %in% names(afml[non_common_margs]))
    if (length(non_common_margs_i) > 0) {
      margin_length <- lapply(dim(data[[i]]), function(x) 1 : x)
      margin_length[- non_common_margs_i] <- ""
    } else {
      margin_length <- as.list(rep("", length(dim(data[[i]]))))
    }
    margin_length <- expand.grid(margin_length, KEEP.OUT.ATTRS = FALSE,
                                 stringsAsFactors = FALSE)
    data_indexed[[i]] <- .isolate(data[[i]], margin_length)
    if (length(non_common_margs_i) > 0) {
      data_indexed_indices[[i]] <- array(1:prod(dim(data[[i]])[non_common_margs_i]),
                                     dim = dim(data[[i]])[non_common_margs_i])
    } else {
      data_indexed_indices[[i]] <- array(1, dim = 1)
    }
  }

  splatted_f <- splat(AtomicFun)

  # Iterate along all non-common margins
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  if (length(non_common_margs) > 0) {
    non_common_margins_array <- ncma <- array(1:prod(unlist(afml[non_common_margs])), 
                                              dim = unlist(afml[non_common_margs]))
  } else {
    ncma <- array(1)
  }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  arrays_of_results <- NULL
  found_first_result <- FALSE
Nicolau Manubens's avatar
Nicolau Manubens committed
# need to parallelize this loop if no common margins or small common margins
# need to add progress bar
# need to use indexed arrays instead of arrays
  for (j in 1:length(ncma)) {
Nicolau Manubens's avatar
Nicolau Manubens committed
if (j %% 1000 == 0) {
  print(j)
}
    marg_indices <- arrayInd(j, dim(ncma))
    #marg_indices <- which(ncma == j, arr.ind = TRUE)[1, ]
    names(marg_indices) <- names(dim(ncma))
    input <- list()
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
    atomic_fun_out_dims <- list()
    # Each iteration of j, the variable input is populated with sub-arrays for 
    # each object in data (if possible). For each set of 'input's, the
    # splatted_f is applied in parallel if possible.
    if (length(common_margs) > 0) {
Nicolau Manubens's avatar
Nicolau Manubens committed
      input_indexed <- vector('list', length(data))
      input_indexed_indices <- vector('list', length(data))
      for (i in 1 : length(data_indexed)) {
        ##
        inds_to_take <- which(names(marg_indices) %in% names(dim(data_indexed_indices[[i]])))
        if (length(inds_to_take) > 0) {
          input[[i]] <- data_indexed[[i]][[do.call('[', c(list(x = data_indexed_indices[[i]]), 
                                                     marg_indices[inds_to_take], 
                                                     list(drop = TRUE)))]]
        } else {
          input[[i]] <- data_indexed[[i]][[1]]
        }
        ##
        common_margs_i <- which(names(dim(data[[i]])) %in% names(afml[common_margs]))
        if (length(common_margs_i) > 0) {
          margin_length <- lapply(dim(data[[i]]), function(x) 1 : x)
          margin_length[- common_margs_i] <- ""
        } else {
          margin_length <- as.list(rep("", length(dim(data[[i]]))))
        }
        margin_length <- expand.grid(margin_length, KEEP.OUT.ATTRS = FALSE,
                                     stringsAsFactors = FALSE)
        input_indexed[[i]] <- .isolate(input[[i]], margin_length)
        ##
        if (length(common_margs_i) > 0) {
          input_indexed_indices[[i]] <- array(1:prod(dim(data[[i]])[common_margs_i]),
                                              dim = dim(data[[i]])[common_margs_i])
        } else {
          input_indexed_indices[[i]] <- array(1, dim = 1)
        }
      }
      dims <- unlist(afml[common_margs])
Nicolau Manubens's avatar
Nicolau Manubens committed
      selected_dim <- which(dims != 1)
      if (length(selected_dim) > 0) {
        selected_dim <- selected_dim[1]
      } else {
        selected_dim <- 1
      }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
      max_size <- prod(dims)
Nicolau Manubens's avatar
Nicolau Manubens committed
      i_max <- max_size / dims[selected_dim]
      k <- max_size / i_max
      if (parallel == TRUE) {
Nicolau Manubens's avatar
Nicolau Manubens committed
        registerDoParallel(ncores)
Nicolau Manubens's avatar
Nicolau Manubens committed
      result <- llply(1 : i_max, 
        function(i) {
          sapply((k * i - (k - 1)) : (k * i), 
            function(x) {
              splatted_f(.consolidate(lapply(input_indexed, `[[`, x), 
                                      lapply(lapply(data, dim), names),
                                      target_dims_names), 
                         ...)
            }, simplify = FALSE)
        }, .parallel = parallel)
      if (parallel == TRUE) {
        registerDoSEQ()
      }
Nicolau Manubens's avatar
Nicolau Manubens committed
      result <- list(array(unlist(result), 
                     dim = c(dim(result[[1]][[1]]), unlist(afml[common_margs]))))
Nicolau Manubens's avatar
Nicolau Manubens committed
      for (i in 1:length(data_indexed)) {
        inds_to_take <- which(names(marg_indices) %in% names(dim(data_indexed_indices[[i]])))
        if (length(inds_to_take) > 0) {
          input[[i]] <- data_indexed[[i]][[do.call('[', c(list(x = data_indexed_indices[[i]]), 
                                                     marg_indices[inds_to_take], 
                                                     list(drop = TRUE)))]]
        } else {
          input[[i]] <- data_indexed[[i]][[1]]
        }
      }
      result <- splatted_f(.consolidate(input, lapply(lapply(data, dim), names), target_dims_names), ...)
      if (!is.list(result)) {
        result <- list(result)
      }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
    }
    if (!found_first_result) {
Nicolau Manubens's avatar
Nicolau Manubens committed
      arrays_of_results <- vector('list', length(result))
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
      if (!is.null(output_dims)) {
        # Check number of outputs is correct.
        if (length(output_dims) != length(arrays_of_results)) {
          stop("The 'AtomicFun' returns ", length(arrays_of_results), " elements, but ", 
               length(output_dims), " elements were expected.")
        }
        names(arrays_of_results) <- names(output_dims)
Nicolau Manubens's avatar
Nicolau Manubens committed
      } else if (!is.null(names(result))) {
        names(arrays_of_results) <- names(result)
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
      } else {
        names(arrays_of_results) <- paste0('output', 1:length(result))
      }
    }
    for (component in 1:length(result)) {
      if (is.null(dim(result[[component]]))) {
        component_dims <- length(result[[component]])
      } else {
        component_dims <- dim(result[[component]])
        if (length(common_margs) > 0) {
          component_dims <- component_dims[1:(length(component_dims) - length(common_margs))]
        }
      }
      atomic_fun_out_dims[[component]] <- component_dims
      if (length(non_common_margs) > 0) {
        component_dims <- c(component_dims, setNames(rep(1, length(dim(ncma))), names(dim(ncma))))
      }
      component_dims <- c(component_dims, unlist(afml[common_margs]))
      dim(result[[component]]) <- component_dims
Nicolau Manubens's avatar
Nicolau Manubens committed
      if (!found_first_result) {
        component_array <- array(dim = dim(result[[component]]))
        array_of_results <- replicate(length(ncma), component_array, simplify = FALSE)
        dim(array_of_results) <- dim(ncma)
        arrays_of_results[[component]] <- array_of_results
        rm(array_of_results)
      }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
      arrays_of_results[[component]][[j]] <- result[[component]]
    }
Nicolau Manubens's avatar
Nicolau Manubens committed
    if (!found_first_result) {
      found_first_result <- TRUE
    }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
    if (!is.null(output_dims)) {
      # Check number of output dimensions is correct.
      for (component in 1:length(atomic_fun_out_dims)) {
        if (length(atomic_fun_out_dims[[component]]) != output_dims[[component]]) {
          stop("Expected ", component, "st returned element by 'AtomicFun'",
               "to have ", length(output_dims[[component]]), " dimensions, ", 
               "but ", length(atomic_fun_out_dims[[component]]), " found.")
        }
        if (!is.null(names(atomic_fun_out_dims[[component]]))) {
          # check component_dims match names of output_dims[[component]], and reorder if needed
        }
      }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  for (component in 1:length(arrays_of_results)) {
    if (length(arrays_of_results[[component]]) > 1) {
      arrays_of_results[[component]] <- .MergeArrayOfArrays(arrays_of_results[[component]])
    } else {
      arrays_of_results[[component]] <- arrays_of_results[[component]][[1]]
    }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  }
Nicolau Manubens Gil's avatar
Nicolau Manubens Gil committed
  arrays_of_results
Alasdair Hunter's avatar
Alasdair Hunter committed
}