CDORemap.R 49.3 KB
Newer Older
#'Interpolate arrays with longitude and latitude dimensions using CDO
#'
#'This function takes as inputs a multidimensional array (optional), a vector 
#'or matrix of longitudes, a vector or matrix of latitudes, a destination grid 
#'specification, and the name of a method to be used to interpolate (one of 
#'those available in the 'remap' utility in CDO). The interpolated array is 
#'returned (if provided) together with the new longitudes and latitudes.\cr\cr 
#'\code{CDORemap()} permutes by default the dimensions of the input array (if 
#'needed), splits it in chunks (CDO can work with data arrays of up to 4 
#'dimensions), generates a file with the data of each chunk, interpolates it 
#'with CDO, reads it back into R and merges it into a result array. If no 
#'input array is provided, the longitude and latitude vectors will be 
#'transformed only. If the array is already on the desired destination grid, 
#'no transformation is performed (this behvaiour works only for lonlat and 
#'gaussian grids). \cr\cr
#'Any metadata attached to the input data array, longitudes or latitudes will 
#'be preserved or accordingly modified.
#'
#'@param data_array Multidimensional numeric array to be interpolated. If 
#'  provided, it must have at least a longitude and a latitude dimensions, 
#'  identified by the array dimension names. The names for these dimensions 
#'  must be one of the recognized by s2dverification (can be checked with 
#'  \code{s2dverification:::.KnownLonNames()} and 
#'  \code{s2dverification:::.KnownLatNames()}).
#'@param lons Numeric vector or array of longitudes of the centers of the grid 
#'  cells. Its size must match the size of the longitude/latitude dimensions 
#'  of the input array.
#'@param lats Numeric vector or array of latitudes of the centers of the grid 
#'  cells. Its size must match the size of the longitude/latitude dimensions 
#'  of the input array.
#'@param grid Character string specifying either a name of a target grid 
#'  (recognized by CDO; e.g.: 'r256x128', 't106grid') or a path to another 
#'  NetCDF file which to read the target grid from (a single grid must be 
#'  defined in such file).
#'@param method Character string specifying an interpolation method 
#'  (recognized by CDO; e.g.: 'con', 'bil', 'bic', 'dis'). The following 
#'  long names are also supported: 'conservative', 'bilinear', 'bicubic' and 
#'  'distance-weighted'.
#'@param avoid_writes The step of permutation is needed when the input array 
#'  has more than 3 dimensions and none of the longitude or latitude dimensions
#'   in the right-most position (CDO would not accept it without permuting 
#'  previously). This step, executed by default when needed, can be avoided 
#'  for the price of writing more intermediate files (whis usually is 
#'  unconvenient) by setting the parameter \code{avoid_writes = TRUE}.
#'@param crop Whether to crop the data after interpolation with 
#'  'cdo sellonlatbox' (TRUE) or to extend interpolated data to the whole 
#'  world as CDO does by default (FALSE). If \code{crop = TRUE} then the 
#'  longitude and latitude borders which to crop at are taken as the limits of 
#'  the cells at the borders ('lons' and 'lats' are perceived as cell centers), 
#'  i.e. the resulting array will contain data that covers the same area as 
#'  the input array. This is equivalent to specifying \code{crop = 'preserve'}, 
#'  i.e. preserving area. If \code{crop = 'tight'} then the borders which to 
#'  crop at are taken as the minimum and maximum cell centers in 'lons' and 
#'  'lats', i.e. the area covered by the resulting array may be smaller if 
#'  interpolating from a coarse grid to a fine grid. The parameter 'crop' also 
#'  accepts a numeric vector of custom borders which to crop at: 
#'  c(western border, eastern border, southern border, northern border).
#'@param force_remap Whether to force remapping, even if the input data array 
#'  is already on the target grid.
#'@param write_dir Path to the directory where to create the intermediate 
#'  files for CDO to work. By default, the R session temporary directory is 
#'  used (\code{tempdir()}).
#'
#'@return A list with the following components:
#'  \item{'data_array'}{The interpolated data array (if an input array 
#'  is provided at all, NULL otherwise).}
#'  \item{'lons'}{The longitudes of the data on the destination grid.}
#'  \item{'lats'}{The latitudes of the data on the destination grid.}
#'@examples
#'  \dontrun{
#'# Interpolating only vectors of longitudes and latitudes
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(NULL, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Minimal array interpolation
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Metadata can be attached to the inputs. It will be preserved and 
#'# accordignly modified.
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = 25)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(lat = list(len = 25,
#'                                                  vals = lat),
#'                                       lon = list(len = 50,
#'                                                  vals = lon)
#'                                      )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Arrays of any number of dimensions in any order can be provided.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10), 
#'             dim = c(10, num_lats, 10, num_lons, 10))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon', 'c')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#'                                       lat = list(len = num_lats,
#'                                                  vals = lat),
#'                                       b = list(),
#'                                       lon = list(len = num_lons,
#'                                                  vals = lon),
#'                                       c = list()
#'                                      )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'# The step of permutation can be avoided but more intermediate file writes
#'# will be performed.
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# If the provided array has the longitude or latitude dimension in the 
#'# right-most position, the same number of file writes will be performed,
#'# even if avoid_wrties = FALSE.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10), 
#'             dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#'                                       lat = list(len = num_lats,
#'                                                  vals = lat),
#'                                       b = list(),
#'                                       lon = list(len = num_lons,
#'                                                  vals = lon)
#'                                      )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# An example of an interpolation from and onto a rectangular regular grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(1*num_lats*num_lons), dim = c(num_lats, num_lons))
#'names(dim(tas)) <- c('y', 'x')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons), 
#'             dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('x', 'y')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats), 
#'               dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('x', 'y')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 'r100x50', 'bil')
#'
#'# An example of an interpolation from an irregular grid onto a gaussian grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10), 
#'             dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons), 
#'             dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('i', 'j')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats), 
#'         dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('i', 'j')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'
#'# Again, the dimensions can be in any order
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons), 
#'             dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons), 
#'             dim = c(num_lons, num_lats))
#'names(dim(lon)) <- c('i', 'j')
#'lat <- t(array(seq(-90, 90, length.out = num_lats), 
#'               dim = c(num_lats, num_lons)))
#'names(dim(lat)) <- c('i', 'j')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'# It is ossible to specify an external NetCDF file as target grid reference
#'tas2 <- CDORemap(tas, lon, lat, 'external_file.nc', 'bil')
#'}
#'@import ncdf4
#'@importFrom easyNCDF ArrayToNc
#'@importFrom stats lm predict setNames 
#'@export
CDORemap <- function(data_array = NULL, lons, lats, grid, method, 
                     avoid_writes = TRUE, crop = TRUE,
                     force_remap = FALSE, write_dir = tempdir()) {  #, mask = NULL) {
  .isRegularVector <- function(x, tol = 0.1) {
    if (length(x) < 2) {
      #stop("The provided vector must be of length 2 or greater.")
      TRUE
    } else {
      spaces <- x[2:length(x)] - x[1:(length(x) - 1)]
      (sum(abs(spaces - mean(spaces)) > mean(spaces) / (1 / tol)) < 2)
    }
  }
  # Check parameters data_array, lons and lats.
  known_lon_names <- .KnownLonNames()
  known_lat_names <- .KnownLatNames()
  if (!is.numeric(lons) || !is.numeric(lats)) {
    stop("Expected numeric 'lons' and 'lats'.")
  }
  if (any(is.na(lons > 0))) {
    stop("Found invalid values in 'lons'.")
  }
  if (any(is.na(lats > 0))) {
    stop("Found invalid values in 'lats'.")
  }
  if (is.null(dim(lons))) {
    dim(lons) <- length(lons)
  }
  if (is.null(dim(lats))) {
    dim(lats) <- length(lats)
  }
  if (length(dim(lons)) > 2 || length(dim(lats)) > 2) {
    stop("'lons' and 'lats' can only have up to 2 dimensions.")
  }
  if (length(dim(lons)) != length(dim(lats))) {
    stop("'lons' and 'lats' must have the same number of dimensions.")
  }
  if (length(dim(lons)) == 2 && !all(dim(lons) == dim(lats))) {
    stop("'lons' and 'lats' must have the same dimension sizes.")
  }
  return_array <- TRUE
  if (is.null(data_array)) {
    return_array <- FALSE
    if (length(dim(lons)) == 1) {
      array_dims <- c(length(lats), length(lons))
      new_lon_dim_name <- 'lon'
      new_lat_dim_name <- 'lat'

      if (!is.null(names(dim(lons)))) {
        if (any(known_lon_names %in% names(dim(lons)))) {
          new_lon_dim_name <- known_lon_names[which(known_lon_names %in% names(dim(lons)))[1]]
        }
      if (!is.null(names(dim(lats)))) {
        if (any(known_lat_names %in% names(dim(lats)))) {
          new_lat_dim_name <- known_lat_names[which(known_lat_names %in% names(dim(lats)))[1]]
        }
      }
      names(array_dims) <- c(new_lat_dim_name, new_lon_dim_name)

    } else {  # irregular
      array_dims <- dim(lons)
      if (is.null(names(array_dims))) {
        new_lon_dim_name <- 'i'
        new_lat_dim_name <- 'j'
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
    data_array <- array(as.numeric(NA), array_dims)
  }
  if (!(is.logical(data_array) || is.numeric(data_array)) || !is.array(data_array)) {
    stop("Parameter 'data_array' must be a numeric array.")
  }
  if (is.null(names(dim(data_array)))) {
    stop("Parameter 'data_array' must have named dimensions.")
  }
  lon_dim <- which(known_lon_names %in% names(dim(data_array)))
  if (length(lon_dim) < 1) {
    stop("Could not find a known longitude dimension name in the provided 'data_array'.")
  }
  if (length(lon_dim) > 1) {
    stop("Found more than one known longitude dimension names in the provided 'data_array'.")
  }
  lon_dim <- known_lon_names[lon_dim]
  lat_dim <- which(known_lat_names %in% names(dim(data_array)))
  if (length(lat_dim) < 1) {
    stop("Could not find a known latitude dimension name in the provided 'data_array'.")
  }
  if (length(lat_dim) > 1) {
    stop("Found more than one known latitude dimension name in the provided 'data_array'.")
  }
  lat_dim <- known_lat_names[lat_dim]
  if (is.null(names(dim(lons)))) {
    if (length(dim(lons)) == 1) {
      names(dim(lons)) <- lon_dim
    } else {
      stop("Parameter 'lons' must be provided with dimension names.")
    }
  } else {
    if (!(lon_dim %in% names(dim(lons)))) {
      stop("Parameter 'lon' must have the same longitude dimension name as the 'data_array'.")
    }
    if (length(dim(lons)) > 1 && !(lat_dim %in% names(dim(lons)))) {
      stop("Parameter 'lon' must have the same latitude dimension name as the 'data_array'.")
    }
  }
  if (is.null(names(dim(lats)))) {
    if (length(dim(lats)) == 1) {
      names(dim(lats)) <- lat_dim
    } else {
      stop("Parameter 'lats' must be provided with dimension names.")
    }
  } else {
    if (!(lat_dim %in% names(dim(lats)))) {
      stop("Parameter 'lat' must have the same latitude dimension name as the 'data_array'.")
    }
    if (length(dim(lats)) > 1 && !(lon_dim %in% names(dim(lats)))) {
      stop("Parameter 'lat' must have the same longitude dimension name as the 'data_array'.")
    }
  }
  lons_attr_bk <- attributes(lons)
  if (is.null(lons_attr_bk)) {
    lons_attr_bk <- list()
  }
  lats_attr_bk <- attributes(lats)
  if (is.null(lats_attr_bk)) {
    lats_attr_bk <- list()
  }
  if (length(attr(lons, 'variables')) == 0) {
    new_metadata <- list(list())
    if (length(dim(lons)) == 1) {
      names(new_metadata) <- lon_dim
    } else {
      names(new_metadata) <- paste0(lon_dim, '_var')
    }
    attr(lons, 'variables') <- new_metadata
  }
  if (!('units' %in% names(attr(lons, 'variables')[[1]]))) {
    new_metadata <- attr(lons, 'variables')
    #names(new_metadata)[1] <- lon_dim
    new_metadata[[1]][['units']] <- 'degrees_east'
    attr(lons, 'variables') <- new_metadata
  }
  if (length(attr(lats, 'variables')) == 0) {
    new_metadata <- list(list())
    if (length(dim(lats)) == 1) {
      names(new_metadata) <- lat_dim
    } else {
      names(new_metadata) <- paste0(lat_dim, '_var')
    }
    attr(lats, 'variables') <- new_metadata
  }
  if (!('units' %in% names(attr(lats, 'variables')[[1]]))) {
    new_metadata <- attr(lats, 'variables')
    #names(new_metadata)[1] <- lat_dim
    new_metadata[[1]][['units']] <- 'degrees_north'
    attr(lats, 'variables') <- new_metadata
  }
  # Check grid.
  if (!is.character(grid)) {
    stop("Parameter 'grid' must be a character string specifying a ",
         "target CDO grid, 'rXxY' or 'tRESgrid', or a path to another ",
         "NetCDF file.")
  }
  if (grepl('^r[0-9]{1,}x[0-9]{1,}$', grid)) {
    grid_type <- 'regular'
    grid_lons <- as.numeric(strsplit(strsplit(grid, 'x')[[1]][1], 'r')[[1]][2])
    grid_lats <- as.numeric(strsplit(grid, 'x')[[1]][2])
  } else if (grepl('^t[0-9]{1,}grid$', grid)) {
    grid_type <- 'gaussian'
    grid_t <- as.numeric(strsplit(strsplit(grid, 'grid')[[1]][1], 't')[[1]][2])
    grid_size <- .t2nlatlon(grid_t)
    grid_lons <- grid_size[2]
    grid_lats <- grid_size[1]
  } else {
    grid_type <- 'custom'
  }
  # Check method.
  if (method %in% c('bil', 'bilinear')) {
    method <- 'bil'
  } else if (method %in% c('bic', 'bicubic')) {
    method <- 'bic'
  } else if (method %in% c('con', 'conservative')) {
    method <- 'con'
  } else if (method %in% c('dis', 'distance-weighted')) {
    method <- 'dis'
  } else {
    stop("Unsupported CDO remap method. 'bilinear', 'bicubic', 'conservative' or 'distance-weighted' supported only.")
  }
  # Check avoid_writes
  if (!is.logical(avoid_writes)) {
    stop("Parameter 'avoid_writes' must be a logical value.")
  }
  # Check crop
  crop_tight <- FALSE
  if (is.character(crop)) {
    if (crop == 'tight') {
      crop_tight <- TRUE
    } else if (crop != 'preserve') {
      stop("Parameter 'crop' can only take the values 'tight' or 'preserve' if specified as a character string.")
    }
    crop <- TRUE
  }
  if (is.logical(crop)) {
    if (crop) {
            warning("Parameter 'crop' = 'TRUE'. The output grid range will follow the input lons and lats.")
      if (length(lons) == 1 || length(lats) == 1) {
        stop("CDORemap cannot remap if crop = TRUE and values for only one ",
             "longitude or one latitude are provided. Either a) provide ",
             "values for more than one longitude/latitude, b) explicitly ",
             "specify the crop limits in the parameter crop, or c) set ",
             "crop = FALSE.")
      }
      if (crop_tight) {
        lon_extremes <- c(min(lons), max(lons))
        lat_extremes <- c(min(lats), max(lats))
      } else {
        # Here we are trying to look for the extreme lons and lats in the data.
        # Not the centers of the extreme cells, but the borders of the extreme cells.
###---
        if (length(dim(lons)) == 1) {
          tmp_lon <- lons
        } else {
          min_pos <- which(lons == min(lons), arr.ind = TRUE)[1, ]
          tmp_lon <- Subset(lons, lat_dim, min_pos[which(names(dim(lons)) == lat_dim)], drop = 'selected')
        }
        i <- 1:length(tmp_lon)
        degree <- min(3, length(i) - 1)
        lon_model <- lm(tmp_lon ~ poly(i, degree))
        lon_extremes <- c(NA, NA)
        left_is_min <- FALSE
        right_is_max <- FALSE
        if (which.min(tmp_lon) == 1) {
          left_is_min <- TRUE
          prev_lon <- predict(lon_model, data.frame(i = 0))
          first_lon_cell_width <- (tmp_lon[1] - prev_lon)
          # The signif is needed because cdo sellonlatbox crashes with too many digits
          lon_extremes[1] <- tmp_lon[1] - first_lon_cell_width / 2
        } else {
          lon_extremes[1] <- min(tmp_lon)
        }
        if (which.max(tmp_lon) == length(tmp_lon)) {
          right_is_max <- TRUE
          next_lon <- predict(lon_model, data.frame(i = length(tmp_lon) + 1))
          last_lon_cell_width <- (next_lon - tmp_lon[length(tmp_lon)])
          lon_extremes[2] <- tmp_lon[length(tmp_lon)] + last_lon_cell_width / 2
        } else {
          lon_extremes[2] <- max(tmp_lon)
        }
        # Adjust the crop window if possible in order to keep lons from 0 to 360 
        # or from -180 to 180 when the extremes of the cropped window are contiguous.
        if (right_is_max) {
          if (lon_extremes[1] < -180) {
            if (!((lon_extremes[2] < 180) && !((180 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
              lon_extremes[1] <- -180
              lon_extremes[2] <- 180
            }
          } else if (lon_extremes[1] < 0) {
            if (!((lon_extremes[2] < 360) && !((360 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
              lon_extremes[1] <- 0
              lon_extremes[2] <- 360
            }
          }
        } 
        if (left_is_min) {
          if (lon_extremes[2] > 360) {
            if (!((lon_extremes[1] > 0) && !(lon_extremes[1] <= first_lon_cell_width / 2))) {
              lon_extremes[1] <- 0
              lon_extremes[2] <- 360
            }
          } else if (lon_extremes[2] > 180) {
            if (!((lon_extremes[1] > -180) && !((180 + lon_extremes[1]) <= first_lon_cell_width / 2))) {
              lon_extremes[1] <- -180
              lon_extremes[2] <- 180
            }
          }
        } 
##      lon_extremes <- signif(lon_extremes, 5)
##      lon_extremes <- lon_extremes + 0.00001
###---
        if (length(dim(lats)) == 1) {
          tmp_lat <- lats
        } else {
          min_pos <- which(lats == min(lats), arr.ind = TRUE)[1, ]
          tmp_lat <- Subset(lats, lon_dim, min_pos[which(names(dim(lats)) == lon_dim)], drop = 'selected')
        }
        i <- 1:length(tmp_lat)
        degree <- min(3, length(i) - 1)
        lat_model <- lm(tmp_lat ~ poly(i, degree))
        lat_extremes <- c(NA, NA)
        if (which.min(tmp_lat) == 1) {
          prev_lat <- predict(lat_model, data.frame(i = 0))
          lat_extremes[1] <- tmp_lat[1] - (tmp_lat[1] - prev_lat) / 2
        } else {
          lat_extremes[1] <- min(tmp_lat)
        }
        if (which.max(tmp_lat) == length(tmp_lat)) {
          next_lat <- predict(lat_model, data.frame(i = length(tmp_lat) + 1))
          lat_extremes[2] <- tmp_lat[length(tmp_lat)] + (next_lat - tmp_lat[length(tmp_lat)]) / 2
        } else {
          lat_extremes[2] <- max(tmp_lat)
        }
##      lat_extremes <- signif(lat_extremes, 5)
        # Adjust crop window
        if (lat_extremes[1] < -90) {
          lat_extremes[1] <- -90
        } else if (lat_extremes[1] > 90) {
          lat_extremes[1] <- 90
        }
        if (lat_extremes[2] < -90) {
          lat_extremes[2] <- -90
        } else if (lat_extremes[2] > 90) {
          lat_extremes[2] <- 90
        }
###---
      }
    }  else if (crop == FALSE) {
       warning("Parameter 'crop' = 'FALSE'. The output grid range will follow parameter 'grid'.")
    }
  } else if (is.numeric(crop)) {
    if (length(crop) != 4) {
      stop("Paramrter 'crop' must be a logical value or a numeric vector of length 4: c(western border, eastern border, southern border, northern border.")
    } else {
      lon_extremes <- crop[1:2]
      lat_extremes <- crop[3:4]
      crop <- TRUE
    }
  } else {
    stop("Parameter 'crop' must be a logical value or a numeric vector.")
  }
  # Check force_remap
  if (!is.logical(force_remap)) {
    stop("Parameter 'force_remap' must be a logical value.")
  }
  # Check write_dir
  if (!is.character(write_dir)) {
    stop("Parameter 'write_dir' must be a character string.")
  }
  if (!dir.exists(write_dir)) {
    stop("Parameter 'write_dir' must point to an existing directory.")
  }
#  if (!is.null(mask)) {
#    if (!is.numeric(mask) || !is.array(mask)) {
#      stop("Parameter 'mask' must be a numeric array.")
#    }
#    if (length(dim(mask)) != 2) {
#      stop("Parameter 'mask' must have two dimensions.")
#    }
#    if (is.null(names(dim(mask)))) {
#      if (dim(data_array)[lat_dim] == dim(data_array)[lon_dim]) {
#        stop("Cannot disambiguate which is the longitude dimension of ",
#             "the provided 'mask'. Provide it with dimension names.")
#      }
#      names(dim(mask)) <- c('', '')
#      found_lon_dim <- which(dim(mask) == dim(data_array)[lon_dim])
#      if (length(found_lon_dim) < 0) {
#        stop("The dimension sizes of the provided 'mask' do not match ",
#             "the spatial dimension sizes of the array to interpolate.")
#      } else {
#        names(dim(mask)[found_lon_dim]) <- lon_dim
#      }
#      found_lat_dim <- which(dim(mask) == dim(data_array)[lat_dim])
#      if (length(found_lat_dim) < 0) {
#        stop("The dimension sizes of the provided 'mask' do not match ",
#             "the spatial dimension sizes of the array to interpolate.")
#      } else {
#        names(dim(mask)[found_lat_dim]) <- lat_dim
#      }
#    }
#    lon_position <- which(names(dim(data_array)) == lon_dim)
#    lat_position <- which(names(dim(data_array)) == lat_dim)
#    if (lon_position > lat_position) {
#      if (names(dim(mask))[1] == lon_dim) {
#        mask <- t(mask)
#      }
#    } else {
#      if (names(dim(mask))[1] == lat_dim) {
#        mask <- t(mask)
#      }
#    }
#    ## TODO: Apply mask!!! Preserve attributes
#  }
  # Check if interpolation can be skipped.
  interpolation_needed <- TRUE
  if (!force_remap) {
    if (!(grid_type == 'custom')) {
      if (length(lons) == grid_lons && length(lats) == grid_lats) {
        if (grid_type == 'regular') {
          if (.isRegularVector(lons) && .isRegularVector(lats)) {
            interpolation_needed <- FALSE
          }
        } else if (grid_type == 'gaussian') {
          # TODO: improve this check. Gaussian quadrature should be used.
          if (.isRegularVector(lons) && !.isRegularVector(lats)) {
            interpolation_needed <- FALSE
          }
        }
      }
    }
  }
  found_lons <- lons
  found_lats <- lats
  if (interpolation_needed) {
    if (nchar(Sys.which('cdo')[1]) < 1) {
      stop("CDO must be installed in order to use the .CDORemap.")
    }
    cdo_version <- as.numeric_version(
      strsplit(suppressWarnings(system2("cdo", args = '-V', stderr = TRUE))[[1]], ' ')[[1]][5]
    )
    warning("CDORemap: Using CDO version ", cdo_version, ".")
    if ((cdo_version >= as.numeric_version('1.7.0')) && (method == 'con')) {
      method <- 'ycon'
    }
    # CDO takes arrays of 3 dimensions or 4 if one of them is unlimited.
    # The unlimited dimension can only be the left-most (right-most in R).
    # There are no restrictions for the dimension names or variable names.
    # The longitude and latitude are detected by their units.
    # There are no restrictions for the order of the limited dimensions.
    # The longitude/latitude variables and dimensions must have the same name.
    # The procedure consists in:
    # - take out the array metadata
    # - be aware of var dimension (replacing the dimension names would do).
    # - take arrays of 4 dimensions always if possible
    # - make the last dimension unlimited when saving to netcdf
    # - if the last dimension is lon or lat, either reorder the array and 
    #   then reorder back or iterate over the dimensions at the right
    #   side of lon AND lat.
    # If the input array has more than 4 dimensions, it is needed to
    # run CDO on each sub-array of 4 dimensions because it can handle
    # only up to 4 dimensions. The shortest dimensions are chosen to 
    # iterate over.
    is_irregular <- FALSE
    if (length(dim(lats)) > 1 && length(dim(lons)) > 1) {
      is_irregular <- TRUE
    }
    attribute_backup <- attributes(data_array)
    other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
    permutation <- NULL
    unlimited_dim <- NULL
    dims_to_iterate <- NULL
    total_slices <- 1
    other_dims_per_chunk <- ifelse(is_irregular, 1, 2)  # 4 (the maximum accepted by CDO) - 2 (lon, lat) = 2.
    if (length(other_dims) > 1 || (length(other_dims) > 0 && (is_irregular))) {
      if (!(length(dim(data_array)) %in% other_dims)) {
        if (avoid_writes || is_irregular) {
          dims_mod <- dim(data_array)
          dims_mod[which(names(dim(data_array)) %in%
                   c(lon_dim, lat_dim))] <- 0
          dim_to_move <- which.max(dims_mod)
          permutation <- (1:length(dim(data_array)))[-dim_to_move]
          permutation <- c(permutation, dim_to_move)
          permutation_back <- sort(permutation, index.return = TRUE)$ix
          dim_backup <- dim(data_array)
          data_array <- aperm(data_array, permutation)
          dim(data_array) <- dim_backup[permutation]
          other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
        } else {
          # We allow only lon, lat and 1 more dimension per chunk, so 
          # CDO has no restrictions in the order.
          other_dims_per_chunk <- 1
        }
      }
      other_dims_ordered_by_size <- other_dims[sort(dim(data_array)[other_dims], index.return = TRUE)$ix]
      dims_to_iterate <- sort(head(other_dims_ordered_by_size, length(other_dims) - other_dims_per_chunk))
      if (length(dims_to_iterate) == 0) {
        dims_to_iterate <- NULL
      } else {
        slices_to_iterate <- array(1:prod(dim(data_array)[dims_to_iterate]), 
                                    dim(data_array)[dims_to_iterate])
        total_slices <- prod(dim(slices_to_iterate))
      }
      if ((other_dims_per_chunk > 1) || (other_dims_per_chunk > 0 && is_irregular)) {
        unlimited_dim <- tail(sort(tail(other_dims_ordered_by_size, other_dims_per_chunk)), 1)
        #unlimited_dim <- tail(other_dims)
      }
    }

    result_array <- NULL
    lon_pos <- which(names(dim(data_array)) == lon_dim)
    lat_pos <- which(names(dim(data_array)) == lat_dim)
    dim_backup <- dim(data_array)
    attributes(data_array) <- NULL
    dim(data_array) <- dim_backup
    names(dim(data_array)) <- paste0('dim', 1:length(dim(data_array)))
    names(dim(data_array))[c(lon_pos, lat_pos)] <- c(lon_dim, lat_dim)
    if (!is.null(unlimited_dim)) {
      # This will make ArrayToNc create this dim as unlimited.
      names(dim(data_array))[unlimited_dim] <- 'time'
    }
    if (length(dim(lons)) == 1) {
      names(dim(lons)) <- lon_dim
    }
    if (length(dim(lats)) == 1) {
      names(dim(lats)) <- lat_dim
    }
    if (length(dim(lons)) > 1) {
      lon_var_name <- paste0(lon_dim, '_var')
    } else {
      lon_var_name <- lon_dim
    }
    if (length(dim(lats)) > 1) {
      lat_var_name <- paste0(lat_dim, '_var')
    } else {
      lat_var_name <- lat_dim
    }
    if (is_irregular) {
      metadata <- list(list(coordinates = paste(lon_var_name, lat_var_name)))
      names(metadata) <- 'var'
      attr(data_array, 'variables') <- metadata
    }
    names(attr(lons, 'variables')) <- lon_var_name
    names(attr(lats, 'variables')) <- lat_var_name
    if (!is.null(attr(lons, 'variables')[[1]][['dim']])) {
      attr(lons, 'variables')[[1]][['dim']] <- NULL
    }
    if (!is.null(attr(lats, 'variables')[[1]][['dim']])) {
      attr(lats, 'variables')[[1]][['dim']] <- NULL
    }
    lons_lats_taken <- FALSE
    for (i in 1:total_slices) {
      tmp_file <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
      tmp_file2 <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
      if (!is.null(dims_to_iterate)) {
        slice_indices <- which(slices_to_iterate == i, arr.ind = TRUE)
        subset <- Subset(data_array, dims_to_iterate, as.list(slice_indices), drop = 'selected')
        # Fix issue 259, curvilinear grid, the order of the dimensions in slices and 
        # coordinates needs to match
        if (is_irregular) {
          pos_lon <- which(names(dim(subset)) == lon_dim)
          pos_lat <- which(names(dim(subset)) == lat_dim)
          pos_lon_dim_in_lons <- which(names(dim(lons)) == lon_dim)
          pos_lat_dim_in_lons <- which(names(dim(lons)) == lat_dim)
        if ((pos_lon > pos_lat && pos_lon_dim_in_lons < pos_lat_dim_in_lons) ||
         (pos_lon < pos_lat && pos_lon_dim_in_lons > pos_lat_dim_in_lons)) {
            new_pos <- 1:length(dim(subset))
            new_pos[pos_lon] <- pos_lat
            new_pos[pos_lat] <- pos_lon
            subset <- .aperm2(subset, new_pos)
          }
          # The unlimited dimension should be placed in the last position
          if ('time' %in% names(dim(subset)) &&
            which(names(dim(subset)) == 'time') != length(dim(subset))) {
            new_pos <- 2:length(dim(subset))
            new_pos[length(dim(subset))] <- 1
            subset <- .aperm2(subset, new_pos)
          }
        }
#        dims_before_crop <- dim(subset)
        # Make sure subset goes along with metadata
        easyNCDF::ArrayToNc(setNames(list(subset, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
         if (is_irregular) {
           pos_lon <- which(names(dim(data_array)) == lon_dim)
           pos_lat <- which(names(dim(data_array)) == lat_dim)
           pos_lon_dim_in_lons <- which(names(dim(lons)) == lon_dim)
           pos_lat_dim_in_lons <- which(names(dim(lons)) == lat_dim)
           if ((pos_lon > pos_lat && pos_lon_dim_in_lons < pos_lat_dim_in_lons) ||
         (pos_lon < pos_lat && pos_lon_dim_in_lons > pos_lat_dim_in_lons)) {
             new_pos <- 1:length(dim(data_array))
             new_pos[pos_lon] <- pos_lat
             new_pos[pos_lat] <- pos_lon
             data_array <- .aperm2(data_array, new_pos)
           }
         }
#        dims_before_crop <- dim(data_array)
        easyNCDF::ArrayToNc(setNames(list(data_array, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
      }
      sellonlatbox <- ''
      if (crop) {
        sellonlatbox <- paste0('sellonlatbox,', format(lon_extremes[1], scientific = FALSE), 
                                           ',', format(lon_extremes[2], scientific = FALSE), 
                                           ',', format(lat_extremes[1], scientific = FALSE), 
                                           ',', format(lat_extremes[2], scientific = FALSE), ' -')
      }
      err <- try({
        system(paste0("cdo -s ", sellonlatbox, "remap", method, ",", grid, " ", tmp_file, " ", tmp_file2))
      })
      file.remove(tmp_file)
      if (('try-error' %in% class(err)) || err > 0) {
        stop("CDO remap failed.")
      }
      ncdf_remapped <- nc_open(tmp_file2)
      if (!lons_lats_taken) {
        found_dim_names <- sapply(ncdf_remapped$var$var$dim, '[[', 'name')
        found_lon_dim <- found_dim_names[which(found_dim_names %in% .KnownLonNames())[1]]
        found_lat_dim <- found_dim_names[which(found_dim_names %in% .KnownLatNames())[1]]
        found_lon_dim_size <- length(ncdf_remapped$dim[[found_lon_dim]]$vals)
        found_lat_dim_size <- length(ncdf_remapped$dim[[found_lat_dim]]$vals)
        found_var_names <- names(ncdf_remapped$var)
        found_lon_var_name <- which(found_var_names %in% .KnownLonNames())
        found_lat_var_name <- which(found_var_names %in% .KnownLatNames())
        if (length(found_lon_var_name) > 0) {
          found_lon_var_name <- found_var_names[found_lon_var_name[1]]
        } else {
          found_lon_var_name <- NULL
        }
        if (length(found_lat_var_name) > 0) {
          found_lat_var_name <- found_var_names[found_lat_var_name[1]]
        } else {
          found_lat_var_name <- NULL
        }
        if (length(found_lon_var_name) > 0) {
          found_lons <- ncvar_get(ncdf_remapped, found_lon_var_name, 
                                  collapse_degen = FALSE)
        } else {
          found_lons <- ncdf_remapped$dim[[found_lon_dim]]$vals
          dim(found_lons) <- found_lon_dim_size
        }
        if (length(found_lat_var_name) > 0) {
          found_lats <- ncvar_get(ncdf_remapped, found_lat_var_name, 
                                  collapse_degen = FALSE)
        } else {
          found_lats <- ncdf_remapped$dim[[found_lat_dim]]$vals
          dim(found_lats) <- found_lat_dim_size
        }
        if (length(dim(lons)) == length(dim(found_lons))) {
          new_lon_name <- lon_dim
        } else {
          new_lon_name <- found_lon_dim
        }
        if (length(dim(lats)) == length(dim(found_lats))) {
          new_lat_name <- lat_dim
        } else {
          new_lat_name <- found_lat_dim
        }
        if (length(dim(found_lons)) > 1) {
          if (which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lon_dim) < 
              which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lat_dim)) {
            names(dim(found_lons)) <- c(new_lon_name, new_lat_name)
          } else {
            names(dim(found_lons)) <- c(new_lat_name, new_lon_name)
          }
        } else {
          names(dim(found_lons)) <- new_lon_name
        }
        if (length(dim(found_lats)) > 1) {
          if (which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lon_dim) < 
              which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lat_dim)) {
            names(dim(found_lats)) <- c(new_lon_name, new_lat_name)
          } else {
            names(dim(found_lats)) <- c(new_lat_name, new_lon_name)
          }
        } else {
          names(dim(found_lats)) <- new_lat_name
        }
        lons_lats_taken <- TRUE
      }
      if (!is.null(dims_to_iterate)) {
        if (is.null(result_array)) {
          if (return_array) {
            new_dims <- dim(data_array)
            new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
            lon_pos <- which(names(new_dims) == lon_dim)
            lat_pos <- which(names(new_dims) == lat_dim)
            # Fix issue 259, expected order from CDO output is lon lat
            # If is irregular, lat and lon position need to be checked:
            if (is_irregular) {
              if (lon_pos > lat_pos) {
                new_pos <- 1:length(new_dims)
                new_pos[lon_pos] <- lat_pos
                new_pos[lat_pos] <- lon_pos
                new_dims <- new_dims[new_pos]
              }
            }
            result_array <- array(dim = new_dims)
            store_indices <- as.list(rep(TRUE, length(dim(result_array))))
          }
        }
        if (return_array) {
          store_indices[dims_to_iterate] <- as.list(slice_indices)
          # If is irregular, the order of dimenesions in result_array and file may be different and need to be checked before reading the temporal file:
          if (is_irregular) {
            test_dims <- dim(ncvar_get(ncdf_remapped, 'var',
                             collapse_degen = FALSE))
            test_dims <- test_dims[which(test_dims > 1)]
            pos_test_dims <- match(dim(result_array), test_dims)
            if (is.unsorted(pos_test_dims, na.rm = TRUE)) {
               # pos_new_dims is used later in the code. Don't overwrite
               pos_new_dims <- 1:length(dim(result_array))
               pos_new_dims[which(!is.na(pos_test_dims))] <-
                                              match(test_dims, dim(result_array))
               backup_result_array_dims <- dim(result_array)
               dim(result_array) <- dim(result_array)[pos_new_dims]
            }
          }
          result_array <- do.call('[<-', c(list(x = result_array), store_indices, 
                                           list(value = ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE))))
        }
      } else {
        new_dims <- dim(data_array)
        new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
        if (is_irregular) {
          lon_pos <- which(names(new_dims) == lon_dim)
          lat_pos <- which(names(new_dims) == lat_dim)
          if (lon_pos > lat_pos) {
            new_pos <- 1:length(new_dims)
            new_pos[lon_pos] <- lat_pos
            new_pos[lat_pos] <- lon_pos
            new_dims <- new_dims[new_pos]
          }
        }
        result_array <- ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)
        dim(result_array) <- new_dims
      }
      nc_close(ncdf_remapped)
      file.remove(tmp_file2)
    }
    # If is irregular, the order of dimension may need to be recovered after reading all the file:
    if (is_irregular & (!is.null(dims_to_iterate))) {
      if (exists('pos_new_dims')) {
        pos_new_dims <- 1:length(dim(result_array))
        dims_to_change <- match(backup_result_array_dims, dim(result_array))
        pos_new_dims[which(dims_to_change != 1)] <-
          dims_to_change[which(dims_to_change != 1)]
        result_array <- .aperm2(result_array, pos_new_dims)
      }
    }

    if (!is.null(permutation)) {
      dim_backup <- dim(result_array)
      result_array <- aperm(result_array, permutation_back)
      dim(result_array) <- dim_backup[permutation_back]
    }
    # Now restore the metadata
    result_is_irregular <- FALSE
    if (length(dim(found_lats)) > 1 && length(dim(found_lons)) > 1) {
      result_is_irregular <- TRUE
    }
    attribute_backup[['dim']][which(names(dim(result_array)) == lon_dim)] <- dim(result_array)[lon_dim]
    attribute_backup[['dim']][which(names(dim(result_array)) == lat_dim)] <- dim(result_array)[lat_dim]
    names(attribute_backup[['dim']])[which(names(dim(result_array)) == lon_dim)] <- new_lon_name
    names(attribute_backup[['dim']])[which(names(dim(result_array)) == lat_dim)] <- new_lat_name
    if (!is.null(attribute_backup[['variables']]) && (length(attribute_backup[['variables']]) > 0)) {
      for (var in 1:length(attribute_backup[['variables']])) {
        if (length(attribute_backup[['variables']][[var]][['dim']]) > 0) {
          for (dim in 1:length(attribute_backup[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(attribute_backup[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- attribute_backup[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(attribute_backup[['variables']][[var]][['dim']]))) {
              dim_name <- names(attribute_backup[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                }
                if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['len']])) {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }
                if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']])) {
                  if (!result_is_irregular) {
                    attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
                  } else {
                    attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
                  }
                }
              }
            }
          }
        }
        if (!is_irregular && result_is_irregular) {
          attribute_backup[['coordinates']] <- paste(lon_var_name, lat_var_name)
        } else if (is_irregular && !result_is_irregular) {
          attribute_backup[['coordinates']] <- NULL
        }
      }
    }
    attributes(result_array) <- attribute_backup
    lons_attr_bk[['dim']] <- dim(found_lons)
    if (!is.null(lons_attr_bk[['variables']]) && (length(lons_attr_bk[['variables']]) > 0)) {
      for (var in 1:length(lons_attr_bk[['variables']])) {
        if (length(lons_attr_bk[['variables']][[var]][['dim']]) > 0) {
          dims_to_remove <- NULL
          for (dim in 1:length(lons_attr_bk[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(lons_attr_bk[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]