Newer
Older
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
## Function to tell if a regexpr() match is a complete match to a specified name
.IsFullMatch <- function(x, name) {
ifelse(x > 0 && attributes(x)$match.length == nchar(name), TRUE, FALSE)
}
.ConfigReplaceVariablesInString <- function(string, replace_values, allow_undefined_key_vars = FALSE) {
# This function replaces all the occurrences of a variable in a string by
# their corresponding string stored in the replace_values.
if (length(strsplit(string, "\\$")[[1]]) > 1) {
parts <- strsplit(string, "\\$")[[1]]
output <- ""
i <- 0
for (part in parts) {
if (i %% 2 == 0) {
output <- paste(output, part, sep = "")
} else {
if (part %in% names(replace_values)) {
output <- paste(output, .ConfigReplaceVariablesInString(replace_values[[part]], replace_values, allow_undefined_key_vars), sep = "")
} else if (allow_undefined_key_vars) {
output <- paste0(output, "$", part, "$")
} else {
stop(paste('Error: The variable $', part, '$ was not defined in the configuration file.', sep = ''))
}
}
i <- i + 1
}
output
} else {
string
}
}
.KnownLonNames <- function() {
known_lon_names <- c('lon', 'longitude', 'x', 'i', 'nav_lon')
}
.KnownLatNames <- function() {
known_lat_names <- c('lat', 'latitude', 'y', 'j', 'nav_lat')
}
.t2nlatlon <- function(t) {
## As seen in cdo's griddes.c: ntr2nlat()
nlats <- (t * 3 + 1) / 2
if ((nlats > 0) && (nlats - trunc(nlats) >= 0.5)) {
nlats <- ceiling(nlats)
} else {
nlats <- round(nlats)
}
if (nlats %% 2 > 0) {
nlats <- nlats + 1
}
## As seen in cdo's griddes.c: compNlon(), and as specified in ECMWF
nlons <- 2 * nlats
keep_going <- TRUE
while (keep_going) {
n <- nlons
if (n %% 8 == 0) n <- trunc(n / 8)
while (n %% 6 == 0) n <- trunc(n / 6)
while (n %% 5 == 0) n <- trunc(n / 5)
while (n %% 4 == 0) n <- trunc(n / 4)
while (n %% 3 == 0) n <- trunc(n / 3)
if (n %% 2 == 0) n <- trunc(n / 2)
if (n <= 8) {
keep_going <- FALSE
} else {
nlons <- nlons + 2
if (nlons > 9999) {
stop("Error: pick another gaussian grid truncation. It doesn't fulfill the standards to apply FFT.")
}
}
}
c(nlats, nlons)
}
.nlat2t <- function(nlats) {
trunc((nlats * 2 - 1) / 3)
}
.LoadDataFile <- function(work_piece, explore_dims = FALSE, silent = FALSE) {
# The purpose, working modes, inputs and outputs of this function are
# explained in ?LoadDataFile
#suppressPackageStartupMessages({library(ncdf4)})
#suppressPackageStartupMessages({library(bigmemory)})
#suppressPackageStartupMessages({library(plyr)})
# Auxiliar function to convert array indices to lineal indices
arrayIndex2VectorIndex <- function(indices, dims) {
if (length(indices) > length(dims)) {
stop("Error: indices do not match dimensions in arrayIndex2VectorIndex.")
}
position <- 1
dims <- rev(dims)
indices <- rev(indices)
for (i in 1:length(indices)) {
position <- position + (indices[i] - 1) * prod(dims[-c(1:i)])
}
position
}
.t2nlatlon <- function(t) {
## As seen in cdo's griddes.c: ntr2nlat()
nlats <- (t * 3 + 1) / 2
if ((nlats > 0) && (nlats - trunc(nlats) >= 0.5)) {
nlats <- ceiling(nlats)
} else {
nlats <- round(nlats)
}
if (nlats %% 2 > 0) {
nlats <- nlats + 1
}
## As seen in cdo's griddes.c: compNlon(), and as specified in ECMWF
nlons <- 2 * nlats
keep_going <- TRUE
while (keep_going) {
n <- nlons
if (n %% 8 == 0) n <- trunc(n / 8)
while (n %% 6 == 0) n <- trunc(n / 6)
while (n %% 5 == 0) n <- trunc(n / 5)
while (n %% 4 == 0) n <- trunc(n / 4)
while (n %% 3 == 0) n <- trunc(n / 3)
if (n %% 2 == 0) n <- trunc(n / 2)
if (n <= 8) {
keep_going <- FALSE
} else {
nlons <- nlons + 2
if (nlons > 9999) {
stop("Error: pick another gaussian grid truncation. It doesn't fulfill the standards to apply FFT.")
}
}
}
c(nlats, nlons)
}
.nlat2t <- function(nlats) {
trunc((nlats * 2 - 1) / 3)
}
found_file <- NULL
dims <- NULL
grid_name <- units <- var_long_name <- NULL
is_2d_var <- array_across_gw <- NULL
data_across_gw <- NULL
filename <- work_piece[['filename']]
namevar <- work_piece[['namevar']]
output <- work_piece[['output']]
# The names of all data files in the directory of the repository that match
# the pattern are obtained.
if (length(grep("^http", filename)) > 0) {
is_url <- TRUE
files <- filename
## TODO: Check that the user is not using shell globbing exps.
} else {
is_url <- FALSE
files <- Sys.glob(filename)
}
# If we don't find any, we leave the flag 'found_file' with a NULL value.
if (length(files) > 0) {
# The first file that matches the pattern is chosen and read.
filename <- head(files, 1)
filein <- filename
found_file <- filename
mask <- work_piece[['mask']]
if (!silent) {
if (explore_dims) {
.message(paste("Exploring dimensions...", filename))
}
##} else {
## cat(paste("* Reading & processing data...", filename, '\n'))
##}
}
# We will fill in 'expected_dims' with the names of the expected dimensions of
# the data array we'll retrieve from the file.
expected_dims <- NULL
remap_needed <- FALSE
# But first we open the file and work out whether the requested variable is 2d
fnc <- nc_open(filein)
if (!(namevar %in% names(fnc$var))) {
stop(paste("Error: The variable", namevar, "is not defined in the file", filename))
}
var_long_name <- fnc$var[[namevar]]$longname
units <- fnc$var[[namevar]]$units
file_dimnames <- unlist(lapply(fnc$var[[namevar]][['dim']], '[[', 'name'))
# The following two 'ifs' are to allow for 'lon'/'lat' by default, instead of
# 'longitude'/'latitude'.
if (!(work_piece[['dimnames']][['lon']] %in% file_dimnames) &&
(work_piece[['dimnames']][['lon']] == 'longitude') &&
('lon' %in% file_dimnames)) {
work_piece[['dimnames']][['lon']] <- 'lon'
}
if (!(work_piece[['dimnames']][['lat']] %in% file_dimnames) &&
(work_piece[['dimnames']][['lat']] == 'latitude') &&
('lat' %in% file_dimnames)) {
work_piece[['dimnames']][['lat']] <- 'lat'
}
if (is.null(work_piece[['is_2d_var']])) {
is_2d_var <- all(c(work_piece[['dimnames']][['lon']],
work_piece[['dimnames']][['lat']]) %in%
unlist(lapply(fnc$var[[namevar]][['dim']],
'[[', 'name')))
} else {
is_2d_var <- work_piece[['is_2d_var']]
}
if ((is_2d_var || work_piece[['is_file_per_dataset']])) {
if (Sys.which("cdo")[[1]] == "") {
stop("Error: CDO libraries not available")
}
cdo_version <- strsplit(suppressWarnings(system2("cdo", args = '-V', stderr = TRUE))[[1]], ' ')[[1]][5]
cdo_version <- as.numeric_version(unlist(strsplit(cdo_version, "[A-Za-z]", fixed = FALSE))[[1]])
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
}
# If the variable to load is 2-d, we need to determine whether:
# - interpolation is needed
# - subsetting is requested
if (is_2d_var) {
## We read the longitudes and latitudes from the file.
lon <- ncvar_get(fnc, work_piece[['dimnames']][['lon']])
lat <- ncvar_get(fnc, work_piece[['dimnames']][['lat']])
first_lon_in_original_file <- lon[1]
# If a common grid is requested or we are exploring the file dimensions
# we need to read the grid type and size of the file to finally work out the
# CDO grid name.
if (!is.null(work_piece[['grid']]) || explore_dims) {
# Here we read the grid type and its number of longitudes and latitudes
file_info <- system(paste('cdo -s griddes', filein, '2> /dev/null'), intern = TRUE)
grids_positions <- grep('# gridID', file_info)
if (length(grids_positions) < 1) {
stop("The grid should be defined in the files.")
}
grids_first_lines <- grids_positions + 2
grids_last_lines <- c((grids_positions - 2)[-1], length(file_info))
grids_info <- as.list(1:length(grids_positions))
grids_info <- lapply(grids_info, function (x) file_info[grids_first_lines[x]:grids_last_lines[x]])
grids_info <- lapply(grids_info, function (x) gsub(" *", " ", x))
grids_info <- lapply(grids_info, function (x) gsub("^ | $", "", x))
grids_info <- lapply(grids_info, function (x) unlist(strsplit(x, " | = ")))
grids_types <- unlist(lapply(grids_info, function (x) x[grep('gridtype', x) + 1]))
grids_matches <- unlist(lapply(grids_info, function (x) {
nlons <- if (length(grep('xsize', x)) > 0) {
as.numeric(x[grep('xsize', x) + 1])
} else {
NA
}
nlats <- if (length(grep('ysize', x)) > 0) {
as.numeric(x[grep('ysize', x) + 1])
} else {
NA
}
result <- FALSE
if (!any(is.na(c(nlons, nlats)))) {
if ((nlons == length(lon)) &&
(nlats == length(lat))) {
result <- TRUE
}
}
result
}))
grids_matches <- grids_matches[which(grids_types %in% c('gaussian', 'lonlat'))]
grids_info <- grids_info[which(grids_types %in% c('gaussian', 'lonlat'))]
grids_types <- grids_types[which(grids_types %in% c('gaussian', 'lonlat'))]
if (length(grids_matches) == 0) {
stop("Error: Only 'gaussian' and 'lonlat' grids supported. See e.g: cdo sinfo ", filename)
}
if (sum(grids_matches) > 1) {
if ((all(grids_types[which(grids_matches)] == 'gaussian') ||
all(grids_types[which(grids_matches)] == 'lonlat')) &&
all(unlist(lapply(grids_info[which(grids_matches)], identical,
grids_info[which(grids_matches)][[1]])))) {
grid_type <- grids_types[which(grids_matches)][1]
} else {
stop("Error: Load() can't disambiguate: More than one lonlat/gaussian grids with the same size as the requested variable defined in ", filename)
}
} else if (sum(grids_matches) == 1) {
grid_type <- grids_types[which(grids_matches)]
} else {
stop("Unexpected error.")
}
grid_lons <- length(lon)
grid_lats <- length(lat)
# Convert to CDO grid name as seen in cdo's griddes.c: nlat2ntr()
if (grid_type == 'lonlat') {
grid_name <- paste0('r', grid_lons, 'x', grid_lats)
} else {
grid_name <- paste0('t', .nlat2t(grid_lats), 'grid')
}
}
# If a common grid is requested, we will also calculate its size which we will use
# later on.
if (!is.null(work_piece[['grid']])) {
# Now we calculate the common grid type and its lons and lats
if (length(grep('^t\\d{1,+}grid$', work_piece[['grid']])) > 0) {
common_grid_type <- 'gaussian'
common_grid_res <- as.numeric(strsplit(work_piece[['grid']], '[^0-9]{1,+}')[[1]][2])
nlonlat <- .t2nlatlon(common_grid_res)
common_grid_lats <- nlonlat[1]
common_grid_lons <- nlonlat[2]
} else if (length(grep('^r\\d{1,+}x\\d{1,+}$', work_piece[['grid']])) > 0) {
common_grid_type <- 'lonlat'
common_grid_lons <- as.numeric(strsplit(work_piece[['grid']], '[^0-9]{1,+}')[[1]][2])
common_grid_lats <- as.numeric(strsplit(work_piece[['grid']], '[^0-9]{1,+}')[[1]][3])
} else {
stop("Error: Only supported grid types in parameter 'grid' are t<RES>grid and r<NX>x<NY>")
}
} else {
## If no 'grid' is specified, there is no common grid.
## But these variables are filled in for consistency in the code.
common_grid_lons <- length(lon)
common_grid_lats <- length(lat)
}
first_common_grid_lon <- 0
last_common_grid_lon <- 360 - 360/common_grid_lons
## This is not true for gaussian grids or for some regular grids, but
## is a safe estimation
first_common_grid_lat <- -90
last_common_grid_lat <- 90
# And finally determine whether interpolation is needed or not
remove_shift <- FALSE
if (!is.null(work_piece[['grid']])) {
if ((grid_lons != common_grid_lons) ||
(grid_lats != common_grid_lats) ||
(grid_type != common_grid_type) ||
((lon[1] != first_common_grid_lon)
&& !work_piece[['single_dataset']])) {
if (grid_lons == common_grid_lons && grid_lats == common_grid_lats &&
grid_type == common_grid_type && lon[1] != first_common_grid_lon &&
!work_piece[['single_dataset']]) {
remove_shift <- TRUE
}
remap_needed <- TRUE
common_grid_name <- work_piece[['grid']]
}
} else if ((lon[1] != first_common_grid_lon) && explore_dims &&
!work_piece[['single_dataset']]) {
remap_needed <- TRUE
common_grid_name <- grid_name
remove_shift <- TRUE
}
if (remap_needed && (work_piece[['remap']] == 'con') &&
(cdo_version >= as.numeric_version('1.7.0'))) {
work_piece[['remap']] <- 'ycon'
}
if (remove_shift && !explore_dims) {
if (!is.null(work_piece[['progress_amount']])) {
cat("\n")
}
cat(paste0("! Warning: the dataset with index ",
tail(work_piece[['indices']], 1), " in '",
work_piece[['dataset_type']], "' doesn't start at longitude 0 and will be re-interpolated in order to align its longitudes with the standard CDO grids definable with the names 't<RES>grid' or 'r<NX>x<NY>', which are by definition starting at the longitude 0.\n"))
if (!is.null(mask)) {
cat(paste0("! Warning: a mask was provided for the dataset with index ",
tail(work_piece[['indices']], 1), " in '",
work_piece[['dataset_type']], "'. This dataset has been re-interpolated to align its longitudes to start at 0. You must re-interpolate the corresponding mask to align its longitudes to start at 0 as well, if you haven't done so yet. Running cdo remapcon,", common_grid_name, " original_mask_file.nc new_mask_file.nc will fix it.\n"))
}
}
if (remap_needed && (grid_lons < common_grid_lons || grid_lats < common_grid_lats)) {
if (!is.null(work_piece[['progress_amount']])) {
cat("\n")
}
if (!explore_dims) {
cat(paste0("! Warning: the dataset with index ", tail(work_piece[['indices']], 1),
" in '", work_piece[['dataset_type']], "' is originally on ",
"a grid coarser than the common grid and it has been ",
"extrapolated. Check the results carefully. It is ",
"recommended to specify as common grid the coarsest grid ",
"among all requested datasets via the parameter 'grid'.\n"))
}
}
# Now calculate if the user requests for a lonlat subset or for the
# entire field
lonmin <- work_piece[['lon_limits']][1]
lonmax <- work_piece[['lon_limits']][2]
latmin <- work_piece[['lat_limits']][1]
latmax <- work_piece[['lat_limits']][2]
lon_subsetting_requested <- FALSE
lonlat_subsetting_requested <- FALSE
if (lonmin <= lonmax) {
if ((lonmin > first_common_grid_lon) || (lonmax < last_common_grid_lon)) {
lon_subsetting_requested <- TRUE
}
} else {
if ((lonmin - lonmax) > 360/common_grid_lons) {
lon_subsetting_requested <- TRUE
} else {
gap_width <- floor(lonmin / (360/common_grid_lons)) -
floor(lonmax / (360/common_grid_lons))
if (gap_width > 0) {
if (!(gap_width == 1 && (lonmin %% (360/common_grid_lons) == 0) &&
(lonmax %% (360/common_grid_lons) == 0))) {
lon_subsetting_requested <- TRUE
}
}
}
}
if ((latmin > first_common_grid_lat) || (latmax < last_common_grid_lat)
|| (lon_subsetting_requested)) {
lonlat_subsetting_requested <- TRUE
}
# Now that we know if subsetting was requested, we can say if final data
# will go across greenwich
if (lonmax < lonmin) {
data_across_gw <- TRUE
} else {
data_across_gw <- !lon_subsetting_requested
}
# When remap is needed but no subsetting, the file is copied locally
# so that cdo works faster, and then interpolated.
# Otherwise the file is kept as is and the subset will have to be
# interpolated still.
if (!lonlat_subsetting_requested && remap_needed) {
nc_close(fnc)
filecopy <- tempfile(pattern = "load", fileext = ".nc")
file.copy(filein, filecopy)
filein <- tempfile(pattern = "loadRegridded", fileext = ".nc")
system(paste0("cdo -s remap", work_piece[['remap']], ",",
common_grid_name,
" -selname,", namevar, " ", filecopy, " ", filein,
" 2>/dev/null", sep = ""))
file.remove(filecopy)
work_piece[['dimnames']][['lon']] <- 'lon'
work_piece[['dimnames']][['lat']] <- 'lat'
fnc <- nc_open(filein)
lon <- ncvar_get(fnc, work_piece[['dimnames']][['lon']])
lat <- ncvar_get(fnc, work_piece[['dimnames']][['lat']])
}
# Read and check also the mask
if (!is.null(mask)) {
###mask_file <- tempfile(pattern = 'loadMask', fileext = '.nc')
if (is.list(mask)) {
if (!file.exists(mask[['path']])) {
stop(paste("Error: Couldn't find the mask file", mask[['path']]))
}
mask_file <- mask[['path']]
###file.copy(work_piece[['mask']][['path']], mask_file)
fnc_mask <- nc_open(mask_file)
vars_in_mask <- sapply(fnc_mask$var, '[[', 'name')
if ('nc_var_name' %in% names(mask)) {
if (!(mask[['nc_var_name']] %in%
vars_in_mask)) {
stop(paste("Error: couldn't find variable", mask[['nc_var_name']],
"in the mask file", mask[['path']]))
}
} else {
if (length(vars_in_mask) != 1) {
stop(paste("Error: one and only one non-coordinate variable should be defined in the mask file",
mask[['path']], "if the component 'nc_var_name' is not specified. Currently found: ",
paste(vars_in_mask, collapse = ', '), "."))
} else {
mask[['nc_var_name']] <- vars_in_mask
}
}
if (sum(fnc_mask$var[[mask[['nc_var_name']]]]$size > 1) != 2) {
stop(paste0("Error: the variable '",
mask[['nc_var_name']],
"' must be defined only over the dimensions '",
work_piece[['dimnames']][['lon']], "' and '",
work_piece[['dimnames']][['lat']],
"' in the mask file ",
mask[['path']]))
}
mask <- ncvar_get(fnc_mask, mask[['nc_var_name']], collapse_degen = TRUE)
nc_close(fnc_mask)
### mask_lon <- ncvar_get(fnc_mask, work_piece[['dimnames']][['lon']])
### mask_lat <- ncvar_get(fnc_mask, work_piece[['dimnames']][['lat']])
###} else {
### dim_longitudes <- ncdim_def(work_piece[['dimnames']][['lon']], "degrees_east", lon)
### dim_latitudes <- ncdim_def(work_piece[['dimnames']][['lat']], "degrees_north", lat)
### ncdf_var <- ncvar_def('LSM', "", list(dim_longitudes, dim_latitudes), NA, 'double')
### fnc_mask <- nc_create(mask_file, list(ncdf_var))
### ncvar_put(fnc_mask, ncdf_var, work_piece[['mask']])
### nc_close(fnc_mask)
### fnc_mask <- nc_open(mask_file)
### work_piece[['mask']] <- list(path = mask_file, nc_var_name = 'LSM')
### mask_lon <- lon
### mask_lat <- lat
###}
###}
### Now ready to check that the mask is right
##if (!(lonlat_subsetting_requested && remap_needed)) {
### if ((dim(mask)[2] != length(lon)) || (dim(mask)[1] != length(lat))) {
### stop(paste("Error: the mask of the dataset with index ", tail(work_piece[['indices']], 1), " in '", work_piece[['dataset_type']], "' is wrong. It must be on the common grid if the selected output type is 'lonlat', 'lon' or 'lat', or 'areave' and 'grid' has been specified. It must be on the grid of the corresponding dataset if the selected output type is 'areave' and no 'grid' has been specified. For more information check ?Load and see help on parameters 'grid', 'maskmod' and 'maskobs'.", sep = ""))
### }
###if (!(identical(mask_lon, lon) && identical(mask_lat, lat))) {
### stop(paste0("Error: the longitudes and latitudes in the masks must be identical to the ones in the corresponding data files if output = 'areave' or, if the selected output is 'lon', 'lat' or 'lonlat', the longitudes in the mask file must start by 0 and the latitudes must be ordered from highest to lowest. See\n ",
### work_piece[['mask']][['path']], " and ", filein))
###}
}
}
lon_indices <- 1:length(lon)
if (!(lonlat_subsetting_requested && remap_needed)) {
lon[which(lon < 0)] <- lon[which(lon < 0)] + 360
}
if (lonmax >= lonmin) {
lon_indices <- lon_indices[which(((lon %% 360) >= lonmin) & ((lon %% 360) <= lonmax))]
} else if (!remap_needed) {
lon_indices <- lon_indices[which(((lon %% 360) <= lonmax) | ((lon %% 360) >= lonmin))]
}
lat_indices <- which(lat >= latmin & lat <= latmax)
## In most of the cases the latitudes are ordered from -90 to 90.
## We will reorder them to be in the order from 90 to -90, so mostly
## always the latitudes are reordered.
## TODO: This could be avoided in future.
if (lat[1] < lat[length(lat)]) {
lat_indices <- lat_indices[length(lat_indices):1]
}
if (!is.null(mask) && !(lonlat_subsetting_requested && remap_needed)) {
if ((dim(mask)[1] != length(lon)) || (dim(mask)[2] != length(lat))) {
stop(paste("Error: the mask of the dataset with index ", tail(work_piece[['indices']], 1), " in '", work_piece[['dataset_type']], "' is wrong. It must be on the common grid if the selected output type is 'lonlat', 'lon' or 'lat', or 'areave' and 'grid' has been specified. It must be on the grid of the corresponding dataset if the selected output type is 'areave' and no 'grid' has been specified. For more information check ?Load and see help on parameters 'grid', 'maskmod' and 'maskobs'.", sep = ""))
}
mask <- mask[lon_indices, lat_indices]
}
## If the user requests subsetting, we must extend the lon and lat limits if possible
## so that the interpolation after is done properly
maximum_extra_points <- work_piece[['remapcells']]
if (lonlat_subsetting_requested && remap_needed) {
if ((maximum_extra_points > (head(lon_indices, 1) - 1)) ||
(maximum_extra_points > (length(lon) - tail(lon_indices, 1)))) {
## if the requested number of points goes beyond the left or right
## sides of the map, we need to take the entire map so that the
## interpolation works properly
lon_indices <- 1:length(lon)
} else {
extra_points <- min(maximum_extra_points, head(lon_indices, 1) - 1)
if (extra_points > 0) {
lon_indices <- c((head(lon_indices, 1) - extra_points):(head(lon_indices, 1) - 1), lon_indices)
}
extra_points <- min(maximum_extra_points, length(lon) - tail(lon_indices, 1))
if (extra_points > 0) {
lon_indices <- c(lon_indices, (tail(lon_indices, 1) + 1):(tail(lon_indices, 1) + extra_points))
}
}
min_lat_ind <- min(lat_indices)
max_lat_ind <- max(lat_indices)
extra_points <- min(maximum_extra_points, min_lat_ind - 1)
if (extra_points > 0) {
if (lat[1] < tail(lat, 1)) {
lat_indices <- c(lat_indices, (min_lat_ind - 1):(min_lat_ind - extra_points))
} else {
lat_indices <- c((min_lat_ind - extra_points):(min_lat_ind - 1), lat_indices)
}
}
extra_points <- min(maximum_extra_points, length(lat) - max_lat_ind)
if (extra_points > 0) {
if (lat[1] < tail(lat, 1)) {
lat_indices <- c((max_lat_ind + extra_points):(max_lat_ind + 1), lat_indices)
} else {
lat_indices <- c(lat_indices, (max_lat_ind + 1):(max_lat_ind + extra_points))
}
}
}
lon <- lon[lon_indices]
lat <- lat[lat_indices]
expected_dims <- c(work_piece[['dimnames']][['lon']],
work_piece[['dimnames']][['lat']])
} else {
lon <- 0
lat <- 0
}
# We keep on filling the expected dimensions
var_dimnames <- unlist(lapply(fnc$var[[namevar]][['dim']], '[[', 'name'))
nmemb <- nltime <- NULL
## Sometimes CDO renames 'members' dimension to 'lev'
old_members_dimname <- NULL
if (('lev' %in% var_dimnames) && !(work_piece[['dimnames']][['member']] %in% var_dimnames)) {
old_members_dimname <- work_piece[['dimnames']][['member']]
work_piece[['dimnames']][['member']] <- 'lev'
}
if (work_piece[['dimnames']][['member']] %in% var_dimnames) {
nmemb <- fnc$var[[namevar]][['dim']][[match(work_piece[['dimnames']][['member']], var_dimnames)]]$len
expected_dims <- c(expected_dims, work_piece[['dimnames']][['member']])
} else {
nmemb <- 1
}
if (length(expected_dims) > 0) {
dim_matches <- match(expected_dims, var_dimnames)
if (any(is.na(dim_matches))) {
if (!is.null(old_members_dimname)) {
expected_dims[which(expected_dims == 'lev')] <- old_members_dimname
}
stop(paste("Error: the expected dimension(s)",
paste(expected_dims[which(is.na(dim_matches))], collapse = ', '),
"were not found in", filename))
}
time_dimname <- var_dimnames[-dim_matches]
} else {
time_dimname <- var_dimnames
}
if (length(time_dimname) > 0) {
if (length(time_dimname) == 1) {
nltime <- fnc$var[[namevar]][['dim']][[match(time_dimname, var_dimnames)]]$len
expected_dims <- c(expected_dims, time_dimname)
dim_matches <- match(expected_dims, var_dimnames)
first_time_step_in_file <- fnc$var[[namevar]][['dim']][[match(time_dimname,
var_dimnames)]]$vals[1]
time_units <- fnc$var[[namevar]][['dim']][[match(time_dimname, var_dimnames)]]$units
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
} else {
if (!is.null(old_members_dimname)) {
expected_dims[which(expected_dims == 'lev')] <- old_members_dimname
}
stop(paste("Error: the variable", namevar,
"is defined over more dimensions than the expected (",
paste(c(expected_dims, 'time'), collapse = ', '),
"). It could also be that the members, longitude or latitude dimensions are named incorrectly. In that case, either rename the dimensions in the file or adjust Load() to recognize the actual name with the parameter 'dimnames'. See file", filename))
}
} else {
nltime <- 1
}
# Now we must retrieve the data from the file, but only the asked indices.
# So we build up the indices to retrieve.
# Longitudes or latitudes have been retrieved already.
if (explore_dims) {
# If we're exploring the file we only want one time step from one member,
# to regrid it and work out the number of longitudes and latitudes.
# We don't need more.
members <- 1
ltimes_list <- list(c(1))
} else {
# The data is arranged in the array 'tmp' with the dimensions in a
# common order:
# 1) Longitudes
# 2) Latitudes
# 3) Members (even if is not a file per member experiment)
# 4) Lead-times
if (work_piece[['is_file_per_dataset']]) {
time_indices <- 1:nltime
mons <- strsplit(system(paste('cdo showmon ', filein,
' 2>/dev/null'), intern = TRUE), split = ' ')
years <- strsplit(system(paste('cdo showyear ', filein,
' 2>/dev/null'), intern = TRUE), split = ' ')
mons <- as.numeric(mons[[1]][which(mons[[1]] != "")])
years <- as.numeric(years[[1]][which(years[[1]] != "")])
time_indices <- ts(time_indices, start = c(years[1], mons[1]),
end = c(years[length(years)], mons[length(mons)]),
frequency = 12)
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
for (sdate in work_piece[['startdates']]) {
selected_time_indices <- window(time_indices, start = c(as.numeric(
substr(sdate, 1, 4)), as.numeric(substr(sdate, 5, 6))),
end = c(3000, 12), frequency = 12, extend = TRUE)
selected_time_indices <- selected_time_indices[work_piece[['leadtimes']]]
ltimes_list <- c(ltimes_list, list(selected_time_indices))
}
} else {
ltimes <- work_piece[['leadtimes']]
#if (work_piece[['dataset_type']] == 'exp') {
ltimes_list <- list(ltimes[which(ltimes <= nltime)])
#}
}
## TODO: Put, when reading matrices, this kind of warnings
# if (nmember < nmemb) {
# cat("Warning:
members <- 1:work_piece[['nmember']]
members <- members[which(members <= nmemb)]
}
# Now, for each list of leadtimes to load (usually only one list with all leadtimes),
# we'll join the indices and retrieve data
found_disordered_dims <- FALSE
for (ltimes in ltimes_list) {
if (is_2d_var) {
start <- c(min(lon_indices), min(lat_indices))
end <- c(max(lon_indices), max(lat_indices))
if (lonlat_subsetting_requested && remap_needed) {
subset_indices <- list(min(lon_indices):max(lon_indices) - min(lon_indices) + 1,
lat_indices - min(lat_indices) + 1)
dim_longitudes <- ncdim_def(work_piece[['dimnames']][['lon']], "degrees_east", lon)
dim_latitudes <- ncdim_def(work_piece[['dimnames']][['lat']], "degrees_north", lat)
ncdf_dims <- list(dim_longitudes, dim_latitudes)
} else {
subset_indices <- list(lon_indices - min(lon_indices) + 1,
lat_indices - min(lat_indices) + 1)
ncdf_dims <- list()
}
final_dims <- c(length(subset_indices[[1]]), length(subset_indices[[2]]), 1, 1)
} else {
start <- end <- c()
subset_indices <- list()
ncdf_dims <- list()
final_dims <- c(1, 1, 1, 1)
}
if (work_piece[['dimnames']][['member']] %in% expected_dims) {
start <- c(start, head(members, 1))
end <- c(end, tail(members, 1))
subset_indices <- c(subset_indices, list(members - head(members, 1) + 1))
dim_members <- ncdim_def(work_piece[['dimnames']][['member']], "", members)
ncdf_dims <- c(ncdf_dims, list(dim_members))
final_dims[3] <- length(members)
}
if (time_dimname %in% expected_dims) {
if (any(!is.na(ltimes))) {
start <- c(start, head(ltimes[which(!is.na(ltimes))], 1))
end <- c(end, tail(ltimes[which(!is.na(ltimes))], 1))
subset_indices <- c(subset_indices, list(ltimes - head(ltimes[which(!is.na(ltimes))], 1) + 1))
} else {
start <- c(start, NA)
end <- c(end, NA)
subset_indices <- c(subset_indices, list(ltimes))
}
dim_time <- ncdim_def(time_dimname, "", 1:length(ltimes), unlim = TRUE)
ncdf_dims <- c(ncdf_dims, list(dim_time))
final_dims[4] <- length(ltimes)
}
count <- end - start + 1
start <- start[dim_matches]
count <- count[dim_matches]
subset_indices <- subset_indices[dim_matches]
# Now that we have the indices to retrieve, we retrieve the data
if (prod(final_dims) > 0) {
tmp <- take(ncvar_get(fnc, namevar, start, count,
collapse_degen = FALSE),
1:length(subset_indices), subset_indices)
# The data is regridded if it corresponds to an atmospheric variable. When
# the chosen output type is 'areave' the data is not regridded to not
# waste computing time unless the user specified a common grid.
if (is_2d_var) {
###if (!is.null(work_piece[['mask']]) && !(lonlat_subsetting_requested && remap_needed)) {
### mask <- take(ncvar_get(fnc_mask, work_piece[['mask']][['nc_var_name']],
### start[dim_matches[1:2]], count[dim_matches[1:2]],
### collapse_degen = FALSE), 1:2, subset_indices[dim_matches[1:2]])
###}
if (lonlat_subsetting_requested && remap_needed) {
filein <- tempfile(pattern = "loadRegridded", fileext = ".nc")
filein2 <- tempfile(pattern = "loadRegridded2", fileext = ".nc")
ncdf_var <- ncvar_def(namevar, "", ncdf_dims[dim_matches],
fnc$var[[namevar]]$missval,
prec = if (fnc$var[[namevar]]$prec == 'int') {
'integer'
} else {
fnc$var[[namevar]]$prec
})
scale_factor <- ifelse(fnc$var[[namevar]]$hasScaleFact, fnc$var[[namevar]]$scaleFact, 1)
add_offset <- ifelse(fnc$var[[namevar]]$hasAddOffset, fnc$var[[namevar]]$addOffset, 0)
if (fnc$var[[namevar]]$hasScaleFact || fnc$var[[namevar]]$hasAddOffset) {
tmp <- (tmp - add_offset) / scale_factor
}
#nc_close(fnc)
fnc2 <- nc_create(filein2, list(ncdf_var))
ncvar_put(fnc2, ncdf_var, tmp)
if (add_offset != 0) {
ncatt_put(fnc2, ncdf_var, 'add_offset', add_offset)
}
if (scale_factor != 1) {
ncatt_put(fnc2, ncdf_var, 'scale_factor', scale_factor)
}
nc_close(fnc2)
system(paste0("cdo -s -sellonlatbox,", if (lonmin > lonmax) {
"0,360,"
} else {
paste0(lonmin, ",", lonmax, ",")
}, latmin, ",", latmax,
" -remap", work_piece[['remap']], ",", common_grid_name,
" ", filein2, " ", filein, " 2>/dev/null", sep = ""))
file.remove(filein2)
fnc2 <- nc_open(filein)
sub_lon <- ncvar_get(fnc2, 'lon')
sub_lat <- ncvar_get(fnc2, 'lat')
## We read the longitudes and latitudes from the file.
## In principle cdo should put in order the longitudes
## and slice them properly unless data is across greenwich
sub_lon[which(sub_lon < 0)] <- sub_lon[which(sub_lon < 0)] + 360
sub_lon_indices <- 1:length(sub_lon)
if (lonmax < lonmin) {
sub_lon_indices <- sub_lon_indices[which((sub_lon <= lonmax) | (sub_lon >= lonmin))]
}
sub_lat_indices <- 1:length(sub_lat)
## In principle cdo should put in order the latitudes
if (sub_lat[1] < sub_lat[length(sub_lat)]) {
sub_lat_indices <- length(sub_lat):1
}
final_dims[c(1, 2)] <- c(length(sub_lon_indices), length(sub_lat_indices))
subset_indices[[dim_matches[1]]] <- sub_lon_indices
subset_indices[[dim_matches[2]]] <- sub_lat_indices
tmp <- take(ncvar_get(fnc2, namevar, collapse_degen = FALSE),
1:length(subset_indices), subset_indices)
if (!is.null(mask)) {
## We create a very simple 2d netcdf file that is then interpolated to the common
## grid to know what are the lons and lats of our slice of data
mask_file <- tempfile(pattern = 'loadMask', fileext = '.nc')
mask_file_remap <- tempfile(pattern = 'loadMask', fileext = '.nc')
dim_longitudes <- ncdim_def(work_piece[['dimnames']][['lon']], "degrees_east", c(0, 360))
dim_latitudes <- ncdim_def(work_piece[['dimnames']][['lat']], "degrees_north", c(-90, 90))
ncdf_var <- ncvar_def('LSM', "", list(dim_longitudes, dim_latitudes), NA, 'double')
fnc_mask <- nc_create(mask_file, list(ncdf_var))
ncvar_put(fnc_mask, ncdf_var, array(rep(0, 4), dim = c(2, 2)))
nc_close(fnc_mask)
system(paste0("cdo -s remap", work_piece[['remap']], ",", common_grid_name,
" ", mask_file, " ", mask_file_remap, " 2>/dev/null", sep = ""))
fnc_mask <- nc_open(mask_file_remap)
mask_lons <- ncvar_get(fnc_mask, 'lon')
mask_lats <- ncvar_get(fnc_mask, 'lat')
nc_close(fnc_mask)
file.remove(mask_file, mask_file_remap)
if ((dim(mask)[1] != common_grid_lons) || (dim(mask)[2] != common_grid_lats)) {
stop(paste("Error: the mask of the dataset with index ", tail(work_piece[['indices']], 1), " in '", work_piece[['dataset_type']], "' is wrong. It must be on the common grid if the selected output type is 'lonlat', 'lon' or 'lat', or 'areave' and 'grid' has been specified. It must be on the grid of the corresponding dataset if the selected output type is 'areave' and no 'grid' has been specified. For more information check ?Load and see help on parameters 'grid', 'maskmod' and 'maskobs'.", sep = ""))
}
mask_lons[which(mask_lons < 0)] <- mask_lons[which(mask_lons < 0)] + 360
if (lonmax >= lonmin) {
mask_lon_indices <- which((mask_lons >= lonmin) & (mask_lons <= lonmax))
} else {
mask_lon_indices <- which((mask_lons >= lonmin) | (mask_lons <= lonmax))
}
mask_lat_indices <- which((mask_lats >= latmin) & (mask_lats <= latmax))
if (sub_lat[1] < sub_lat[length(sub_lat)]) {
mask_lat_indices <- mask_lat_indices[length(mask_lat_indices):1]
}
mask <- mask[mask_lon_indices, mask_lat_indices]
}
sub_lon <- sub_lon[sub_lon_indices]
sub_lat <- sub_lat[sub_lat_indices]
### nc_close(fnc_mask)
### system(paste0("cdo -s -sellonlatbox,", if (lonmin > lonmax) {
### "0,360,"
### } else {
### paste0(lonmin, ",", lonmax, ",")
### }, latmin, ",", latmax,
### " -remap", work_piece[['remap']], ",", common_grid_name,
###This is wrong: same files
### " ", mask_file, " ", mask_file, " 2>/dev/null", sep = ""))
### fnc_mask <- nc_open(mask_file)
### mask <- take(ncvar_get(fnc_mask, work_piece[['mask']][['nc_var_name']],
### collapse_degen = FALSE), 1:2, subset_indices[dim_matches[1:2]])
###}
}
}
if (!all(dim_matches == sort(dim_matches))) {
if (!found_disordered_dims && rev(work_piece[['indices']])[2] == 1 && rev(work_piece[['indices']])[3] == 1) {
found_disordered_dims <- TRUE
cat(paste0("! Warning: the dimensions for the variable ", namevar, " in the files of the experiment with index ", tail(work_piece[['indices']], 1), " are not in the optimal order for loading with Load(). The optimal order would be '", paste(expected_dims, collapse = ', '), "'. One of the files of the dataset is stored in ", filename))
}
tmp <- aperm(tmp, dim_matches)
}
dim(tmp) <- final_dims
# If we are exploring the file we don't need to process and arrange
# the retrieved data. We only need to keep the dimension sizes.
if (is_2d_var && lonlat_subsetting_requested && remap_needed) {
final_lons <- sub_lon
final_lats <- sub_lat
} else {
final_lons <- lon
final_lats <- lat
}
if (explore_dims) {
if (work_piece[['is_file_per_member']]) {
## TODO: When the exp_full_path contains asterisks and is file_per_member
## members from different datasets may be accounted.
## Also if one file member is missing the accounting will be wrong.
## Should parse the file name and extract number of members.
if (is_url) {
nmemb <- NULL
} else {
nmemb <- length(files)
}
}
dims <- list(member = nmemb, ftime = nltime, lon = final_lons, lat = final_lats)
} else {
# If we are not exploring, then we have to process the retrieved data
if (is_2d_var) {
tmp <- apply(tmp, c(3, 4), function(x) {
# Disable of large values.
if (!is.na(work_piece[['var_limits']][2])) {
x[which(x > work_piece[['var_limits']][2])] <- NA
}
if (!is.na(work_piece[['var_limits']][1])) {
x[which(x < work_piece[['var_limits']][1])] <- NA
}
if (!is.null(mask)) {
x[which(mask < 0.5)] <- NA
}
if (output == 'areave' || output == 'lon') {
weights <- InsertDim(cos(final_lats * pi / 180), 1, length(final_lons))
weights[which(is.na(x))] <- NA
if (output == 'areave') {
weights <- weights / mean(weights, na.rm = TRUE)
mean(x * weights, na.rm = TRUE)
} else {
weights <- weights / InsertDim(MeanDims(weights, 2, na.rm = TRUE), 2, length(final_lats))
MeanDims(x * weights, 2, na.rm = TRUE)
}
} else if (output == 'lat') {
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
} else if (output == 'lonlat') {
signif(x, 5)
}
})
if (output == 'areave') {
dim(tmp) <- c(1, 1, final_dims[3:4])
} else if (output == 'lon') {
dim(tmp) <- c(final_dims[1], 1, final_dims[3:4])
} else if (output == 'lat') {
dim(tmp) <- c(1, final_dims[c(2, 3, 4)])
} else if (output == 'lonlat') {
dim(tmp) <- final_dims
}
}
var_data <- attach.big.matrix(work_piece[['out_pointer']])
if (work_piece[['dims']][['member']] > 1 && nmemb > 1 &&
work_piece[['dims']][['ftime']] > 1 &&
nltime < work_piece[['dims']][['ftime']]) {
work_piece[['indices']][2] <- work_piece[['indices']][2] - 1
for (jmemb in members) {
work_piece[['indices']][2] <- work_piece[['indices']][2] + 1
out_position <- arrayIndex2VectorIndex(work_piece[['indices']], work_piece[['dims']])
out_indices <- out_position:(out_position + length(tmp[, , jmemb, ]) - 1)
var_data[out_indices] <- as.vector(tmp[, , jmemb, ])
}
work_piece[['indices']][2] <- work_piece[['indices']][2] - tail(members, 1) + 1
} else {
out_position <- arrayIndex2VectorIndex(work_piece[['indices']], work_piece[['dims']])
out_indices <- out_position:(out_position + length(tmp) - 1)
a <- aperm(tmp, c(1, 2, 4, 3))
as.vector(a)
var_data[out_indices] <- as.vector(aperm(tmp, c(1, 2, 4, 3)))
}
work_piece[['indices']][3] <- work_piece[['indices']][3] + 1
}
}
}
nc_close(fnc)
if (is_2d_var) {
if (remap_needed) {
array_across_gw <- FALSE
file.remove(filein)
###if (!is.null(mask) && lonlat_subsetting_requested) {
### file.remove(mask_file)
###}
} else {
if (first_lon_in_original_file < 0) {
array_across_gw <- data_across_gw
} else {
array_across_gw <- FALSE
}
}
}
}
if (explore_dims) {
list(dims = dims, is_2d_var = is_2d_var, grid = grid_name,
units = units, var_long_name = var_long_name,
data_across_gw = data_across_gw, array_across_gw = array_across_gw,
time_dim = list(first_time_step_in_file = first_time_step_in_file,
time_units = time_units))
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
} else {
###if (!silent && !is.null(progress_connection) && !is.null(work_piece[['progress_amount']])) {
### foobar <- writeBin(work_piece[['progress_amount']], progress_connection)
###}
if (!silent && !is.null(work_piece[['progress_amount']])) {
message(paste0(work_piece[['progress_amount']]), appendLF = FALSE)
}
found_file
}
}
.LoadSampleData <- function(var, exp = NULL, obs = NULL, sdates,
nmember = NULL, nmemberobs = NULL,
nleadtime = NULL, leadtimemin = 1,
leadtimemax = NULL, storefreq = 'monthly',
sampleperiod = 1, lonmin = 0, lonmax = 360,
latmin = -90, latmax = 90, output = 'areave',
method = 'conservative', grid = NULL,
maskmod = vector("list", 15),
maskobs = vector("list", 15),
configfile = NULL, suffixexp = NULL,
suffixobs = NULL, varmin = NULL, varmax = NULL,
silent = FALSE, nprocs = NULL) {
## This function loads and selects sample data stored in sampleMap and
## sampleTimeSeries and is used in the examples instead of Load() so as
## to avoid nco and cdo system calls and computation time in the stage
## of running examples in the CHECK process on CRAN.
selected_start_dates <- match(sdates, c('19851101', '19901101', '19951101',
'20001101', '20051101'))
start_dates_position <- 3
lead_times_position <- 4
if (output == 'lonlat') {
if (is.null(leadtimemax)) {
leadtimemax <- dim(sampleData$mod)[lead_times_position]
}
selected_lead_times <- leadtimemin:leadtimemax
dataOut <- sampleData
dataOut$mod <- sampleData$mod[, , selected_start_dates, selected_lead_times, , ]
dataOut$obs <- sampleData$obs[, , selected_start_dates, selected_lead_times, , ]
}
else if (output == 'areave') {