NAO.R 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414
#'Compute the North Atlantic Oscillation (NAO) Index
#'
#'Compute the North Atlantic Oscillation (NAO) index based on the leading EOF 
#'of the sea level pressure (SLP) anomalies over the north Atlantic region 
#'(20N-80N, 80W-40E). The PCs are obtained by projecting the forecast and 
#'observed anomalies onto the observed EOF pattern (Pobs) or the forecast 
#'anomalies onto the EOF pattern of the other years of the forecast (Pmod). 
#'By default (ftime_avg = 2:4) NAO() computes the NAO index for 1-month 
#'lead seasonal forecasts that can be plotted with PlotBoxWhisker(). It returns
#'cross-validated PCs of the NAO index for forecast (exp) and observations 
#'(obs) based on the leading EOF pattern.
#'
#'@param exp A named numeric array of North Atlantic SLP (20N-80N, 80W-40E) 
#'  forecast anomalies from \code{Ano()} or \code{Ano_CrossValid()} with 
#'  dimensions 'time_dim', 'memb_dim', 'ftime_dim', and 'space_dim' at least.
#'  If only NAO of observational data needs to be computed, this parameter can
#'  be left to NULL. The default value is NULL.
#'@param obs A named numeric array of North Atlantic SLP (20N-80N, 80W-40E) 
#'  observed anomalies from \code{Ano()} or \code{Ano_CrossValid()} with 
#'  dimensions 'time_dim', 'memb_dim', 'ftime_dim', and 'space_dim' at least.
#'  If only NAO of experimental data needs to be computed, this parameter can 
#'  be left to NULL. The default value is NULL.
#'@param lat A vector of the latitudes of 'exp' and 'obs'.
#'@param lon A vector of the longitudes of 'exp' and 'obs'.
#'@param time_dim A character string indicating the name of the time dimension
#' of 'exp' and 'obs'. The default value is 'sdate'. 
#'@param memb_dim A character string indicating the name of the member 
#'  dimension of 'exp' and 'obs'. The default value is 'member'.
#'@param space_dim A vector of two character strings. The first is the dimension
#'  name of latitude of 'ano' and the second is the dimension name of longitude
#'  of 'ano'. The default value is c('lat', 'lon').
#'@param ftime_dim A character string indicating the name of the forecast time 
#'  dimension of 'exp' and 'obs'. The default value is 'ftime'.
#'@param ftime_avg A numeric vector of the forecast time steps to average
#'  across the target period. The default value is 2:4, i.e., from 2nd to 4th 
#'  forecast time steps.
#'@param obsproj A logical value indicating whether to compute the NAO index by
#'  projecting the forecast anomalies onto the leading EOF of observational 
#'  reference (TRUE) or compute the NAO by first computing the leading 
#'  EOF of the forecast anomalies (in cross-validation mode, i.e. leaving the 
#'  year you are evaluating out), and then projecting forecast anomalies onto 
#'  this EOF (FALSE). The default value is TRUE.
#'@param ncores An integer indicating the number of cores to use for parallel 
#'  computation. The default value is NULL.
#'
#'@return 
#'A list which contains:
#'\item{exp}{
#'  A numeric array of forecast NAO index in verification format with the same 
#'  dimensions as 'exp' except space_dim and ftime_dim.
#'  }
#'\item{obs}{
#'  A numeric array of observed NAO index in verification format with the same
#'  dimensions as 'obs' except space_dim and ftime_dim.
#'}
#'
#'@references
#'Doblas-Reyes, F.J., Pavan, V. and Stephenson, D. (2003). The skill of 
#'  multi-model seasonal forecasts of the wintertime North Atlantic 
#'  Oscillation. Climate Dynamics, 21, 501-514. 
#'  DOI: 10.1007/s00382-003-0350-4
#'
#'@examples
#'  \dontshow{
#'startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
#'sampleData <- s2dv:::.LoadSampleData('tos', c('experiment'),
#'                                     c('observation'), startDates,
#'                                     leadtimemin = 1,
#'                                     leadtimemax = 4,
#'                                     output = 'lonlat',
#'                                     latmin = 27, latmax = 48,
#'                                     lonmin = -12, lonmax = 40)
#'# No example data is available over NAO region, so in this example we will 
#'# tweak the available data. In a real use case, one can Load() the data over 
#'# the NAO region directly.
#'sampleData$lon[] <- c(40, 280, 340)
#'sampleData$lat[] <- c(20, 80)
#'  }
#'
#'# Now ready to compute the EOFs and project on, for example, the first 
#'# variability mode.
#'ano <- Ano_CrossValid(sampleData$mod, sampleData$obs)
#'# Note that computing the NAO over the region for which there is available 
#'# example data is not the full NAO area: NAO() will raise a warning.
#'nao <- NAO(ano$exp, ano$obs, sampleData$lat, sampleData$lon)
#'# Finally plot the NAO index
#'  \dontrun{
#'nao$exp <- Reorder(nao$exp, c(2, 1))
#'nao$obs <- Reorder(nao$obs, c(2, 1))
#'PlotBoxWhisker(nao$exp, nao$obs, "NAO index, DJF", "NAO index (PC1) TOS",
#'        monini = 12, yearini = 1985, freq = 1, "Exp. A", "Obs. X")
#'  }
#'
#'@import multiApply
#'@importFrom ClimProjDiags Subset
#'@export
NAO <- function(exp = NULL, obs = NULL, lat, lon, time_dim = 'sdate',
                memb_dim = 'member', space_dim = c('lat', 'lon'),
                ftime_dim = 'ftime', ftime_avg = 2:4, 
                obsproj = TRUE, ncores = NULL) {

  # Check inputs 
  ## exp and obs (1)
  if (is.null(obs) & is.null(exp)) {
    stop("Parameter 'exp' and 'obs' cannot both be NULL.")
  }
  if (!is.null(exp)) {
    if (!is.numeric(exp)) {
      stop("Parameter 'exp' must be a numeric array.")
    }
    if (is.null(dim(exp))) {
      stop(paste0("Parameter 'exp' and must have at least dimensions ",
                  "time_dim, memb_dim, space_dim, and ftime_dim."))
    }
    if(any(is.null(names(dim(exp)))) | any(nchar(names(dim(exp))) == 0)) {
      stop("Parameter 'exp' must have dimension names.")
    }
  }
  if (!is.null(obs)) {
    if (!is.numeric(obs)) {
      stop("Parameter 'obs' must be a numeric array.")
    }
    if (is.null(dim(obs))) {
      stop(paste0("Parameter 'obs' and must have at least dimensions ",
                  "time_dim, memb_dim, space_dim, and ftime_dim."))
    }
    if(any(is.null(names(dim(obs)))) | any(nchar(names(dim(obs))) == 0)) {
      stop("Parameter 'obs' must have dimension names.")
    }
  }
  ## time_dim
  if (!is.character(time_dim) | length(time_dim) > 1) {
    stop("Parameter 'time_dim' must be a character string.")
  }
  if (!is.null(exp)) {
    if (!time_dim %in% names(dim(exp))) {
      stop("Parameter 'time_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  if (!is.null(obs)) {
    if (!time_dim %in% names(dim(obs))) {
      stop("Parameter 'time_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  ## memb_dim
  if (!is.character(memb_dim) | length(memb_dim) > 1) {
    stop("Parameter 'memb_dim' must be a character string.")
  }
  if (!is.null(exp)) {
    if (!memb_dim %in% names(dim(exp))) {
      stop("Parameter 'memb_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  if (!is.null(obs)) {
    if (!memb_dim %in% names(dim(obs))) {
      stop("Parameter 'memb_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  ## space_dim
  if (!is.character(space_dim) | length(space_dim) != 2) {
    stop("Parameter 'space_dim' must be a character vector of 2.")
  }
  if (!is.null(exp)) {
    if (any(!space_dim %in% names(dim(exp)))) {
      stop("Parameter 'space_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  if (!is.null(obs)) {
    if (any(!space_dim %in% names(dim(obs)))) {
      stop("Parameter 'space_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  ## ftime_dim
  if (!is.character(ftime_dim) | length(ftime_dim) > 1) {
    stop("Parameter 'ftime_dim' must be a character string.")
  }
  if (!is.null(exp)) {
    if (!ftime_dim %in% names(dim(exp))) {
      stop("Parameter 'ftime_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  if (!is.null(obs)) {
    if (!ftime_dim %in% names(dim(obs))) {
      stop("Parameter 'ftime_dim' is not found in 'exp' or 'obs' dimension.")
    }
  }
  ## exp and obs (2)
  if (!is.null(exp) & !is.null(obs)) {
    name_exp <- sort(names(dim(exp)))
    name_obs <- sort(names(dim(obs)))
    name_exp <- name_exp[-which(name_exp == memb_dim)]
    name_obs <- name_obs[-which(name_obs == memb_dim)]
    if(!all(dim(exp)[name_exp] == dim(obs)[name_obs])) {
      stop(paste0("Parameter 'exp' and 'obs' must have the same length of ",
                  "all dimensions except 'memb_dim'."))
    }
  }
  ## ftime_avg
  if (!is.vector(ftime_avg) | !is.integer(ftime_avg)) {
    stop("Parameter 'ftime_avg' must be an integer vector.")
  }
  if (!is.null(exp)) {
    if (max(ftime_avg) > dim(exp)[ftime_dim] | min(ftime_avg) < 1) {
      stop("Parameter 'ftime_avg' must be within the range of ftime_dim length.")
    }
  } else {
    if (max(ftime_avg) > dim(obs)[ftime_dim] | min(ftime_avg) < 1) {
      stop("Parameter 'ftime_avg' must be within the range of ftime_dim length.")
    }
  }
  ## sdate >= 2
  if (!is.null(exp)) {
    if (dim(exp)[time_dim] < 2) {
      stop("The length of time_dim must be at least 2.")
    }
  } else {
    if (dim(obs)[time_dim] < 2) {
      stop("The length of time_dim must be at least 2.")
    }
  }
  ## lat and lon
  if (!is.null(exp)) {
    if (!is.numeric(lat) | length(lat) != dim(exp)[space_dim[1]]) {
      stop(paste0("Parameter 'lat' must be a numeric vector with the same ",
                  "length as the latitude dimension of 'exp' and 'obs'."))
    }
    if (!is.numeric(lon) | length(lon) != dim(exp)[space_dim[2]]) {
      stop(paste0("Parameter 'lon' must be a numeric vector with the same ",
                  "length as the longitude dimension of 'exp' and 'obs'."))
    }
  } else {
    if (!is.numeric(lat) | length(lat) != dim(obs)[space_dim[1]]) {
      stop(paste0("Parameter 'lat' must be a numeric vector with the same ",
                  "length as the latitude dimension of 'exp' and 'obs'."))
    }
    if (!is.numeric(lon) | length(lon) != dim(obs)[space_dim[2]]) {
      stop(paste0("Parameter 'lon' must be a numeric vector with the same ",
                  "length as the longitude dimension of 'exp' and 'obs'."))
    }
  } 
  stop_needed <- FALSE
  if (tail(lat, 1) < 70 | tail(lat, 1) > 90 | 
      head(lat, 1) > 30 | head(lat, 1) < 10) {
    stop_needed <- TRUE
  }
  #NOTE: different from s2dverification
  # lon is not used in the calculation actually. EOF only uses lat to do the
  # weight. So we just need to ensure the data is in this region, regardless
  # the order. 
  if (any(lon < 0)) {  #[-180, 180] 
    if (!(min(lon) > -90 & min(lon) < -70 & max(lon) < 50 & max(lon) > 30)) {
      stop_needed <- TRUE
    }
  } else {  #[0, 360]
    if (any(lon >= 50 & lon <= 270)) {
      stop_needed <- TRUE
    } else {
      lon_E <- lon[which(lon < 50)]
      lon_W <- lon[-which(lon < 50)]
      if (max(lon_E) < 30 | min(lon_W) > 290) {
        stop_needed <- TRUE
      }
    }
  }
  if (stop_needed) {
    stop(paste0("The typical domain used to compute the NAO is 20N-80N, ",
                "80W-40E. 'lat' or 'lon' is out of range."))
  }
  ## obsproj
  if (!is.logical(obsproj)  | length(obsproj) > 1) {
    stop("Parameter 'obsproj' must be either TRUE or FALSE.")
  }
  if (obsproj) {
    if (is.null(obs)) {
      stop("Parameter 'obsproj' set to TRUE but no 'obs' provided.")
    }
    if (is.null(exp)) {
      .warning("parameter 'obsproj' set to TRUE but no 'exp' provided.")
    }
  }
  ## ncores
  if (!is.null(ncores)) {
    if (!is.numeric(ncores) | ncores %% 1 != 0 | ncores <= 0 |
      length(ncores) > 1) {
      stop("Parameter 'ncores' must be a positive integer.")
    }
  }

  #-------- Average ftime -----------
  if (!is.null(exp)) {
    exp_sub <- ClimProjDiags::Subset(exp, ftime_dim, ftime_avg, drop = FALSE)
    exp <- MeanDims(exp_sub, ftime_dim, na.rm = TRUE)
    ## Cross-validated PCs. Fabian. This should be extended to
    ## nmod and nlt by simple loops. Virginie
  }

  if (!is.null(obs)) {
    obs_sub <- ClimProjDiags::Subset(obs, ftime_dim, ftime_avg, drop = FALSE)
    obs <- MeanDims(obs_sub, ftime_dim, na.rm = TRUE)
  }

  if (!is.null(exp) & !is.null(obs)) {
    res <- Apply(list(exp, obs),
                 target_dims = list(exp = c(memb_dim, time_dim, space_dim),
                                    obs = c(memb_dim, time_dim, space_dim)),
                 fun = .NAO,
                 obsproj = obsproj, lat = lat, lon = lon,
                 ncores = ncores)
  } else if (!is.null(exp)) {
    res <- Apply(list(exp = exp),
                 target_dims = list(exp = c(memb_dim, time_dim, space_dim)),
                 fun = .NAO,
                 obsproj = obsproj, lat = lat, lon = lon, obs = NULL,
                 ncores = ncores)
  } else if (!is.null(obs)) {
    res <- Apply(list(obs = obs),
                 target_dims = list(obs = c(memb_dim, time_dim, space_dim)),
                 fun = .NAO,
                 obsproj = obsproj, lat = lat, lon = lon, exp = NULL,
                 ncores = ncores)
  }
  return(res)
}

.NAO <- function(exp = NULL, obs = NULL, lat, lon,
                 obsproj = TRUE, ncores = NULL) {
  # exp: [memb_exp, sdate, lat, lon]
  # obs: [memb_obs, sdate, lat, lon]
  if (!is.null(exp)) {
    ntime <- dim(exp)[2]
    nlat <- dim(exp)[3]
    nlon <- dim(exp)[4]
    nmemb_exp <- dim(exp)[1]
    nmemb_obs <- dim(obs)[1]
  } else {
    ntime <- dim(obs)[2]
    nlat <- dim(obs)[3]
    nlon <- dim(obs)[4]
    nmemb_obs <- dim(obs)[1]
  }

  if (!is.null(obs)) NAOO.ver <- array(NA, dim = c(ntime, nmemb_obs))
  if (!is.null(exp)) NAOF.ver <- array(NA, dim = c(ntime, nmemb_exp))

  for (tt in 1:ntime) {  #sdate

    if (!is.null(obs)) {
      ## Observed EOF excluding one forecast start year.
      obs_sub <- ClimProjDiags::Subset(obs, 2, c(1:ntime)[-tt], drop = FALSE)
      obs_EOF <- EOF(obs_sub, lat = lat, lon = lon, time_dim = names(ntime),
                     space_dim = c(names(nlat), names(nlon)), neofs = 1)

      ## Correct polarity of pattern.
      #NOTE: different from s2dverification
      # dim(obs_EOF$EOFs): [mode, lat, lon, member]
      for (imemb in 1:nmemb_obs) {
        if (0 < mean(obs_EOF$EOFs[1, which.min(abs(lat - 65)), , ], na.rm = T)) {
          obs_EOF$EOFs[1, , , imemb] <- obs_EOF$EOFs[1, , , imemb] * (-1)
        }
      }
#      obs_EOF$PCs <- obs_EOF$PCs * sign  # not used

      ## Project observed anomalies.
      PF <- ProjectField(obs, eof = obs_EOF, time_dim = names(ntime),
                         space_dim = c(names(nlat), names(nlon)), mode = 1)
      NAOO.ver[tt, ] <- PF[tt, ]
      ## Keep PCs of excluded forecast start year. Fabian.
    }

    if (!is.null(exp)) {
      if (!obsproj) {
        exp_sub <- ClimProjDiags::Subset(exp, 2, c(1:ntime)[-tt], drop = FALSE)
        #NOTE: different from s2dverification. Here, 'member' is considered.
        exp_EOF <- EOF(exp_sub, lat = lat, lon = lon, time_dim = names(ntime),
                       space_dim = c(names(nlat), names(nlon)), neofs = 1)

        ## Correct polarity of pattern.
        #NOTE: different from s2dverification
        for (imemb in 1:nmemb_exp) {
          if (0 < mean(exp_EOF$EOFs[1, which.min(abs(lat - 65)), , imemb], na.rm = T)) {
          exp_EOF$EOFs[1, , , imemb] <- exp_EOF$EOFs[1, , , imemb] * (-1)
          }
        }
#        exp_EOF$PCs <- exp_EOF$PCs * sign  # not used

        ### Lines below could be simplified further by computing
        ### ProjectField() only on the year of interest... (though this is
        ### not vital). Lauriane
        PF <- ProjectField(exp, eof = exp_EOF, time_dim = names(ntime),
                           space_dim = c(names(nlat), names(nlon)), mode = 1)
        NAOF.ver[tt, ] <- PF[tt, ]
        
      } else {
      ## Project forecast anomalies on obs EOF
      #NOTE: Because obs and exp have different nmemb, do ensemble mean to 
      #      obs_EOF$EOFs first, then expand the memb dim to be the same as exp.
      obs_EOF$EOFs <- apply(obs_EOF$EOFs, c(1, 2, 3), mean, na.rm = T)
      obs_EOF$EOFs <- array(obs_EOF$EOFs, dim = c(dim(obs_EOF$EOFs), as.numeric(nmemb_exp)))
      names(dim(obs_EOF$EOFs))[4] <- names(nmemb_obs)
      PF <- ProjectField(exp, obs_EOF, mode = 1)
      NAOF.ver[tt, ] <- PF[tt, ]
      }
    }
  }
  #NOTE: EOFs_obs is not returned because it's only the result of the last sdate
  #     (It is returned in s2dverification.)
  if (!is.null(exp) & !is.null(obs)) {
    return(list(exp = NAOF.ver, obs = NAOO.ver)) #, EOFs_obs = obs_EOF))
  } else if (!is.null(exp)) {
    return(list(exp = NAOF.ver))
  } else if (!is.null(obs)) {
    return(list(obs = NAOO.ver))
  }
}