Newer
Older
#'Interpolates arrays with longitude and latitude dimensions using CDO
#'
#'This function takes as inputs a multidimensional array (optional), a vector
#'or matrix of longitudes, a vector or matrix of latitudes, a destination grid
#'specification, and the name of a method to be used to interpolate (one of
#'those available in the 'remap' utility in CDO). The interpolated array is
#'returned (if provided) together with the new longitudes and latitudes.\cr\cr
#'\code{CDORemap()} permutes by default the dimensions of the input array (if
#'needed), splits it in chunks (CDO can work with data arrays of up to 4
#'dimensions), generates a file with the data of each chunk, interpolates it
#'with CDO, reads it back into R and merges it into a result array. If no
#'input array is provided, the longitude and latitude vectors will be
#'transformed only. If the array is already on the desired destination grid,
#'no transformation is performed (this behvaiour works only for lonlat and
#'gaussian grids). \cr\cr
#'Any metadata attached to the input data array, longitudes or latitudes will
#'be preserved or accordingly modified.
#'
#'@param data_array Multidimensional numeric array to be interpolated. If
#' provided, it must have at least a longitude and a latitude dimensions,
#' identified by the array dimension names. The names for these dimensions
#' must be one of the recognized by s2dv (can be checked with
#' \code{s2dv:::.KnownLonNames()} and
#' \code{s2dv:::.KnownLatNames()}).
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
#'@param lons Numeric vector or array of longitudes of the centers of the grid
#' cells. Its size must match the size of the longitude/latitude dimensions
#' of the input array.
#'@param lats Numeric vector or array of latitudes of the centers of the grid
#' cells. Its size must match the size of the longitude/latitude dimensions
#' of the input array.
#'@param grid Character string specifying either a name of a target grid
#' (recognized by CDO; e.g.: 'r256x128', 't106grid') or a path to another
#' NetCDF file which to read the target grid from (a single grid must be
#' defined in such file).
#'@param method Character string specifying an interpolation method
#' (recognized by CDO; e.g.: 'con', 'bil', 'bic', 'dis'). The following
#' long names are also supported: 'conservative', 'bilinear', 'bicubic' and
#' 'distance-weighted'.
#'@param avoid_writes The step of permutation is needed when the input array
#' has more than 3 dimensions and none of the longitude or latitude dimensions
#' in the right-most position (CDO would not accept it without permuting
#' previously). This step, executed by default when needed, can be avoided
#' for the price of writing more intermediate files (whis usually is
#' unconvenient) by setting the parameter \code{avoid_writes = TRUE}.
#'@param crop Whether to crop the data after interpolation with
#' 'cdo sellonlatbox' (TRUE) or to extend interpolated data to the whole
#' world as CDO does by default (FALSE). If \code{crop = TRUE} then the
#' longitude and latitude borders which to crop at are taken as the limits of
#' the cells at the borders ('lons' and 'lats' are perceived as cell centers),
#' i.e. the resulting array will contain data that covers the same area as
#' the input array. This is equivalent to specifying \code{crop = 'preserve'},
#' i.e. preserving area. If \code{crop = 'tight'} then the borders which to
#' crop at are taken as the minimum and maximum cell centers in 'lons' and
#' 'lats', i.e. the area covered by the resulting array may be smaller if
#' interpolating from a coarse grid to a fine grid. The parameter 'crop' also
#' accepts a numeric vector of custom borders which to crop at:
#' c(western border, eastern border, southern border, northern border).
#'@param force_remap Whether to force remapping, even if the input data array
#' is already on the target grid.
#'@param write_dir Path to the directory where to create the intermediate
#' files for CDO to work. By default, the R session temporary directory is
#' used (\code{tempdir()}).
#'
#'@return A list with the following components:
#' \item{'data_array'}{The interpolated data array (if an input array
#' is provided at all, NULL otherwise).}
#' \item{'lons'}{The longitudes of the data on the destination grid.}
#' \item{'lats'}{The latitudes of the data on the destination grid.}
#'@examples
#' \dontrun{
#'# Interpolating only vectors of longitudes and latitudes
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(NULL, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Minimal array interpolation
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Metadata can be attached to the inputs. It will be preserved and
#'# accordignly modified.
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = 25)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(lat = list(len = 25,
#' vals = lat),
#' lon = list(len = 50,
#' vals = lon)
#' )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Arrays of any number of dimensions in any order can be provided.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10),
#' dim = c(10, num_lats, 10, num_lons, 10))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon', 'c')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#' lat = list(len = num_lats,
#' vals = lat),
#' b = list(),
#' lon = list(len = num_lons,
#' vals = lon),
#' c = list()
#' )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'# The step of permutation can be avoided but more intermediate file writes
#'# will be performed.
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# If the provided array has the longitude or latitude dimension in the
#'# right-most position, the same number of file writes will be performed,
#'# even if avoid_wrties = FALSE.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10),
#' dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#' lat = list(len = num_lats,
#' vals = lat),
#' b = list(),
#' lon = list(len = num_lons,
#' vals = lon)
#' )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# An example of an interpolation from and onto a rectangular regular grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(1*num_lats*num_lons), dim = c(num_lats, num_lons))
#'names(dim(tas)) <- c('y', 'x')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),
#' dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('x', 'y')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats),
#' dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('x', 'y')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 'r100x50', 'bil')
#'
#'# An example of an interpolation from an irregular grid onto a gaussian grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10),
#' dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),
#' dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('i', 'j')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats),
#' dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('i', 'j')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'
#'# Again, the dimensions can be in any order
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons),
#' dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons),
#' dim = c(num_lons, num_lats))
#'names(dim(lon)) <- c('i', 'j')
#'lat <- t(array(seq(-90, 90, length.out = num_lats),
#' dim = c(num_lats, num_lons)))
#'names(dim(lat)) <- c('i', 'j')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'# It is ossible to specify an external NetCDF file as target grid reference
#'tas2 <- CDORemap(tas, lon, lat, 'external_file.nc', 'bil')
#'}
#'@import ncdf4
#'@importFrom stats lm predict setNames
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#'@export
CDORemap <- function(data_array = NULL, lons, lats, grid, method,
avoid_writes = TRUE, crop = TRUE,
force_remap = FALSE, write_dir = tempdir()) { #, mask = NULL) {
.isRegularVector <- function(x, tol = 0.1) {
if (length(x) < 2) {
#stop("The provided vector must be of length 2 or greater.")
TRUE
} else {
spaces <- x[2:length(x)] - x[1:(length(x) - 1)]
(sum(abs(spaces - mean(spaces)) > mean(spaces) / (1 / tol)) < 2)
}
}
# Check parameters data_array, lons and lats.
known_lon_names <- .KnownLonNames()
known_lat_names <- .KnownLatNames()
if (!is.numeric(lons) || !is.numeric(lats)) {
stop("Expected numeric 'lons' and 'lats'.")
}
if (any(is.na(lons > 0))) {
stop("Found invalid values in 'lons'.")
}
if (any(is.na(lats > 0))) {
stop("Found invalid values in 'lats'.")
}
if (is.null(dim(lons))) {
dim(lons) <- length(lons)
}
if (is.null(dim(lats))) {
dim(lats) <- length(lats)
}
if (length(dim(lons)) > 2 || length(dim(lats)) > 2) {
stop("'lons' and 'lats' can only have up to 2 dimensions.")
}
if (length(dim(lons)) != length(dim(lats))) {
stop("'lons' and 'lats' must have the same number of dimensions.")
}
if (length(dim(lons)) == 2 && !all(dim(lons) == dim(lats))) {
stop("'lons' and 'lats' must have the same dimension sizes.")
}
return_array <- TRUE
if (is.null(data_array)) {
return_array <- FALSE
if (length(dim(lons)) == 1) {
array_dims <- c(length(lats), length(lons))
new_lon_dim_name <- 'lon'
new_lat_dim_name <- 'lat'
} else {
array_dims <- dim(lons)
new_lon_dim_name <- 'i'
new_lat_dim_name <- 'j'
}
if (!is.null(names(dim(lons)))) {
if (any(known_lon_names %in% names(dim(lons)))) {
new_lon_dim_name <- known_lon_names[which(known_lon_names %in% names(dim(lons)))[1]]
}
}
if (!is.null(names(dim(lats)))) {
if (any(known_lat_names %in% names(dim(lats)))) {
new_lat_dim_name <- known_lat_names[which(known_lat_names %in% names(dim(lats)))[1]]
}
}
names(array_dims) <- c(new_lat_dim_name, new_lon_dim_name)
data_array <- array(as.numeric(NA), array_dims)
}
if (!(is.logical(data_array) || is.numeric(data_array)) || !is.array(data_array)) {
stop("Parameter 'data_array' must be a numeric array.")
}
if (is.null(names(dim(data_array)))) {
stop("Parameter 'data_array' must have named dimensions.")
}
lon_dim <- which(known_lon_names %in% names(dim(data_array)))
if (length(lon_dim) < 1) {
stop("Could not find a known longitude dimension name in the provided 'data_array'.")
}
if (length(lon_dim) > 1) {
stop("Found more than one known longitude dimension names in the provided 'data_array'.")
}
lon_dim <- known_lon_names[lon_dim]
lat_dim <- which(known_lat_names %in% names(dim(data_array)))
if (length(lat_dim) < 1) {
stop("Could not find a known latitude dimension name in the provided 'data_array'.")
}
if (length(lat_dim) > 1) {
stop("Found more than one known latitude dimension name in the provided 'data_array'.")
}
lat_dim <- known_lat_names[lat_dim]
if (is.null(names(dim(lons)))) {
if (length(dim(lons)) == 1) {
names(dim(lons)) <- lon_dim
} else {
stop("Parameter 'lons' must be provided with dimension names.")
}
} else {
if (!(lon_dim %in% names(dim(lons)))) {
stop("Parameter 'lon' must have the same longitude dimension name as the 'data_array'.")
}
if (length(dim(lons)) > 1 && !(lat_dim %in% names(dim(lons)))) {
stop("Parameter 'lon' must have the same latitude dimension name as the 'data_array'.")
}
}
if (is.null(names(dim(lats)))) {
if (length(dim(lats)) == 1) {
names(dim(lats)) <- lat_dim
} else {
stop("Parameter 'lats' must be provided with dimension names.")
}
} else {
if (!(lat_dim %in% names(dim(lats)))) {
stop("Parameter 'lat' must have the same latitude dimension name as the 'data_array'.")
}
if (length(dim(lats)) > 1 && !(lon_dim %in% names(dim(lats)))) {
stop("Parameter 'lat' must have the same longitude dimension name as the 'data_array'.")
}
}
lons_attr_bk <- attributes(lons)
if (is.null(lons_attr_bk)) {
lons_attr_bk <- list()
}
lats_attr_bk <- attributes(lats)
if (is.null(lats_attr_bk)) {
lats_attr_bk <- list()
}
if (length(attr(lons, 'variables')) == 0) {
new_metadata <- list(list())
if (length(dim(lons)) == 1) {
names(new_metadata) <- lon_dim
} else {
names(new_metadata) <- paste0(lon_dim, '_var')
}
attr(lons, 'variables') <- new_metadata
}
if (!('units' %in% names(attr(lons, 'variables')[[1]]))) {
new_metadata <- attr(lons, 'variables')
#names(new_metadata)[1] <- lon_dim
new_metadata[[1]][['units']] <- 'degrees_east'
attr(lons, 'variables') <- new_metadata
}
if (length(attr(lats, 'variables')) == 0) {
new_metadata <- list(list())
if (length(dim(lats)) == 1) {
names(new_metadata) <- lat_dim
} else {
names(new_metadata) <- paste0(lat_dim, '_var')
}
attr(lats, 'variables') <- new_metadata
}
if (!('units' %in% names(attr(lats, 'variables')[[1]]))) {
new_metadata <- attr(lats, 'variables')
#names(new_metadata)[1] <- lat_dim
new_metadata[[1]][['units']] <- 'degrees_north'
attr(lats, 'variables') <- new_metadata
}
# Check grid.
if (!is.character(grid)) {
stop("Parameter 'grid' must be a character string specifying a ",
"target CDO grid, 'rXxY' or 'tRESgrid', or a path to another ",
"NetCDF file.")
}
if (grepl('^r[0-9]{1,}x[0-9]{1,}$', grid)) {
grid_type <- 'regular'
grid_lons <- as.numeric(strsplit(strsplit(grid, 'x')[[1]][1], 'r')[[1]][2])
grid_lats <- as.numeric(strsplit(grid, 'x')[[1]][2])
} else if (grepl('^t[0-9]{1,}grid$', grid)) {
grid_type <- 'gaussian'
grid_t <- as.numeric(strsplit(strsplit(grid, 'grid')[[1]][1], 't')[[1]][2])
grid_size <- .t2nlatlon(grid_t)
grid_lons <- grid_size[2]
grid_lats <- grid_size[1]
} else {
grid_type <- 'custom'
}
# Check method.
if (method %in% c('bil', 'bilinear')) {
method <- 'bil'
} else if (method %in% c('bic', 'bicubic')) {
method <- 'bic'
} else if (method %in% c('con', 'conservative')) {
method <- 'con'
} else if (method %in% c('dis', 'distance-weighted')) {
method <- 'dis'
} else {
stop("Unsupported CDO remap method. 'bilinear', 'bicubic', 'conservative' or 'distance-weighted' supported only.")
}
# Check avoid_writes
if (!is.logical(avoid_writes)) {
stop("Parameter 'avoid_writes' must be a logical value.")
}
# Check crop
crop_tight <- FALSE
if (is.character(crop)) {
if (crop == 'tight') {
crop_tight <- TRUE
} else if (crop != 'preserve') {
stop("Parameter 'crop' can only take the values 'tight' or 'preserve' if specified as a character string.")
}
crop <- TRUE
}
if (is.logical(crop)) {
if (crop) {
warning("Parameter 'crop' = 'TRUE'. The output grid range will follow the input lons and lats.")
if (length(lons) == 1 || length(lats) == 1) {
stop("CDORemap cannot remap if crop = TRUE and values for only one ",
"longitude or one latitude are provided. Either a) provide ",
"values for more than one longitude/latitude, b) explicitly ",
"specify the crop limits in the parameter crop, or c) set ",
"crop = FALSE.")
}
if (crop_tight) {
lon_extremes <- c(min(lons), max(lons))
lat_extremes <- c(min(lats), max(lats))
} else {
# Here we are trying to look for the extreme lons and lats in the data.
# Not the centers of the extreme cells, but the borders of the extreme cells.
###---
if (length(dim(lons)) == 1) {
tmp_lon <- lons
} else {
min_pos <- which(lons == min(lons), arr.ind = TRUE)[1, ]
tmp_lon <- Subset(lons, lat_dim, min_pos[which(names(dim(lons)) == lat_dim)], drop = 'selected')
}
i <- 1:length(tmp_lon)
degree <- min(3, length(i) - 1)
lon_model <- lm(tmp_lon ~ poly(i, degree))
lon_extremes <- c(NA, NA)
left_is_min <- FALSE
right_is_max <- FALSE
if (which.min(tmp_lon) == 1) {
left_is_min <- TRUE
prev_lon <- predict(lon_model, data.frame(i = 0))
first_lon_cell_width <- (tmp_lon[1] - prev_lon)
# The signif is needed because cdo sellonlatbox crashes with too many digits
lon_extremes[1] <- tmp_lon[1] - first_lon_cell_width / 2
} else {
lon_extremes[1] <- min(tmp_lon)
}
if (which.max(tmp_lon) == length(tmp_lon)) {
right_is_max <- TRUE
next_lon <- predict(lon_model, data.frame(i = length(tmp_lon) + 1))
last_lon_cell_width <- (next_lon - tmp_lon[length(tmp_lon)])
lon_extremes[2] <- tmp_lon[length(tmp_lon)] + last_lon_cell_width / 2
} else {
lon_extremes[2] <- max(tmp_lon)
}
# Adjust the crop window if possible in order to keep lons from 0 to 360
# or from -180 to 180 when the extremes of the cropped window are contiguous.
if (right_is_max) {
if (lon_extremes[1] < -180) {
if (!((lon_extremes[2] < 180) && !((180 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
lon_extremes[1] <- -180
lon_extremes[2] <- 180
}
} else if (lon_extremes[1] < 0) {
if (!((lon_extremes[2] < 360) && !((360 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
lon_extremes[1] <- 0
lon_extremes[2] <- 360
}
}
}
if (left_is_min) {
if (lon_extremes[2] > 360) {
if (!((lon_extremes[1] > 0) && !(lon_extremes[1] <= first_lon_cell_width / 2))) {
lon_extremes[1] <- 0
lon_extremes[2] <- 360
}
} else if (lon_extremes[2] > 180) {
if (!((lon_extremes[1] > -180) && !((180 + lon_extremes[1]) <= first_lon_cell_width / 2))) {
lon_extremes[1] <- -180
lon_extremes[2] <- 180
}
}
}
## lon_extremes <- signif(lon_extremes, 5)
## lon_extremes <- lon_extremes + 0.00001
###---
if (length(dim(lats)) == 1) {
tmp_lat <- lats
} else {
min_pos <- which(lats == min(lats), arr.ind = TRUE)[1, ]
tmp_lat <- Subset(lats, lon_dim, min_pos[which(names(dim(lats)) == lon_dim)], drop = 'selected')
}
i <- 1:length(tmp_lat)
degree <- min(3, length(i) - 1)
lat_model <- lm(tmp_lat ~ poly(i, degree))
lat_extremes <- c(NA, NA)
if (which.min(tmp_lat) == 1) {
prev_lat <- predict(lat_model, data.frame(i = 0))
lat_extremes[1] <- tmp_lat[1] - (tmp_lat[1] - prev_lat) / 2
} else {
lat_extremes[1] <- min(tmp_lat)
}
if (which.max(tmp_lat) == length(tmp_lat)) {
next_lat <- predict(lat_model, data.frame(i = length(tmp_lat) + 1))
lat_extremes[2] <- tmp_lat[length(tmp_lat)] + (next_lat - tmp_lat[length(tmp_lat)]) / 2
} else {
lat_extremes[2] <- max(tmp_lat)
}
## lat_extremes <- signif(lat_extremes, 5)
# Adjust crop window
if (lat_extremes[1] < -90) {
lat_extremes[1] <- -90
} else if (lat_extremes[1] > 90) {
lat_extremes[1] <- 90
}
if (lat_extremes[2] < -90) {
lat_extremes[2] <- -90
} else if (lat_extremes[2] > 90) {
lat_extremes[2] <- 90
}
###---
}
} else if (crop == FALSE) {
warning("Parameter 'crop' = 'FALSE'. The output grid range will follow parameter 'grid'.")
}
} else if (is.numeric(crop)) {
if (length(crop) != 4) {
stop("Paramrter 'crop' must be a logical value or a numeric vector of length 4: c(western border, eastern border, southern border, northern border.")
} else {
lon_extremes <- crop[1:2]
lat_extremes <- crop[3:4]
crop <- TRUE
}
} else {
stop("Parameter 'crop' must be a logical value or a numeric vector.")
}
# Check force_remap
if (!is.logical(force_remap)) {
stop("Parameter 'force_remap' must be a logical value.")
}
# Check write_dir
if (!is.character(write_dir)) {
stop("Parameter 'write_dir' must be a character string.")
}
if (!dir.exists(write_dir)) {
stop("Parameter 'write_dir' must point to an existing directory.")
}
# if (!is.null(mask)) {
# if (!is.numeric(mask) || !is.array(mask)) {
# stop("Parameter 'mask' must be a numeric array.")
# }
# if (length(dim(mask)) != 2) {
# stop("Parameter 'mask' must have two dimensions.")
# }
# if (is.null(names(dim(mask)))) {
# if (dim(data_array)[lat_dim] == dim(data_array)[lon_dim]) {
# stop("Cannot disambiguate which is the longitude dimension of ",
# "the provided 'mask'. Provide it with dimension names.")
# }
# names(dim(mask)) <- c('', '')
# found_lon_dim <- which(dim(mask) == dim(data_array)[lon_dim])
# if (length(found_lon_dim) < 0) {
# stop("The dimension sizes of the provided 'mask' do not match ",
# "the spatial dimension sizes of the array to interpolate.")
# } else {
# names(dim(mask)[found_lon_dim]) <- lon_dim
# }
# found_lat_dim <- which(dim(mask) == dim(data_array)[lat_dim])
# if (length(found_lat_dim) < 0) {
# stop("The dimension sizes of the provided 'mask' do not match ",
# "the spatial dimension sizes of the array to interpolate.")
# } else {
# names(dim(mask)[found_lat_dim]) <- lat_dim
# }
# }
# lon_position <- which(names(dim(data_array)) == lon_dim)
# lat_position <- which(names(dim(data_array)) == lat_dim)
# if (lon_position > lat_position) {
# if (names(dim(mask))[1] == lon_dim) {
# mask <- t(mask)
# }
# } else {
# if (names(dim(mask))[1] == lat_dim) {
# mask <- t(mask)
# }
# }
# ## TODO: Apply mask!!! Preserve attributes
# }
# Check if interpolation can be skipped.
interpolation_needed <- TRUE
if (!force_remap) {
if (!(grid_type == 'custom')) {
if (length(lons) == grid_lons && length(lats) == grid_lats) {
if (grid_type == 'regular') {
if (.isRegularVector(lons) && .isRegularVector(lats)) {
interpolation_needed <- FALSE
}
} else if (grid_type == 'gaussian') {
# TODO: improve this check. Gaussian quadrature should be used.
if (.isRegularVector(lons) && !.isRegularVector(lats)) {
interpolation_needed <- FALSE
}
}
}
}
}
found_lons <- lons
found_lats <- lats
if (interpolation_needed) {
if (nchar(Sys.which('cdo')[1]) < 1) {
stop("CDO must be installed in order to use the .CDORemap.")
}
cdo_version <- as.numeric_version(
strsplit(suppressWarnings(system2("cdo", args = '-V', stderr = TRUE))[[1]], ' ')[[1]][5]
)
warning("CDORemap: Using CDO version ", cdo_version, ".")
if ((cdo_version >= as.numeric_version('1.7.0')) && (method == 'con')) {
method <- 'ycon'
}
# CDO takes arrays of 3 dimensions or 4 if one of them is unlimited.
# The unlimited dimension can only be the left-most (right-most in R).
# There are no restrictions for the dimension names or variable names.
# The longitude and latitude are detected by their units.
# There are no restrictions for the order of the limited dimensions.
# The longitude/latitude variables and dimensions must have the same name.
# The procedure consists in:
# - take out the array metadata
# - be aware of var dimension (replacing the dimension names would do).
# - take arrays of 4 dimensions always if possible
# - make the last dimension unlimited when saving to netcdf
# - if the last dimension is lon or lat, either reorder the array and
# then reorder back or iterate over the dimensions at the right
# side of lon AND lat.
# If the input array has more than 4 dimensions, it is needed to
# run CDO on each sub-array of 4 dimensions because it can handle
# only up to 4 dimensions. The shortest dimensions are chosen to
# iterate over.
is_irregular <- FALSE
if (length(dim(lats)) > 1 && length(dim(lons)) > 1) {
is_irregular <- TRUE
}
attribute_backup <- attributes(data_array)
other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
permutation <- NULL
unlimited_dim <- NULL
dims_to_iterate <- NULL
total_slices <- 1
other_dims_per_chunk <- ifelse(is_irregular, 1, 2) # 4 (the maximum accepted by CDO) - 2 (lon, lat) = 2.
if (length(other_dims) > 1 || (length(other_dims) > 0 && (is_irregular))) {
if (!(length(dim(data_array)) %in% other_dims)) {
if (avoid_writes || is_irregular) {
dims_mod <- dim(data_array)
dims_mod[which(names(dim(data_array)) %in%
c(lon_dim, lat_dim))] <- 0
dim_to_move <- which.max(dims_mod)
permutation <- (1:length(dim(data_array)))[-dim_to_move]
permutation <- c(permutation, dim_to_move)
permutation_back <- sort(permutation, index.return = TRUE)$ix
dim_backup <- dim(data_array)
data_array <- aperm(data_array, permutation)
dim(data_array) <- dim_backup[permutation]
other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
} else {
# We allow only lon, lat and 1 more dimension per chunk, so
# CDO has no restrictions in the order.
other_dims_per_chunk <- 1
}
}
other_dims_ordered_by_size <- other_dims[sort(dim(data_array)[other_dims], index.return = TRUE)$ix]
dims_to_iterate <- sort(head(other_dims_ordered_by_size, length(other_dims) - other_dims_per_chunk))
if (length(dims_to_iterate) == 0) {
dims_to_iterate <- NULL
} else {
slices_to_iterate <- array(1:prod(dim(data_array)[dims_to_iterate]),
dim(data_array)[dims_to_iterate])
total_slices <- prod(dim(slices_to_iterate))
}
if ((other_dims_per_chunk > 1) || (other_dims_per_chunk > 0 && is_irregular)) {
unlimited_dim <- tail(sort(tail(other_dims_ordered_by_size, other_dims_per_chunk)), 1)
#unlimited_dim <- tail(other_dims)
}
}
result_array <- NULL
lon_pos <- which(names(dim(data_array)) == lon_dim)
lat_pos <- which(names(dim(data_array)) == lat_dim)
dim_backup <- dim(data_array)
attributes(data_array) <- NULL
dim(data_array) <- dim_backup
names(dim(data_array)) <- paste0('dim', 1:length(dim(data_array)))
names(dim(data_array))[c(lon_pos, lat_pos)] <- c(lon_dim, lat_dim)
if (!is.null(unlimited_dim)) {
# This will make ArrayToNetCDF create this dim as unlimited.
names(dim(data_array))[unlimited_dim] <- 'time'
}
if (length(dim(lons)) == 1) {
names(dim(lons)) <- lon_dim
}
if (length(dim(lats)) == 1) {
names(dim(lats)) <- lat_dim
}
if (length(dim(lons)) > 1) {
lon_var_name <- paste0(lon_dim, '_var')
} else {
lon_var_name <- lon_dim
}
if (length(dim(lats)) > 1) {
lat_var_name <- paste0(lat_dim, '_var')
} else {
lat_var_name <- lat_dim
}
if (is_irregular) {
metadata <- list(list(coordinates = paste(lon_var_name, lat_var_name)))
names(metadata) <- 'var'
attr(data_array, 'variables') <- metadata
}
names(attr(lons, 'variables')) <- lon_var_name
names(attr(lats, 'variables')) <- lat_var_name
if (!is.null(attr(lons, 'variables')[[1]][['dim']])) {
attr(lons, 'variables')[[1]][['dim']] <- NULL
}
if (!is.null(attr(lats, 'variables')[[1]][['dim']])) {
attr(lats, 'variables')[[1]][['dim']] <- NULL
}
lons_lats_taken <- FALSE
for (i in 1:total_slices) {
tmp_file <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
tmp_file2 <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
if (!is.null(dims_to_iterate)) {
slice_indices <- which(slices_to_iterate == i, arr.ind = TRUE)
subset <- Subset(data_array, dims_to_iterate, as.list(slice_indices), drop = 'selected')
# dims_before_crop <- dim(subset)
# Make sure subset goes along with metadata
ArrayToNetCDF(setNames(list(subset, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
} else {
# dims_before_crop <- dim(data_array)
ArrayToNetCDF(setNames(list(data_array, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
}
sellonlatbox <- ''
if (crop) {
sellonlatbox <- paste0('sellonlatbox,', format(lon_extremes[1], scientific = FALSE),
',', format(lon_extremes[2], scientific = FALSE),
',', format(lat_extremes[1], scientific = FALSE),
',', format(lat_extremes[2], scientific = FALSE), ' -')
}
err <- try({
system(paste0("cdo -s ", sellonlatbox, "remap", method, ",", grid, " ", tmp_file, " ", tmp_file2))
})
file.remove(tmp_file)
if (('try-error' %in% class(err)) || err > 0) {
stop("CDO remap failed.")
}
ncdf_remapped <- nc_open(tmp_file2)
if (!lons_lats_taken) {
found_dim_names <- sapply(ncdf_remapped$var$var$dim, '[[', 'name')
found_lon_dim <- found_dim_names[which(found_dim_names %in% .KnownLonNames())[1]]
found_lat_dim <- found_dim_names[which(found_dim_names %in% .KnownLatNames())[1]]
found_lon_dim_size <- length(ncdf_remapped$dim[[found_lon_dim]]$vals)
found_lat_dim_size <- length(ncdf_remapped$dim[[found_lat_dim]]$vals)
found_var_names <- names(ncdf_remapped$var)
found_lon_var_name <- which(found_var_names %in% .KnownLonNames())
found_lat_var_name <- which(found_var_names %in% .KnownLatNames())
if (length(found_lon_var_name) > 0) {
found_lon_var_name <- found_var_names[found_lon_var_name[1]]
} else {
found_lon_var_name <- NULL
}
if (length(found_lat_var_name) > 0) {
found_lat_var_name <- found_var_names[found_lat_var_name[1]]
} else {
found_lat_var_name <- NULL
}
if (length(found_lon_var_name) > 0) {
found_lons <- ncvar_get(ncdf_remapped, found_lon_var_name,
collapse_degen = FALSE)
} else {
found_lons <- ncdf_remapped$dim[[found_lon_dim]]$vals
dim(found_lons) <- found_lon_dim_size
}
if (length(found_lat_var_name) > 0) {
found_lats <- ncvar_get(ncdf_remapped, found_lat_var_name,
collapse_degen = FALSE)
} else {
found_lats <- ncdf_remapped$dim[[found_lat_dim]]$vals
dim(found_lats) <- found_lat_dim_size
}
if (length(dim(lons)) == length(dim(found_lons))) {
new_lon_name <- lon_dim
} else {
new_lon_name <- found_lon_dim
}
if (length(dim(lats)) == length(dim(found_lats))) {
new_lat_name <- lat_dim
} else {
new_lat_name <- found_lat_dim
}
if (length(dim(found_lons)) > 1) {
if (which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lon_dim) <
which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lat_dim)) {
names(dim(found_lons)) <- c(new_lon_name, new_lat_name)
} else {
names(dim(found_lons)) <- c(new_lat_name, new_lon_name)
}
} else {
names(dim(found_lons)) <- new_lon_name
}
if (length(dim(found_lats)) > 1) {
if (which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lon_dim) <
which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lat_dim)) {
names(dim(found_lats)) <- c(new_lon_name, new_lat_name)
} else {
names(dim(found_lats)) <- c(new_lat_name, new_lon_name)
}
} else {
names(dim(found_lats)) <- new_lat_name
}
lons_lats_taken <- TRUE
}
if (!is.null(dims_to_iterate)) {
if (is.null(result_array)) {
if (return_array) {
new_dims <- dim(data_array)
new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
result_array <- array(dim = new_dims)
store_indices <- as.list(rep(TRUE, length(dim(result_array))))
}
}
if (return_array) {
store_indices[dims_to_iterate] <- as.list(slice_indices)
result_array <- do.call('[<-', c(list(x = result_array), store_indices,
list(value = ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE))))
}
} else {
new_dims <- dim(data_array)
new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
result_array <- ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)
dim(result_array) <- new_dims
}
nc_close(ncdf_remapped)
file.remove(tmp_file2)
}
if (!is.null(permutation)) {
dim_backup <- dim(result_array)
result_array <- aperm(result_array, permutation_back)
dim(result_array) <- dim_backup[permutation_back]
}
# Now restore the metadata
result_is_irregular <- FALSE
if (length(dim(found_lats)) > 1 && length(dim(found_lons)) > 1) {
result_is_irregular <- TRUE
}
attribute_backup[['dim']][which(names(dim(result_array)) == lon_dim)] <- dim(result_array)[lon_dim]
attribute_backup[['dim']][which(names(dim(result_array)) == lat_dim)] <- dim(result_array)[lat_dim]
names(attribute_backup[['dim']])[which(names(dim(result_array)) == lon_dim)] <- new_lon_name
names(attribute_backup[['dim']])[which(names(dim(result_array)) == lat_dim)] <- new_lat_name
if (!is.null(attribute_backup[['variables']]) && (length(attribute_backup[['variables']]) > 0)) {
for (var in 1:length(attribute_backup[['variables']])) {
if (length(attribute_backup[['variables']][[var]][['dim']]) > 0) {
for (dim in 1:length(attribute_backup[['variables']][[var]][['dim']])) {
dim_name <- NULL
if ('name' %in% names(attribute_backup[['variables']][[var]][['dim']][[dim]])) {
dim_name <- attribute_backup[['variables']][[var]][['dim']][[dim]][['name']]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
} else {
attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
}
}
} else if (!is.null(names(attribute_backup[['variables']][[var]][['dim']]))) {
dim_name <- names(attribute_backup[['variables']][[var]][['dim']])[dim]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
} else {
names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
}
}
}
if (!is.null(dim_name)) {
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
new_vals <- found_lons[TRUE]
} else if (dim_name == lat_dim) {
new_vals <- found_lats[TRUE]
}
if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['len']])) {
attribute_backup[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
}
if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']])) {
if (!result_is_irregular) {
attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
} else {
attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
}
}
}
}
}
}
if (!is_irregular && result_is_irregular) {
attribute_backup[['coordinates']] <- paste(lon_var_name, lat_var_name)
} else if (is_irregular && !result_is_irregular) {
attribute_backup[['coordinates']] <- NULL
}
}
}
attributes(result_array) <- attribute_backup
lons_attr_bk[['dim']] <- dim(found_lons)
if (!is.null(lons_attr_bk[['variables']]) && (length(lons_attr_bk[['variables']]) > 0)) {
for (var in 1:length(lons_attr_bk[['variables']])) {
if (length(lons_attr_bk[['variables']][[var]][['dim']]) > 0) {
dims_to_remove <- NULL
for (dim in 1:length(lons_attr_bk[['variables']][[var]][['dim']])) {
dim_name <- NULL
if ('name' %in% names(lons_attr_bk[['variables']][[var]][['dim']][[dim]])) {
dim_name <- lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
} else {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
}
}
} else if (!is.null(names(lons_attr_bk[['variables']][[var]][['dim']]))) {
dim_name <- names(lons_attr_bk[['variables']][[var]][['dim']])[dim]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
} else {
names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
}
}
}
if (!is.null(dim_name)) {
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
new_vals <- found_lons[TRUE]
} else if (dim_name == lat_dim) {
new_vals <- found_lats[TRUE]
if (!result_is_irregular) {
dims_to_remove <- c(dims_to_remove, dim)
}
}
if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
}
if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) {
if (!result_is_irregular) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
} else {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
}
}
}
}
}
if (length(dims_to_remove) > 1) {
lons_attr_bk[['variables']][[var]][['dim']] <- lons_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]]
}
}
}
names(lons_attr_bk[['variables']])[1] <- lon_var_name
lons_attr_bk[['variables']][[1]][['units']] <- 'degrees_east'
}
attributes(found_lons) <- lons_attr_bk
lats_attr_bk[['dim']] <- dim(found_lats)
if (!is.null(lats_attr_bk[['variables']]) && (length(lats_attr_bk[['variables']]) > 0)) {
for (var in 1:length(lats_attr_bk[['variables']])) {
if (length(lats_attr_bk[['variables']][[var]][['dim']]) > 0) {
dims_to_remove <- NULL
for (dim in 1:length(lats_attr_bk[['variables']][[var]][['dim']])) {
dim_name <- NULL
if ('name' %in% names(lats_attr_bk[['variables']][[var]][['dim']][[dim]])) {
dim_name <- lats_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
} else {
lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
}
}
} else if (!is.null(names(lats_attr_bk[['variables']][[var]][['dim']]))) {
dim_name <- names(lats_attr_bk[['variables']][[var]][['dim']])[dim]
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
} else {
names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
}
}
}
if (!is.null(dim_name)) {
if (dim_name %in% c(lon_dim, lat_dim)) {
if (dim_name == lon_dim) {
new_vals <- found_lons[TRUE]
if (!result_is_irregular) {
dims_to_remove <- c(dims_to_remove, dim)
}
} else if (dim_name == lat_dim) {
new_vals <- found_lats[TRUE]
}
if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
}