Newer
Older
#'Maps A Two-Dimensional Variable On A Cylindrical Equidistant Projection
#'
#'Map longitude-latitude array (on a regular rectangular or gaussian grid)
#'on a cylindrical equidistant latitude and longitude projection with coloured
#'grid cells. Only the region for which data has been provided is displayed.
#'A colour bar (legend) can be plotted and adjusted. It is possible to draw
#'superimposed arrows, dots, symbols, contour lines and boxes. A number of
#'options is provided to adjust the position, size and colour of the
#'components. Some parameters are provided to add and adjust the masks that
#'include continents, oceans, and lakes. This plot function is compatible with
#'figure layouts if colour bar is disabled.
#'
#'@param var Array with the values at each cell of a grid on a regular
#' rectangular or gaussian grid. The array is expected to have two
#' dimensions: c(latitude, longitude). Longitudes can be in ascending or
#' descending order and latitudes in any order. It can contain NA values
#' (coloured with 'colNA'). Arrays with dimensions c(longitude, latitude)
#' will also be accepted but 'lon' and 'lat' will be used to disambiguate so
#' this alternative is not appropriate for square arrays. It is allowed that
#' the positions of the longitudinal and latitudinal coordinate dimensions
#' are interchanged.
#'@param lon Numeric vector of longitude locations of the cell centers of the
#' grid of 'var', in ascending or descending order (same as 'var'). Expected
#' to be regularly spaced, within either of the ranges [-180, 180] or
#' [0, 360]. Data for two adjacent regions split by the limits of the
#' longitude range can also be provided, e.g. \code{lon = c(0:50, 300:360)}
#' ('var' must be provided consitently).
#'@param lat Numeric vector of latitude locations of the cell centers of the
#' grid of 'var', in any order (same as 'var'). Expected to be from a regular
#' rectangular or gaussian grid, within the range [-90, 90].
#'@param varu Array of the zonal component of wind/current/other field with
#' the same dimensions as 'var'. It is allowed that the positions of the
#' longitudinal and latitudinal coordinate dimensions are interchanged.
#'@param varv Array of the meridional component of wind/current/other field
#' with the same dimensions as 'var'. It is allowed that the positions of the
#' longitudinal and latitudinal coordinate dimensions are interchanged.
#'@param toptitle Top title of the figure, scalable with parameter
#' 'title_scale'.
#'@param sizetit Scale factor for the figure top title provided in parameter
#' 'toptitle'. Deprecated. Use 'title_scale' instead.
#'@param units Title at the top of the colour bar, most commonly the units of
#' the variable provided in parameter 'var'.
#'@param brks,cols,bar_limits,triangle_ends Usually only providing 'brks' is
#' enough to generate the desired colour bar. These parameters allow to
#' define n breaks that define n - 1 intervals to classify each of the values
#' in 'var'. The corresponding grid cell of a given value in 'var' will be
#' coloured in function of the interval it belongs to. These parameters are
#' sent to \code{ColorBar()} to generate the breaks and colours. Additional
#' colours for values beyond the limits of the colour bar are also generated
#' and applied to the plot if 'bar_limits' or 'brks' and 'triangle_ends' are
#' properly provided to do so. See ?ColorBar for a full explanation.
#'@param col_inf,col_sup,colNA Colour identifiers to colour the values in
#' 'var' that go beyond the extremes of the colour bar and to colour NA
#' values, respectively. 'colNA' takes attr(cols, 'na_color') if available by
#' default, where cols is the parameter 'cols' if provided or the vector of
#' colors returned by 'color_fun'. If not available, it takes 'pink' by
#' default. 'col_inf' and 'col_sup' will take the value of 'colNA' if not
#' specified. See ?ColorBar for a full explanation on 'col_inf' and 'col_sup'.
#'@param color_fun subsampleg, bar_extra_labels, draw_bar_ticks,
#' draw_separators, triangle_ends_scale, bar_label_digits, bar_label_scale,
#' units_scale, bar_tick_scale, bar_extra_margin. Set of parameters to control
#' the visual aspect of the drawn colour bar. See ?ColorBar for a full
#' explanation.
#'@param square Logical value to choose either to draw a coloured square for
#' each grid cell in 'var' (TRUE; default) or to draw contour lines and fill
#' the spaces in between with colours (FALSE). In the latter case,
#' 'filled.continents' will take the value FALSE if not specified.
#'@param filled.continents Colour to fill in drawn projected continents.
#' Takes the value gray(0.5) by default or, if 'square = FALSE', takes the
#' value FALSE. If set to FALSE, continents are not filled in.
#'@param filled.oceans A logical value or the color name to fill in drawn
#' projected oceans. The default value is FALSE. If it is TRUE, the default
#'@param country.borders A logical value indicating if the country borders
#' should be plotted (TRUE) or not (FALSE). It only works when
#' 'filled.continents' is FALSE. The default value is FALSE.
#'@param coast_color Colour of the coast line of the drawn projected continents.
#' Takes the value gray(0.5) by default.
#'@param coast_width Line width of the coast line of the drawn projected
#' continents. Takes the value 1 by default.
#'@param lake_color Colour of the lake or other water body inside continents.
#' The default value is NULL.
#'@param shapefile A character string of the path to a .rds file or a list
#' object containinig shape file data. If it is a .rds file, it should contain
#' a list. The list should contains 'x' and 'y' at least, which indicate the
#' location of the shape. The default value is NULL.
#'@param shapefile_color Line color of the shapefile.
#'@param shapefile_lwd Line width of the shapefile. The default value is 1.
#'@param contours Array of same dimensions as 'var' to be added to the plot
#' and displayed with contours. Parameter 'brks2' is required to define the
#' magnitude breaks for each contour curve. Disregarded if 'square = FALSE'.
#' It is allowed that the positions of the longitudinal and latitudinal
#' coordinate dimensions are interchanged.
#'@param brks2 Vector of magnitude breaks where to draw contour curves for the
#' array provided in 'contours' or if 'square = FALSE'.
#'@param contour_lwd Line width of the contour curves provided via 'contours'
#' and 'brks2', or if 'square = FALSE'.
#'@param contour_color Line color of the contour curves provided via 'contours'
#' and 'brks2', or if 'square = FALSE'.
#'@param contour_lty Line type of the contour curves. Takes 1 (solid) by
#' default. See help on 'lty' in par() for other accepted values.
aho
committed
#'@param contour_draw_label A logical value indicating whether to draw the
#' contour labels or not. The default value is TRUE.
#'@param contour_label_scale Scale factor for the superimposed labels when
#' drawing contour levels.
#'@param dots Array of same dimensions as 'var' or with dimensions
#' c(n, dim(var)), where n is the number of dot/symbol layers to add to the
#' plot. A value of TRUE at a grid cell will draw a dot/symbol on the
#' corresponding square of the plot. By default all layers provided in 'dots'
#' are plotted with dots, but a symbol can be specified for each of the
#' layers via the parameter 'dot_symbol'. It is allowed that the positions of
#' the longitudinal and latitudinal coordinate dimensions are interchanged.
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#'@param dot_symbol Single character/number or vector of characters/numbers
#' that correspond to each of the symbol layers specified in parameter 'dots'.
#' If a single value is specified, it will be applied to all the layers in
#' 'dots'. Takes 15 (centered square) by default. See 'pch' in par() for
#' additional accepted options.
#'@param dot_size Scale factor for the dots/symbols to be plotted, specified
#' in 'dots'. If a single value is specified, it will be applied to all
#' layers in 'dots'. Takes 1 by default.
#'@param arr_subsamp Subsampling factor to select a subset of arrows in
#' 'varu' and 'varv' to be drawn. Only one out of arr_subsamp arrows will
#' be drawn. Takes 1 by default.
#'@param arr_scale Scale factor for drawn arrows from 'varu' and 'varv'.
#' Takes 1 by default.
#'@param arr_ref_len Length of the refence arrow to be drawn as legend at the
#' bottom of the figure (in same units as 'varu' and 'varv', only affects the
#' legend for the wind or variable in these arrays). Defaults to 15.
#'@param arr_units Units of 'varu' and 'varv', to be drawn in the legend.
#' Takes 'm/s' by default.
#'@param arr_scale_shaft Parameter for the scale of the shaft of the arrows
#' (which also depend on the number of figures and the arr_scale parameter).
#' Defaults to 1.
#'@param arr_scale_shaft_angle Parameter for the scale of the angle of the
#' shaft of the arrows (which also depend on the number of figure and the
#' arr_scale parameter). Defaults to 1.
#'@param axelab Whether to draw longitude and latitude axes or not.
#' TRUE by default.
#'@param labW Whether to label the longitude axis with a 'W' instead of minus
#' for negative values. Defaults to FALSE.
#'@param lab_dist_x A numeric of the distance of the longitude labels to the
#' box borders. The default value is NULL and is automatically adjusted by
#' the function.
#'@param lab_dist_y A numeric of the distance of the latitude labels to the
#' box borders. The default value is NULL and is automatically adjusted by
#' the function.
#'@param degree_sym A logical indicating whether to include degree symbol
#' (30° N) or not (30N; default).
#'@param intylat Interval between latitude ticks on y-axis, in degrees.
#' Defaults to 20.
#'@param intxlon Interval between latitude ticks on x-axis, in degrees.
#' Defaults to 20.
#'@param xlonshft A numeric of the degrees to shift the latitude ticks. The
#' default value is 0.
#'@param ylatshft A numeric of the degrees to shift the longitude ticks. The
#' default value is 0.
#'@param xlabels A vector of character string of the custumized x-axis labels.
#' The values should correspond to each tick, which is decided by the longitude
#' and parameter 'intxlon'. The default value is NULL and the labels will be
#' automatically generated.
#'@param ylabels A vector of character string of the custumized y-axis labels.
#' The values should correspond to each tick, which is decided by the latitude
#' and parameter 'intylat'. The default value is NULL and the labels will be
#' automatically generated.
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
#'@param axes_tick_scale Scale factor for the tick lines along the longitude
#' and latitude axes.
#'@param axes_label_scale Scale factor for the labels along the longitude
#' and latitude axes.
#'@param drawleg Whether to plot a color bar (legend, key) or not. Defaults to
#' TRUE. It is not possible to plot the colour bar if 'add = TRUE'. Use
#' ColorBar() and the return values of PlotEquiMap() instead.
#'@param boxlim Limits of a box to be added to the plot, in degrees:
#' c(x1, y1, x2, y2). A list with multiple box specifications can also be
#' provided.
#'@param boxcol Colour of the box lines. A vector with a colour for each of
#' the boxes is also accepted. Defaults to 'purple2'.
#'@param boxlwd Line width of the box lines. A vector with a line width for
#' each of the boxes is also accepted. Defaults to 5.
#'@param margin_scale Scale factor for the margins around the map plot, with
#' the format c(y1, x1, y2, x2). Defaults to rep(1, 4). If drawleg = TRUE,
#' then margin_scale[1] is subtracted 1 unit.
#'@param title_scale Scale factor for the figure top title. Defaults to 1.
#'@param numbfig Number of figures in the layout the plot will be put into.
#' A higher numbfig will result in narrower margins and smaller labels,
#' axe labels, ticks, thinner lines, ... Defaults to 1.
#'@param fileout File where to save the plot. If not specified (default) a
#' graphics device will pop up. Extensions allowed: eps/ps, jpeg, png, pdf,
#' bmp and tiff.
#'@param width File width, in the units specified in the parameter size_units
#' (inches by default). Takes 8 by default.
#'@param height File height, in the units specified in the parameter
#' size_units (inches by default). Takes 5 by default.
#'@param size_units Units of the size of the device (file or window) to plot
#' in. Inches ('in') by default. See ?Devices and the creator function of
#' the corresponding device.
#'@param res Resolution of the device (file or window) to plot in. See
#' ?Devices and the creator function of the corresponding device.
#'@param \dots Arguments to be passed to the method. Only accepts the following
#' graphical parameters:\cr
#' adj ann ask bg bty cex.sub cin col.axis col.lab col.main col.sub cra crt
#' csi cxy err family fg font font.axis font.lab font.main font.sub lend
#' lheight ljoin lmitre mex mfcol mfrow mfg mkh omd omi page pch pin plt
#' pty smo srt tcl usr xaxp xaxs xaxt xlog xpd yaxp yaxs yaxt ylbias ylog \cr
#' For more information about the parameters see `par`.
#'
#'@return
#'\item{brks}{
#' Breaks used for colouring the map (and legend if drawleg = TRUE).
#'}
#'\item{cols}{
#' Colours used for colouring the map (and legend if drawleg = TRUE). Always
#' of length length(brks) - 1.
#'}
#'\item{col_inf}{
#' Colour used to draw the lower triangle end in the colour bar (NULL if not
#' drawn at all).
#' }
#'\item{col_sup}{
#' Colour used to draw the upper triangle end in the colour bar (NULL if not
#' drawn at all).
#'}
#'
#'@examples
#'# See examples on Load() to understand the first lines in this example
#' \dontrun{
#'expA <- list(name = 'experiment', path = file.path(data_path,
#' 'model/$EXP_NAME$/$STORE_FREQ$_mean/$VAR_NAME$_3hourly',
#' '$VAR_NAME$_$START_DATE$.nc'))
#'obsX <- list(name = 'observation', path = file.path(data_path,
#' '$OBS_NAME$/$STORE_FREQ$_mean/$VAR_NAME$',
#' '$VAR_NAME$_$YEAR$$MONTH$.nc'))
#'
#'# Now we are ready to use Load().
#'startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
#'sampleData <- Load('tos', list(expA), list(obsX), startDates,
#' leadtimemin = 1, leadtimemax = 4, output = 'lonlat',
#' latmin = 27, latmax = 48, lonmin = -12, lonmax = 40)
#' }
#' \dontshow{
#'startDates <- c('19851101', '19901101', '19951101', '20001101', '20051101')
#' c('observation'), startDates,
#' leadtimemin = 1,
#' leadtimemax = 4,
#' output = 'lonlat',
#' latmin = 27, latmax = 48,
#' lonmin = -12, lonmax = 40)
#' }
#'PlotEquiMap(sampleData$mod[1, 1, 1, 1, , ], sampleData$lon, sampleData$lat,
#' toptitle = 'Predicted sea surface temperature for Nov 1960 from 1st Nov',
#' sizetit = 0.5)
#'@import graphics maps
#'@importFrom grDevices dev.cur dev.new dev.off gray
#'@importFrom stats cor
#'@export
PlotEquiMap <- function(var, lon, lat, varu = NULL, varv = NULL,
toptitle = NULL, sizetit = NULL, units = NULL,
brks = NULL, cols = NULL, bar_limits = NULL,
triangle_ends = NULL, col_inf = NULL, col_sup = NULL,
colNA = NULL, color_fun = clim.palette(),
square = TRUE, filled.continents = NULL,
filled.oceans = FALSE, country.borders = FALSE,
coast_color = NULL, coast_width = 1, lake_color = NULL,
shapefile = NULL, shapefile_color = NULL, shapefile_lwd = 1,
contours = NULL, brks2 = NULL, contour_lwd = 0.5,
contour_color = 'black', contour_lty = 1,
aho
committed
contour_draw_label = TRUE, contour_label_scale = 1,
dots = NULL, dot_symbol = 4, dot_size = 1,
arr_subsamp = floor(length(lon) / 30), arr_scale = 1,
arr_ref_len = 15, arr_units = "m/s",
arr_scale_shaft = 1, arr_scale_shaft_angle = 1,
axelab = TRUE, labW = FALSE,
lab_dist_x = NULL, lab_dist_y = NULL, degree_sym = FALSE,
intylat = 20, intxlon = 20,
xlonshft = 0, ylatshft = 0, xlabels = NULL, ylabels = NULL,
axes_tick_scale = 1, axes_label_scale = 1,
drawleg = TRUE, subsampleg = NULL,
bar_extra_labels = NULL, draw_bar_ticks = TRUE,
draw_separators = FALSE, triangle_ends_scale = 1,
bar_label_digits = 4, bar_label_scale = 1,
units_scale = 1, bar_tick_scale = 1,
bar_extra_margin = rep(0, 4),
boxlim = NULL, boxcol = 'purple2', boxlwd = 5,
margin_scale = rep(1, 4), title_scale = 1,
numbfig = NULL, fileout = NULL,
width = 8, height = 5, size_units = 'in',
res = 100, ...) {
# Process the user graphical parameters that may be passed in the call
## Graphical parameters to exclude
excludedArgs <- c("cex", "cex.axis", "cex.lab", "cex.main", "col", "din", "fig", "fin", "lab", "las", "lty", "lwd", "mai", "mar", "mgp", "new", "oma", "ps", "tck")
userArgs <- .FilterUserGraphicArgs(excludedArgs, ...)
# If there is any filenames to store the graphics, process them
# to select the right device
if (!is.null(fileout)) {
deviceInfo <- .SelectDevice(fileout = fileout, width = width, height = height, units = size_units, res = res)
saveToFile <- deviceInfo$fun
fileout <- deviceInfo$files
}
# Check lon, lat
if (!is.numeric(lon) || !is.numeric(lat)) {
stop("Parameters 'lon' and 'lat' must be numeric vectors.")
}
# Check var
if (is.null(var)) {
stop("Parameter 'var' cannot be NULL.")
}
if (!is.array(var)) {
stop("Parameter 'var' must be a numeric array.")
}
if (length(dim(var)) > 2) {
if (any(dim(var) == 1)) {
var <- drop(var)
dim(var) <- head(c(dim(var), 1, 1), 2)
.warning("Parameter 'var' has more than 2 dimensions. Dimensions with length 1 have been dropped.")
} else {
stop("Parameter 'var' must be a numeric array with two dimensions. See PlotMultiMap() for multi-pannel maps or AnimateMap() for animated maps.")
}
} else if (length(dim(var)) < 2) {
stop("Parameter 'var' must be a numeric array with two dimensions.")
}
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
if (!is.null(names(dim(var)))) {
if (any(names(dim(var)) %in% .KnownLonNames()) &&
any(names(dim(var)) %in% .KnownLatNames())) {
lon_dim <- names(dim(var))[names(dim(var)) %in% .KnownLonNames()]
lat_dim <- names(dim(var))[names(dim(var)) %in% .KnownLatNames()]
} else {
names(dim(var)) <- NULL
lat_dim <- NULL
lon_dim <- NULL
.warning("Dimension names of 'var' doesn't correspond to any coordinates names supported by s2dv package.")
}
} else {
lon_dim <- NULL
lat_dim <- NULL
.warning("Parameter 'var' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the corresponding coordinates dimensions.")
}
if ((dim(var)[1] == length(lon) && dim(var)[2] == length(lat)) ||
(dim(var)[2] == length(lon) && dim(var)[1] == length(lat))) {
if (dim(var)[2] == length(lon) && dim(var)[1] == length(lat)) {
if (length(lon) == length(lat)) {
if (is.null(names(dim(var)))) {
.warning("Parameter 'var' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the first and second dimensions.")
} else {
if (names(dim(var)[1]) == lat_dim) {
transpose <- TRUE
}
}
} else {
} else {
stop("Parameters 'lon' and 'lat' must have as many elements as the number of cells along longitudes and latitudes in the input array 'var'.")
if (!is.null(names(dim(var)))) {
if (names(dim(var)[1]) == lon_dim) {
if (transpose) {
stop("Coordinates dimensions of 'var' doesn't correspond to lat or lon.")
}
} else if (names(dim(var)[2]) == lon_dim) {
if (!transpose) {
stop("Coordinates dimensions of 'var' doesn't correspond to lat or lon.")
}
# Transpose the input matrices because the base plot functions work directly
# with dimensions c(lon, lat).
if (transpose) {
var <- t(var)
}
transpose <- FALSE
names(dim(var)) <- c(lon_dim, lat_dim)
dims <- dim(var)
# Check varu and varv
if (!is.null(varu) && !is.null(varv)) {
if (!is.array(varu) || !(length(dim(varu)) == 2)) {
stop("Parameter 'varu' must be a numerical array with two dimensions.")
if (!is.array(varv) || !(length(dim(varv)) == 2)) {
stop("Parameter 'varv' must be a numerical array with two dimensions.")
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
} else if (!is.null(varu) || !is.null(varv)) {
stop("Only one of the components 'varu' or 'varv' has been provided. Both must be provided.")
}
if (!is.null(varu) && !is.null(varv)) {
if (!all(dim(varu) %in% dim(varv)) || !all(names(dim(varv)) %in% names(dim(varu)))) {
stop("Parameter 'varu' and 'varv' must have equal dimensions and dimension names.")
} else if (any(dim(varu) != dim(varv)) || any(names(dim(varv)) != names(dim(varu)))) {
varv <- t(varv)
names(dim(varv)) <- names(dim(varu))
}
if (is.null(lon_dim)) {
names(dim(varu)) <- NULL
names(dim(varv)) <- NULL
} else {
if (!is.null(names(dim(varu)))) {
if (!(lon_dim %in% names(dim(varu)) && lat_dim %in% names(dim(varu)))) {
stop("Parameters 'varu' and 'varv' must have same dimension names as 'var'.")
} else if (dim(varu)[lon_dim] != dim(var)[lon_dim] || dim(varu)[lat_dim] != dim(var)[lat_dim]) {
stop("Parameters 'varu' and 'varv' must have same dimensions as 'var'.")
}
} else {
.warning("Parameters 'varu' and 'varv' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the corresponding coordinates dimensions.")
}
}
if ((dim(varu)[1] == dims[1] && dim(varu)[2] == dims[2]) ||
(dim(varu)[2] == dims[1] && dim(varu)[1] == dims[2])) {
if (dim(varu)[2] == dims[1] && dim(varu)[1] == dims[2]) {
if (length(lon) == length(lat)) {
if (is.null(names(dim(varu)))) {
.warning("Parameters 'varu' and 'varv' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the first and second dimensions.")
} else {
if (names(dim(varu)[1]) == lat_dim) {
transpose <- TRUE
}
}
} else {
transpose <- TRUE
}
}
} else {
stop("Parameters 'lon' and 'lat' must have as many elements as the number of cells along longitudes and latitudes in the input array 'varu' and 'varv'.")
}
if (transpose) {
varu <- t(varu)
varv <- t(varv)
}
transpose <- FALSE
}
# Check contours
if (!is.null(contours)) {
if (!is.array(contours) || !(length(dim(contours)) == 2)) {
stop("Parameter 'contours' must be a numerical array with two dimensions.")
}
}
if (!is.null(contours)) {
if (is.null(lon_dim)) {
names(dim(contours)) <- NULL
} else {
if (!is.null(names(dim(contours)))) {
if (!(lon_dim %in% names(dim(contours)) && lat_dim %in% names(dim(contours)))) {
stop("Parameters 'contours' must have same dimension names as 'var'.")
} else if (dim(contours)[lon_dim] != dim(var)[lon_dim] || dim(contours)[lat_dim] != dim(var)[lat_dim]) {
stop("Parameters 'contours' must have same dimensions as 'var'.")
}
} else {
.warning("Parameters 'contours' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the corresponding coordinates dimensions.")
}
}
transpose <- FALSE
if ((dim(contours)[1] == dims[1] && dim(contours)[2] == dims[2]) ||
(dim(contours)[2] == dims[1] && dim(contours)[1] == dims[2])) {
if (dim(contours)[2] == dims[1] && dim(contours)[1] == dims[2]) {
if (length(lon) == length(lat)) {
if (is.null(names(dim(contours)))) {
.warning("Parameter 'contours' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the first and second dimensions.")
} else {
if (names(dim(contours)[1]) == lat_dim) {
transpose <- TRUE
}
}
} else {
transpose <- TRUE
}
}
} else {
stop("Parameters 'lon' and 'lat' must have as many elements as the number of cells along longitudes and latitudes in the input array 'contours'.")
}
if (transpose) {
contours <- t(contours)
}
transpose <- FALSE
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
}
# Check toptitle
if (is.null(toptitle) || is.na(toptitle)) {
toptitle <- ''
}
if (!is.character(toptitle)) {
stop("Parameter 'toptitle' must be a character string.")
}
# Check sizetit
if (!is.null(sizetit)) {
.warning("Parameter 'sizetit' is obsolete. Use 'title_scale' instead.")
if (!is.numeric(sizetit) || length(sizetit) != 1) {
stop("Parameter 'sizetit' must be a single numeric value.")
}
title_scale <- sizetit
}
var_limits <- c(min(var, na.rm = TRUE), max(var, na.rm = TRUE))
# Check: brks, cols, subsampleg, bar_limits, color_fun, bar_extra_labels, draw_bar_ticks
# draw_separators, triangle_ends_scale, label_scale, units, units_scale,
# bar_label_digits
# Build: brks, cols, bar_limits, col_inf, col_sup
colorbar <- ColorBar(brks, cols, FALSE, subsampleg, bar_limits, var_limits,
triangle_ends, col_inf, col_sup, color_fun, FALSE,
extra_labels = bar_extra_labels, draw_ticks = draw_bar_ticks,
draw_separators = draw_separators,
triangle_ends_scale = triangle_ends_scale,
label_scale = bar_label_scale, title = units,
title_scale = units_scale, tick_scale = bar_tick_scale,
extra_margin = bar_extra_margin, label_digits = bar_label_digits)
brks <- colorbar$brks
cols <- colorbar$cols
col_inf <- colorbar$col_inf
col_sup <- colorbar$col_sup
bar_limits <- c(head(brks, 1), tail(brks, 1))
# Check colNA
if (is.null(colNA)) {
if ('na_color' %in% names(attributes(cols))) {
colNA <- attr(cols, 'na_color')
if (!.IsColor(colNA)) {
stop("The 'na_color' provided as attribute of the colour vector must be a valid colour identifier.")
}
} else {
colNA <- 'pink'
}
} else if (!.IsColor(colNA)) {
stop("Parameter 'colNA' must be a valid colour identifier.")
}
# Check square
if (!is.logical(square)) {
stop("Parameter 'square' must be logical.")
}
# Check filled.continents
if (is.null(filled.continents)) {
if (!square) {
filled.continents <- FALSE
} else {
filled.continents <- TRUE
}
}
if (!.IsColor(filled.continents) && !is.logical(filled.continents)) {
stop("Parameter 'filled.continents' must be logical or a colour identifier.")
} else if (!is.logical(filled.continents)) {
continent_color <- filled.continents
filled.continents <- TRUE
continent_color <- gray(0.5)
}
# Check filled.oceans
if (!.IsColor(filled.oceans) & !is.logical(filled.oceans)) {
stop("Parameter 'filled.oceans' must be logical or a colour identifier.")
} else if (!is.logical(filled.oceans)) {
ocean_color <- filled.oceans
filled.oceans <- TRUE
} else if (filled.oceans) {
ocean_color <- "light blue"
}
# Check country.borders
if (!is.logical(country.borders)) {
stop("Parameter 'country.borders' must be logical.")
}
# Check coast_color
if (is.null(coast_color)) {
if (filled.continents) {
coast_color <- continent_color
} else {
coast_color <- 'black'
}
}
if (!.IsColor(coast_color)) {
stop("Parameter 'coast_color' must be a valid colour identifier.")
}
# Check coast_width
if (!is.numeric(coast_width)) {
stop("Parameter 'coast_width' must be numeric.")
}
# Check lake_color
if (!.IsColor(lake_color)) {
stop("Parameter 'lake_color' must be a valid colour identifier.")
}
}
# Check shapefile
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
if (!is.null(shapefile)) {
if (is.list(shapefile)) {
shape <- shapefile
if (any(!c('x', 'y') %in% names(shape))) {
stop("The list names of the object in 'shapefile' .rds file should ",
"have at least 'x' and 'y'.")
}
if (length(shape$x) != length(shape$y)) {
stop("The length of x and y in 'shapefile' list should be equal.")
}
} else if (!is.character(shapefile)) {
stop("Parameter 'shapefile' must be a .rds file or a list.")
} else { # .rds file
if (!file.exists(shapefile)) {
stop("Parameter 'shapefile' is not a valid file.")
}
if (!grepl("\\.rds$", shapefile)) {
stop("Parameter 'shapefile' must be a .rds file or a list.")
}
shape <- readRDS(file = shapefile)
if (!is.list(shape)) {
stop("Parameter 'shapefile' should be a .rds file of a list object.")
}
if (any(!c('x', 'y') %in% names(shape))) {
stop("The list names of the object in 'shapefile' .rds file should ",
"have at least 'x' and 'y'.")
}
if (length(shape$x) != length(shape$y)) {
stop("The length of x and y in 'shapefile' list should be equal.")
}
}
}
# Check shapefile_col
if (is.null(shapefile_color)) {
if (filled.continents) {
shapefile_color <- continent_color
} else {
shapefile_color <- 'black'
}
}
if (!.IsColor(shapefile_color)) {
stop("Parameter 'shapefile_color' must be a valid colour identifier.")
}
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
# Check brks2
if (is.null(brks2)) {
if (is.null(contours)) {
if (!square) {
brks2 <- brks
contours <- var
}
} else {
ll <- signif(min(contours, na.rm = TRUE), 2)
ul <- signif(max(contours, na.rm = TRUE), 2)
brks2 <- signif(seq(ll, ul, length.out = length(brks)), 2)
}
}
# Check contour_lwd
if (!is.numeric(contour_lwd)) {
stop("Parameter 'contour_lwd' must be numeric.")
}
# Check contour_color
if (!.IsColor(contour_color)) {
stop("Parameter 'contour_color' must be a valid colour identifier.")
}
# Check contour_lty
if (!is.numeric(contour_lty) && !is.character(contour_lty)) {
stop("Parameter 'contour_lty' must be either a number or a character string.")
}
aho
committed
# Check contour_draw_label
if (!is.logical(contour_draw_label)) {
stop("Parameter 'contour_draw_label' must be logical.")
}
# Check contour_label_scale
if (!is.numeric(contour_label_scale)) {
stop("Parameter 'contour_label_scale' must be numeric.")
}
# Check dots
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
if (!is.array(dots) || !(length(dim(dots)) %in% c(2, 3))) {
stop("Parameter 'dots' must be a logical array with two or three dimensions.")
}
if (length(dim(dots)) == 2) {
dim(dots) <- c(1, dim(dots))
}
if (is.null(lon_dim)) {
names(dim(dots)) <- NULL
} else {
if (!is.null(names(dim(dots)))) {
if (!(lon_dim %in% names(dim(dots)) && lat_dim %in% names(dim(dots)))) {
stop("Parameters 'dots' must have same dimension names as 'var'.")
} else if (dim(dots)[lon_dim] != dim(var)[lon_dim] || dim(dots)[lat_dim] != dim(var)[lat_dim]) {
stop("Parameters 'dots' must have same dimensions as 'var'.")
}
} else {
.warning("Parameters 'dots' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the corresponding coordinates dimensions.")
}
}
transpose <- FALSE
if ((dim(dots)[2] == dims[1] && dim(dots)[3] == dims[2]) ||
(dim(dots)[3] == dims[1] && dim(dots)[2] == dims[2])) {
if (dim(dots)[3] == dims[1] && dim(dots)[2] == dims[2]) {
if (length(lon) == length(lat)) {
if (is.null(names(dim(dots)))) {
.warning("Parameter 'dots' should have dimension names. Coordinates 'lon' and 'lat' have been assigned into the first and second dimensions.")
} else {
if (names(dim(dots)[2]) == lat_dim) {
transpose <- TRUE
}
}
} else {
transpose <- TRUE
}
}
} else {
stop("Parameter 'dots' must have same number of longitudes and latitudes as 'var'.")
}
if (transpose) {
dots <- aperm(dots, c(1, 3, 2))
transpose <- FALSE
}
# Check dot_symbol and dot_size
if (!is.null(dots)) {
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
if (!is.numeric(dot_symbol) && !is.character(dot_symbol)) {
stop("Parameter 'dot_symbol' must be a numeric or character string vector.")
}
if (length(dot_symbol) == 1) {
dot_symbol <- rep(dot_symbol, dim(dots)[1])
} else if (length(dot_symbol) < dim(dots)[1]) {
stop("Parameter 'dot_symbol' does not contain enough symbols.")
}
if (!is.numeric(dot_size)) {
stop("Parameter 'dot_size' must be numeric.")
}
if (length(dot_size) == 1) {
dot_size <- rep(dot_size, dim(dots)[1])
} else if (length(dot_size) < dim(dots)[1]) {
stop("Parameter 'dot_size' does not contain enough sizes.")
}
}
# Check arrow parameters
if (!is.numeric(arr_subsamp)) {
stop("Parameter 'arr_subsamp' must be numeric.")
}
if (!is.numeric(arr_scale)) {
stop("Parameter 'arr_scale' must be numeric.")
}
if (!is.numeric(arr_ref_len)) {
stop("Parameter 'arr_ref_len' must be numeric.")
}
if (!is.character(arr_units)) {
stop("Parameter 'arr_units' must be character.")
}
if (!is.numeric(arr_scale_shaft)) {
stop("Parameter 'arr_scale_shaft' must be numeric.")
}
if (!is.numeric(arr_scale_shaft_angle)) {
stop("Parameter 'arr_scale_shaft_angle' must be numeric.")
}
# Check axis parameters
if (!is.logical(axelab)) {
stop("Parameter 'axelab' must be logical.")
}
if (!is.logical(labW)) {
stop("Parameter 'labW' must be logical.")
}
if (!is.null(lab_dist_x)) {
if (!is.numeric(lab_dist_x)) {
stop("Parameter 'lab_dist_x' must be numeric.")
}
}
if (!is.null(lab_dist_y)) {
if (!is.numeric(lab_dist_y)) {
stop("Parameter 'lab_dist_y' must be numeric.")
}
}
if (!is.numeric(intylat)) {
stop("Parameter 'intylat' must be numeric.")
} else {
intylat <- round(intylat)
}
if (!is.numeric(intxlon)) {
stop("Parameter 'intxlon' must be numeric.")
} else {
intxlon <- round(intxlon)
}
if (!is.numeric(xlonshft) | length(xlonshft) != 1) {
stop("Parameter 'xlonshft' must be a number.")
}
if (!is.numeric(ylatshft) | length(ylatshft) != 1) {
stop("Parameter 'ylatshft' must be a number.")
}
if (!is.null(xlabels)) {
if (!is.character(xlabels) | !is.vector(xlabels)) {
stop("Parameter 'xlabels' must be a vector of character string.")
}
}
if (!is.null(ylabels)) {
if (!is.character(ylabels) | !is.vector(ylabels)) {
stop("Parameter 'ylabels' must be a vector of character string.")
}
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
# Check legend parameters
if (!is.logical(drawleg)) {
stop("Parameter 'drawleg' must be logical.")
}
# Check box parameters
if (!is.null(boxlim)) {
if (!is.list(boxlim)) {
boxlim <- list(boxlim)
}
for (i in 1:length(boxlim)) {
if (!is.numeric(boxlim[[i]]) || length(boxlim[[i]]) != 4) {
stop("Parameter 'boxlim' must be a a numeric vector or a list of numeric vectors of length 4 (with W, S, E, N box limits).")
}
}
if (!is.character(boxcol)) {
stop("Parameter 'boxcol' must be a character string or a vector of character strings.")
} else {
if (length(boxlim) != length(boxcol)) {
if (length(boxcol) == 1) {
boxcol <- rep(boxcol, length(boxlim))
} else {
stop("Parameter 'boxcol' must have a colour for each box in 'boxlim' or a single colour for all boxes.")
}
}
}
if (!is.numeric(boxlwd)) {
stop("Parameter 'boxlwd' must be numeric.")
} else {
if (length(boxlim) != length(boxlwd)) {
if (length(boxlwd) == 1) {
boxlwd <- rep(boxlwd, length(boxlim))
} else {
stop("Parameter 'boxlwd' must have a line width for each box in 'boxlim' or a single line width for all boxes.")
}
}
}
}
# Check margin_scale
if (!is.numeric(margin_scale) || length(margin_scale) != 4) {
stop("Parameter 'margin_scale' must be a numeric vector of length 4.")
}
# Check title_scale
if (!is.numeric(title_scale)) {
stop("Parameter 'title_scale' must be numeric.")
}
# Check axes_tick_scale
if (!is.numeric(axes_tick_scale)) {
stop("Parameter 'axes_tick_scale' must be numeric.")
}
# Check axes_label_scale
if (!is.numeric(axes_label_scale)) {
stop("Parameter 'axes_label_scale' must be numeric.")
}
# Check numbfig
if (!is.null(numbfig)) {
if (!is.numeric(numbfig)) {
stop("Parameter 'numbfig' must be numeric.")
} else {
numbfig <- round(numbfig)
scale <- 1 / numbfig ** 0.3
axes_tick_scale <- axes_tick_scale * scale
axes_label_scale <- axes_label_scale * scale
title_scale <- title_scale * scale
margin_scale <- margin_scale * scale
arr_scale <- arr_scale * scale
dot_size <- dot_size * scale
contour_label_scale <- contour_label_scale * scale
contour_lwd <- contour_lwd * scale
}
}
#
# Input arguments
# ~~~~~~~~~~~~~~~~~
#
latb <- sort(lat, index.return = TRUE)
wher <- which(dlon > (mean(dlon) + 1))
if (length(wher) > 0) {
warning("Detect gap in 'lon' vector, which is considered as crossing the border.")
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
lon[(wher + 1):dims[1]] <- lon[(wher + 1):dims[1]] - 360
}
lonb <- sort(lon, index.return = TRUE)
latmin <- floor(min(lat) / 10) * 10
latmax <- ceiling(max(lat) / 10) * 10
lonmin <- floor(min(lon) / 10) * 10
lonmax <- ceiling(max(lon) / 10) * 10
#
# Plotting the map
# ~~~~~~~~~~~~~~~~~~
#
# Open connection to graphical device
if (!is.null(fileout)) {
saveToFile(fileout)
} else if (names(dev.cur()) == 'null device') {
dev.new(units = size_units, res = res, width = width, height = height)
}
#
# Defining the layout
# ~~~~~~~~~~~~~~~~~~~~~
#
if (drawleg) {
margin_scale[1] <- margin_scale[1] - 1
}
margins <- rep(0.4, 4) * margin_scale
cex_title <- 2 * title_scale
cex_axes_labels <- 1.3 * axes_label_scale
cex_axes_ticks <- -0.5 * axes_tick_scale
spaceticklab <- 0
if (axelab) {
# Y axis label
if (!is.null(ylabels)) {
ypos <- seq(latmin, latmax, intylat) + ylatshft
if (length(ypos) != length(ylabels)) {
stop(paste0("Parameter 'ylabels' must have the same length as the latitude ",
"vector spaced by 'intylat' (length = ", length(ypos), ")."))
}
ylabs <- ylabels
ypos <- seq(latmin, latmax, intylat) + ylatshft
letters <- array('', length(ypos))
if (degree_sym == FALSE) {
letters[ypos < 0] <- 'S'
letters[ypos > 0] <- 'N'
} else {
letters[ypos < 0] <- paste(intToUtf8(176), 'S')
letters[ypos > 0] <- paste(intToUtf8(176), 'N')
}
ylabs <- paste(as.character(abs(ypos)), letters, sep = '')
# X axis label
if (!is.null(xlabels)) {
xpos <- seq(lonmin, lonmax, intxlon) + xlonshft
if (length(xpos) != length(xlabels)) {
stop(paste0("Parameter 'xlabels' must have the same length as the longitude ",
"vector spaced by 'intxlon' (length = ", length(xpos), ")."))
}
xlabs <- xlabels
xpos <- seq(lonmin, lonmax, intxlon) + xlonshft
letters <- array('', length(xpos))
if (labW) {
xpos2 <- xpos
xpos2[xpos2 > 180] <- 360 - xpos2[xpos2 > 180]
}
letters[xpos < 0] <- 'W'
letters[xpos > 0] <- 'E'