zzz.R 3.11 KB
Newer Older
nperez's avatar
nperez committed
.position <- function(dates, ini_day, ini_month, end_day, end_month) {
  days <- as.numeric(format(dates, "%d"))
  months <- as.numeric(format(dates, "%m"))
  pos <- 1:length(dates)
  position <- logical(length(dates))
  if (ini_month != end_month) {
    pos <- sort(unique(c(pos[months == ini_month & days >= ini_day],
                         pos[months < end_month & months > ini_month],
                         pos[months == end_month & days <= end_day])))
nperez's avatar
nperez committed
    position[pos] <- TRUE
    position[-pos] <- FALSE
  } else {
    pos <- sort(unique(c(pos[months == ini_month &
                         days >= ini_day & days <= end_day])))
nperez's avatar
nperez committed
    position[pos] <- TRUE
    position[-pos] <- FALSE
  }
  if (!is.null(dim(dates))) {
    dim(position) <- length(position)
    if(!is.null(names(dim(dates)))) {
      names(dim(position)) <- names(dim(dates))
    }
  }
  return(position)
}

#=======================
# Read a powercurve file
# Create the approximation function
#=======================
read_pc <- function(file) {
	pc <- list()

	# Read pc points
	pc$points <- rbind(c(0, 0), read.delim(file, comment.char = "#"))
	pc$fun <- approxfun(pc$points$WindSpeed, pc$points$Power, method = "linear", 
                      yleft = NA, yright = 0)
	# Get the rated power from the power values
	pc$attr$RatedPower <- max(pc$points$Power)
 
	return(pc)
}

#=======================
# Evaluate the linear piecewise approximation function with the wind speed inputs to get wind power
#=======================
wind2power <- function(wind, pc) {
  power <- pc$fun(wind)
	return(power)
}

#=======================
# Convert wind to power, and divide by rated power to obtain Capacity Factor values
#=======================
wind2CF <- function(wind, pc) {
  power <- wind2power(wind, pc)
}

.KnownLonNames <- function() {
  known_lon_names <- c('lon', 'lons', 'longitude', 'x', 'i', 'nav_lon')
}

.KnownLatNames <- function() {
  known_lat_names <- c('lat', 'lats', 'latitude', 'y', 'j', 'nav_lat')
}

.return2list <- function(data1, data2 = NULL) {
  if (is.null(data1) & is.null(data2)) {
    return(NULL)
  } else if (is.null(data2)) {
    return(list(data1))
  } else {
    return(list(data1, data2))
  }
}

# Function that creates a mask array from dates for the whole year
Eva Rifà's avatar
Eva Rifà committed
.datesmask <- function(dates, frequency = 'monthly') {
  years <- format(dates, "%Y")
  ini <- as.Date(paste(min(years), 01, 01, sep = '-'))
  end <- as.Date(paste(max(years), 12, 31, sep = '-'))
  daily <- as.Date(seq(ini, end, by = "day"))
    days <- as.numeric(format(daily, "%d"))
    monthly <- daily[which(days == 1)]
    dates_mask <- array(0, dim = length(monthly))
    for (dd in 1:length(dates)) {
      year <- format(dates[dd], "%Y")
      month <- format(dates[dd], "%m")
      ii <- which(monthly == as.Date(paste(year, month, 01, sep = '-')))
      dates_mask[ii] <- 1
    }
  } else {
    # daily
    dates_mask <- array(0, dim = length(daily))
    for (dd in 1:length(dates)) {
      ii <- which(daily == dates[dd])
      dates_mask[ii] <- 1
    }
  }
  
  return(dates_mask)