CDORemap.R 45.2 KB
Newer Older
#'Interpolates arrays with longitude and latitude dimensions using CDO
#'
#'This function takes as inputs a multidimensional array (optional), a vector 
#'or matrix of longitudes, a vector or matrix of latitudes, a destination grid 
#'specification, and the name of a method to be used to interpolate (one of 
#'those available in the 'remap' utility in CDO). The interpolated array is 
#'returned (if provided) together with the new longitudes and latitudes.\cr\cr 
#'\code{CDORemap()} permutes by default the dimensions of the input array (if 
#'needed), splits it in chunks (CDO can work with data arrays of up to 4 
#'dimensions), generates a file with the data of each chunk, interpolates it 
#'with CDO, reads it back into R and merges it into a result array. If no 
#'input array is provided, the longitude and latitude vectors will be 
#'transformed only. If the array is already on the desired destination grid, 
#'no transformation is performed (this behvaiour works only for lonlat and 
#'gaussian grids). \cr\cr
#'Any metadata attached to the input data array, longitudes or latitudes will 
#'be preserved or accordingly modified.
#'
#'@param data_array Multidimensional numeric array to be interpolated. If 
#'  provided, it must have at least a longitude and a latitude dimensions, 
#'  identified by the array dimension names. The names for these dimensions 
#'  must be one of the recognized by s2dv (can be checked with 
#'  \code{s2dv:::.KnownLonNames()} and 
#'  \code{s2dv:::.KnownLatNames()}).
#'@param lons Numeric vector or array of longitudes of the centers of the grid 
#'  cells. Its size must match the size of the longitude/latitude dimensions 
#'  of the input array.
#'@param lats Numeric vector or array of latitudes of the centers of the grid 
#'  cells. Its size must match the size of the longitude/latitude dimensions 
#'  of the input array.
#'@param grid Character string specifying either a name of a target grid 
#'  (recognized by CDO; e.g.: 'r256x128', 't106grid') or a path to another 
#'  NetCDF file which to read the target grid from (a single grid must be 
#'  defined in such file).
#'@param method Character string specifying an interpolation method 
#'  (recognized by CDO; e.g.: 'con', 'bil', 'bic', 'dis'). The following 
#'  long names are also supported: 'conservative', 'bilinear', 'bicubic' and 
#'  'distance-weighted'.
#'@param avoid_writes The step of permutation is needed when the input array 
#'  has more than 3 dimensions and none of the longitude or latitude dimensions
#'   in the right-most position (CDO would not accept it without permuting 
#'  previously). This step, executed by default when needed, can be avoided 
#'  for the price of writing more intermediate files (whis usually is 
#'  unconvenient) by setting the parameter \code{avoid_writes = TRUE}.
#'@param crop Whether to crop the data after interpolation with 
#'  'cdo sellonlatbox' (TRUE) or to extend interpolated data to the whole 
#'  world as CDO does by default (FALSE). If \code{crop = TRUE} then the 
#'  longitude and latitude borders which to crop at are taken as the limits of 
#'  the cells at the borders ('lons' and 'lats' are perceived as cell centers), 
#'  i.e. the resulting array will contain data that covers the same area as 
#'  the input array. This is equivalent to specifying \code{crop = 'preserve'}, 
#'  i.e. preserving area. If \code{crop = 'tight'} then the borders which to 
#'  crop at are taken as the minimum and maximum cell centers in 'lons' and 
#'  'lats', i.e. the area covered by the resulting array may be smaller if 
#'  interpolating from a coarse grid to a fine grid. The parameter 'crop' also 
#'  accepts a numeric vector of custom borders which to crop at: 
#'  c(western border, eastern border, southern border, northern border).
#'@param force_remap Whether to force remapping, even if the input data array 
#'  is already on the target grid.
#'@param write_dir Path to the directory where to create the intermediate 
#'  files for CDO to work. By default, the R session temporary directory is 
#'  used (\code{tempdir()}).
#'
#'@return A list with the following components:
#'  \item{'data_array'}{The interpolated data array (if an input array 
#'  is provided at all, NULL otherwise).}
#'  \item{'lons'}{The longitudes of the data on the destination grid.}
#'  \item{'lats'}{The latitudes of the data on the destination grid.}
#'@examples
#'  \dontrun{
#'# Interpolating only vectors of longitudes and latitudes
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(NULL, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Minimal array interpolation
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'lat <- seq(-90, 90, length.out = 25)
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Metadata can be attached to the inputs. It will be preserved and 
#'# accordignly modified.
#'tas <- array(1:50, dim = c(25, 50))
#'names(dim(tas)) <- c('lat', 'lon')
#'lon <- seq(0, 360 - 360/50, length.out = 50)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = 25)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(lat = list(len = 25,
#'                                                  vals = lat),
#'                                       lon = list(len = 50,
#'                                                  vals = lon)
#'                                      )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't170grid', 'bil', TRUE)
#'
#'# Arrays of any number of dimensions in any order can be provided.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10), 
#'             dim = c(10, num_lats, 10, num_lons, 10))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon', 'c')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#'                                       lat = list(len = num_lats,
#'                                                  vals = lat),
#'                                       b = list(),
#'                                       lon = list(len = num_lons,
#'                                                  vals = lon),
#'                                       c = list()
#'                                      )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'# The step of permutation can be avoided but more intermediate file writes
#'# will be performed.
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# If the provided array has the longitude or latitude dimension in the 
#'# right-most position, the same number of file writes will be performed,
#'# even if avoid_wrties = FALSE.
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10), 
#'             dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'lat', 'b', 'lon')
#'lon <- seq(0, 360 - 360/num_lons, length.out = num_lons)
#'metadata <- list(lon = list(units = 'degrees_east'))
#'attr(lon, 'variables') <- metadata
#'lat <- seq(-90, 90, length.out = num_lats)
#'metadata <- list(lat = list(units = 'degrees_north'))
#'attr(lat, 'variables') <- metadata
#'metadata <- list(tas = list(dim = list(a = list(),
#'                                       lat = list(len = num_lats,
#'                                                  vals = lat),
#'                                       b = list(),
#'                                       lon = list(len = num_lons,
#'                                                  vals = lon)
#'                                      )))
#'attr(tas, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', TRUE)
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'
#'# An example of an interpolation from and onto a rectangular regular grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(1*num_lats*num_lons), dim = c(num_lats, num_lons))
#'names(dim(tas)) <- c('y', 'x')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons), 
#'             dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('x', 'y')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats), 
#'               dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('x', 'y')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 'r100x50', 'bil')
#'
#'# An example of an interpolation from an irregular grid onto a gaussian grid
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons*10), 
#'             dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons), 
#'             dim = c(num_lons, num_lats))
#'metadata <- list(lon = list(units = 'degrees_east'))
#'names(dim(lon)) <- c('i', 'j')
#'attr(lon, 'variables') <- metadata
#'lat <- t(array(seq(-90, 90, length.out = num_lats), 
#'         dim = c(num_lats, num_lons)))
#'metadata <- list(lat = list(units = 'degrees_north'))
#'names(dim(lat)) <- c('i', 'j')
#'attr(lat, 'variables') <- metadata
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'
#'# Again, the dimensions can be in any order
#'num_lats <- 25
#'num_lons <- 50
#'tas <- array(1:(10*num_lats*10*num_lons), 
#'             dim = c(10, num_lats, 10, num_lons))
#'names(dim(tas)) <- c('a', 'j', 'b', 'i')
#'lon <- array(seq(0, 360 - 360/num_lons, length.out = num_lons), 
#'             dim = c(num_lons, num_lats))
#'names(dim(lon)) <- c('i', 'j')
#'lat <- t(array(seq(-90, 90, length.out = num_lats), 
#'               dim = c(num_lats, num_lons)))
#'names(dim(lat)) <- c('i', 'j')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil')
#'tas2 <- CDORemap(tas, lon, lat, 't17grid', 'bil', FALSE)
#'# It is ossible to specify an external NetCDF file as target grid reference
#'tas2 <- CDORemap(tas, lon, lat, 'external_file.nc', 'bil')
#'}
#'@import ncdf4
#'@importFrom stats lm predict setNames 
aho's avatar
aho committed
#'@importFrom ClimProjDiags Subset
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
#'@export
CDORemap <- function(data_array = NULL, lons, lats, grid, method, 
                     avoid_writes = TRUE, crop = TRUE,
                     force_remap = FALSE, write_dir = tempdir()) {  #, mask = NULL) {
  .isRegularVector <- function(x, tol = 0.1) {
    if (length(x) < 2) {
      #stop("The provided vector must be of length 2 or greater.")
      TRUE
    } else {
      spaces <- x[2:length(x)] - x[1:(length(x) - 1)]
      (sum(abs(spaces - mean(spaces)) > mean(spaces) / (1 / tol)) < 2)
    }
  }
  # Check parameters data_array, lons and lats.
  known_lon_names <- .KnownLonNames()
  known_lat_names <- .KnownLatNames()
  if (!is.numeric(lons) || !is.numeric(lats)) {
    stop("Expected numeric 'lons' and 'lats'.")
  }
  if (any(is.na(lons > 0))) {
    stop("Found invalid values in 'lons'.")
  }
  if (any(is.na(lats > 0))) {
    stop("Found invalid values in 'lats'.")
  }
  if (is.null(dim(lons))) {
    dim(lons) <- length(lons)
  }
  if (is.null(dim(lats))) {
    dim(lats) <- length(lats)
  }
  if (length(dim(lons)) > 2 || length(dim(lats)) > 2) {
    stop("'lons' and 'lats' can only have up to 2 dimensions.")
  }
  if (length(dim(lons)) != length(dim(lats))) {
    stop("'lons' and 'lats' must have the same number of dimensions.")
  }
  if (length(dim(lons)) == 2 && !all(dim(lons) == dim(lats))) {
    stop("'lons' and 'lats' must have the same dimension sizes.")
  }
  return_array <- TRUE
  if (is.null(data_array)) {
    return_array <- FALSE
    if (length(dim(lons)) == 1) {
      array_dims <- c(length(lats), length(lons))
      new_lon_dim_name <- 'lon'
      new_lat_dim_name <- 'lat'
    } else {
      array_dims <- dim(lons)
      new_lon_dim_name <- 'i'
      new_lat_dim_name <- 'j'
    }
    if (!is.null(names(dim(lons)))) {
      if (any(known_lon_names %in% names(dim(lons)))) {
        new_lon_dim_name <- known_lon_names[which(known_lon_names %in% names(dim(lons)))[1]]
      }
    }
    if (!is.null(names(dim(lats)))) {
      if (any(known_lat_names %in% names(dim(lats)))) {
        new_lat_dim_name <- known_lat_names[which(known_lat_names %in% names(dim(lats)))[1]]
      }
    }
    names(array_dims) <- c(new_lat_dim_name, new_lon_dim_name)
    data_array <- array(as.numeric(NA), array_dims)
  }
  if (!(is.logical(data_array) || is.numeric(data_array)) || !is.array(data_array)) {
    stop("Parameter 'data_array' must be a numeric array.")
  }
  if (is.null(names(dim(data_array)))) {
    stop("Parameter 'data_array' must have named dimensions.")
  }
  lon_dim <- which(known_lon_names %in% names(dim(data_array)))
  if (length(lon_dim) < 1) {
    stop("Could not find a known longitude dimension name in the provided 'data_array'.")
  }
  if (length(lon_dim) > 1) {
    stop("Found more than one known longitude dimension names in the provided 'data_array'.")
  }
  lon_dim <- known_lon_names[lon_dim]
  lat_dim <- which(known_lat_names %in% names(dim(data_array)))
  if (length(lat_dim) < 1) {
    stop("Could not find a known latitude dimension name in the provided 'data_array'.")
  }
  if (length(lat_dim) > 1) {
    stop("Found more than one known latitude dimension name in the provided 'data_array'.")
  }
  lat_dim <- known_lat_names[lat_dim]
  if (is.null(names(dim(lons)))) {
    if (length(dim(lons)) == 1) {
      names(dim(lons)) <- lon_dim
    } else {
      stop("Parameter 'lons' must be provided with dimension names.")
    }
  } else {
    if (!(lon_dim %in% names(dim(lons)))) {
      stop("Parameter 'lon' must have the same longitude dimension name as the 'data_array'.")
    }
    if (length(dim(lons)) > 1 && !(lat_dim %in% names(dim(lons)))) {
      stop("Parameter 'lon' must have the same latitude dimension name as the 'data_array'.")
    }
  }
  if (is.null(names(dim(lats)))) {
    if (length(dim(lats)) == 1) {
      names(dim(lats)) <- lat_dim
    } else {
      stop("Parameter 'lats' must be provided with dimension names.")
    }
  } else {
    if (!(lat_dim %in% names(dim(lats)))) {
      stop("Parameter 'lat' must have the same latitude dimension name as the 'data_array'.")
    }
    if (length(dim(lats)) > 1 && !(lon_dim %in% names(dim(lats)))) {
      stop("Parameter 'lat' must have the same longitude dimension name as the 'data_array'.")
    }
  }
  lons_attr_bk <- attributes(lons)
  if (is.null(lons_attr_bk)) {
    lons_attr_bk <- list()
  }
  lats_attr_bk <- attributes(lats)
  if (is.null(lats_attr_bk)) {
    lats_attr_bk <- list()
  }
  if (length(attr(lons, 'variables')) == 0) {
    new_metadata <- list(list())
    if (length(dim(lons)) == 1) {
      names(new_metadata) <- lon_dim
    } else {
      names(new_metadata) <- paste0(lon_dim, '_var')
    }
    attr(lons, 'variables') <- new_metadata
  }
  if (!('units' %in% names(attr(lons, 'variables')[[1]]))) {
    new_metadata <- attr(lons, 'variables')
    #names(new_metadata)[1] <- lon_dim
    new_metadata[[1]][['units']] <- 'degrees_east'
    attr(lons, 'variables') <- new_metadata
  }
  if (length(attr(lats, 'variables')) == 0) {
    new_metadata <- list(list())
    if (length(dim(lats)) == 1) {
      names(new_metadata) <- lat_dim
    } else {
      names(new_metadata) <- paste0(lat_dim, '_var')
    }
    attr(lats, 'variables') <- new_metadata
  }
  if (!('units' %in% names(attr(lats, 'variables')[[1]]))) {
    new_metadata <- attr(lats, 'variables')
    #names(new_metadata)[1] <- lat_dim
    new_metadata[[1]][['units']] <- 'degrees_north'
    attr(lats, 'variables') <- new_metadata
  }
  # Check grid.
  if (!is.character(grid)) {
    stop("Parameter 'grid' must be a character string specifying a ",
         "target CDO grid, 'rXxY' or 'tRESgrid', or a path to another ",
         "NetCDF file.")
  }
  if (grepl('^r[0-9]{1,}x[0-9]{1,}$', grid)) {
    grid_type <- 'regular'
    grid_lons <- as.numeric(strsplit(strsplit(grid, 'x')[[1]][1], 'r')[[1]][2])
    grid_lats <- as.numeric(strsplit(grid, 'x')[[1]][2])
  } else if (grepl('^t[0-9]{1,}grid$', grid)) {
    grid_type <- 'gaussian'
    grid_t <- as.numeric(strsplit(strsplit(grid, 'grid')[[1]][1], 't')[[1]][2])
    grid_size <- .t2nlatlon(grid_t)
    grid_lons <- grid_size[2]
    grid_lats <- grid_size[1]
  } else {
    grid_type <- 'custom'
  }
  # Check method.
  if (method %in% c('bil', 'bilinear')) {
    method <- 'bil'
  } else if (method %in% c('bic', 'bicubic')) {
    method <- 'bic'
  } else if (method %in% c('con', 'conservative')) {
    method <- 'con'
  } else if (method %in% c('dis', 'distance-weighted')) {
    method <- 'dis'
  } else {
    stop("Unsupported CDO remap method. 'bilinear', 'bicubic', 'conservative' or 'distance-weighted' supported only.")
  }
  # Check avoid_writes
  if (!is.logical(avoid_writes)) {
    stop("Parameter 'avoid_writes' must be a logical value.")
  }
  # Check crop
  crop_tight <- FALSE
  if (is.character(crop)) {
    if (crop == 'tight') {
      crop_tight <- TRUE
    } else if (crop != 'preserve') {
      stop("Parameter 'crop' can only take the values 'tight' or 'preserve' if specified as a character string.")
    }
    crop <- TRUE
  }
  if (is.logical(crop)) {
    if (crop) {
            warning("Parameter 'crop' = 'TRUE'. The output grid range will follow the input lons and lats.")
      if (length(lons) == 1 || length(lats) == 1) {
        stop("CDORemap cannot remap if crop = TRUE and values for only one ",
             "longitude or one latitude are provided. Either a) provide ",
             "values for more than one longitude/latitude, b) explicitly ",
             "specify the crop limits in the parameter crop, or c) set ",
             "crop = FALSE.")
      }
      if (crop_tight) {
        lon_extremes <- c(min(lons), max(lons))
        lat_extremes <- c(min(lats), max(lats))
      } else {
        # Here we are trying to look for the extreme lons and lats in the data.
        # Not the centers of the extreme cells, but the borders of the extreme cells.
###---
        if (length(dim(lons)) == 1) {
          tmp_lon <- lons
        } else {
          min_pos <- which(lons == min(lons), arr.ind = TRUE)[1, ]
          tmp_lon <- Subset(lons, lat_dim, min_pos[which(names(dim(lons)) == lat_dim)], drop = 'selected')
        }
        i <- 1:length(tmp_lon)
        degree <- min(3, length(i) - 1)
        lon_model <- lm(tmp_lon ~ poly(i, degree))
        lon_extremes <- c(NA, NA)
        left_is_min <- FALSE
        right_is_max <- FALSE
        if (which.min(tmp_lon) == 1) {
          left_is_min <- TRUE
          prev_lon <- predict(lon_model, data.frame(i = 0))
          first_lon_cell_width <- (tmp_lon[1] - prev_lon)
          # The signif is needed because cdo sellonlatbox crashes with too many digits
          lon_extremes[1] <- tmp_lon[1] - first_lon_cell_width / 2
        } else {
          lon_extremes[1] <- min(tmp_lon)
        }
        if (which.max(tmp_lon) == length(tmp_lon)) {
          right_is_max <- TRUE
          next_lon <- predict(lon_model, data.frame(i = length(tmp_lon) + 1))
          last_lon_cell_width <- (next_lon - tmp_lon[length(tmp_lon)])
          lon_extremes[2] <- tmp_lon[length(tmp_lon)] + last_lon_cell_width / 2
        } else {
          lon_extremes[2] <- max(tmp_lon)
        }
        # Adjust the crop window if possible in order to keep lons from 0 to 360 
        # or from -180 to 180 when the extremes of the cropped window are contiguous.
        if (right_is_max) {
          if (lon_extremes[1] < -180) {
            if (!((lon_extremes[2] < 180) && !((180 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
              lon_extremes[1] <- -180
              lon_extremes[2] <- 180
            }
          } else if (lon_extremes[1] < 0) {
            if (!((lon_extremes[2] < 360) && !((360 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
              lon_extremes[1] <- 0
              lon_extremes[2] <- 360
            }
          }
        } 
        if (left_is_min) {
          if (lon_extremes[2] > 360) {
            if (!((lon_extremes[1] > 0) && !(lon_extremes[1] <= first_lon_cell_width / 2))) {
              lon_extremes[1] <- 0
              lon_extremes[2] <- 360
            }
          } else if (lon_extremes[2] > 180) {
            if (!((lon_extremes[1] > -180) && !((180 + lon_extremes[1]) <= first_lon_cell_width / 2))) {
              lon_extremes[1] <- -180
              lon_extremes[2] <- 180
            }
          }
        } 
##      lon_extremes <- signif(lon_extremes, 5)
##      lon_extremes <- lon_extremes + 0.00001
###---
        if (length(dim(lats)) == 1) {
          tmp_lat <- lats
        } else {
          min_pos <- which(lats == min(lats), arr.ind = TRUE)[1, ]
          tmp_lat <- Subset(lats, lon_dim, min_pos[which(names(dim(lats)) == lon_dim)], drop = 'selected')
        }
        i <- 1:length(tmp_lat)
        degree <- min(3, length(i) - 1)
        lat_model <- lm(tmp_lat ~ poly(i, degree))
        lat_extremes <- c(NA, NA)
        if (which.min(tmp_lat) == 1) {
          prev_lat <- predict(lat_model, data.frame(i = 0))
          lat_extremes[1] <- tmp_lat[1] - (tmp_lat[1] - prev_lat) / 2
        } else {
          lat_extremes[1] <- min(tmp_lat)
        }
        if (which.max(tmp_lat) == length(tmp_lat)) {
          next_lat <- predict(lat_model, data.frame(i = length(tmp_lat) + 1))
          lat_extremes[2] <- tmp_lat[length(tmp_lat)] + (next_lat - tmp_lat[length(tmp_lat)]) / 2
        } else {
          lat_extremes[2] <- max(tmp_lat)
        }
##      lat_extremes <- signif(lat_extremes, 5)
        # Adjust crop window
        if (lat_extremes[1] < -90) {
          lat_extremes[1] <- -90
        } else if (lat_extremes[1] > 90) {
          lat_extremes[1] <- 90
        }
        if (lat_extremes[2] < -90) {
          lat_extremes[2] <- -90
        } else if (lat_extremes[2] > 90) {
          lat_extremes[2] <- 90
        }
###---
      }
    }  else if (crop == FALSE) {
       warning("Parameter 'crop' = 'FALSE'. The output grid range will follow parameter 'grid'.")
    }
  } else if (is.numeric(crop)) {
    if (length(crop) != 4) {
      stop("Paramrter 'crop' must be a logical value or a numeric vector of length 4: c(western border, eastern border, southern border, northern border.")
    } else {
      lon_extremes <- crop[1:2]
      lat_extremes <- crop[3:4]
      crop <- TRUE
    }
  } else {
    stop("Parameter 'crop' must be a logical value or a numeric vector.")
  }
  # Check force_remap
  if (!is.logical(force_remap)) {
    stop("Parameter 'force_remap' must be a logical value.")
  }
  # Check write_dir
  if (!is.character(write_dir)) {
    stop("Parameter 'write_dir' must be a character string.")
  }
  if (!dir.exists(write_dir)) {
    stop("Parameter 'write_dir' must point to an existing directory.")
  }
#  if (!is.null(mask)) {
#    if (!is.numeric(mask) || !is.array(mask)) {
#      stop("Parameter 'mask' must be a numeric array.")
#    }
#    if (length(dim(mask)) != 2) {
#      stop("Parameter 'mask' must have two dimensions.")
#    }
#    if (is.null(names(dim(mask)))) {
#      if (dim(data_array)[lat_dim] == dim(data_array)[lon_dim]) {
#        stop("Cannot disambiguate which is the longitude dimension of ",
#             "the provided 'mask'. Provide it with dimension names.")
#      }
#      names(dim(mask)) <- c('', '')
#      found_lon_dim <- which(dim(mask) == dim(data_array)[lon_dim])
#      if (length(found_lon_dim) < 0) {
#        stop("The dimension sizes of the provided 'mask' do not match ",
#             "the spatial dimension sizes of the array to interpolate.")
#      } else {
#        names(dim(mask)[found_lon_dim]) <- lon_dim
#      }
#      found_lat_dim <- which(dim(mask) == dim(data_array)[lat_dim])
#      if (length(found_lat_dim) < 0) {
#        stop("The dimension sizes of the provided 'mask' do not match ",
#             "the spatial dimension sizes of the array to interpolate.")
#      } else {
#        names(dim(mask)[found_lat_dim]) <- lat_dim
#      }
#    }
#    lon_position <- which(names(dim(data_array)) == lon_dim)
#    lat_position <- which(names(dim(data_array)) == lat_dim)
#    if (lon_position > lat_position) {
#      if (names(dim(mask))[1] == lon_dim) {
#        mask <- t(mask)
#      }
#    } else {
#      if (names(dim(mask))[1] == lat_dim) {
#        mask <- t(mask)
#      }
#    }
#    ## TODO: Apply mask!!! Preserve attributes
#  }
  # Check if interpolation can be skipped.
  interpolation_needed <- TRUE
  if (!force_remap) {
    if (!(grid_type == 'custom')) {
      if (length(lons) == grid_lons && length(lats) == grid_lats) {
        if (grid_type == 'regular') {
          if (.isRegularVector(lons) && .isRegularVector(lats)) {
            interpolation_needed <- FALSE
          }
        } else if (grid_type == 'gaussian') {
          # TODO: improve this check. Gaussian quadrature should be used.
          if (.isRegularVector(lons) && !.isRegularVector(lats)) {
            interpolation_needed <- FALSE
          }
        }
      }
    }
  }
  found_lons <- lons
  found_lats <- lats
  if (interpolation_needed) {
    if (nchar(Sys.which('cdo')[1]) < 1) {
      stop("CDO must be installed in order to use the .CDORemap.")
    }
    cdo_version <- as.numeric_version(
      strsplit(suppressWarnings(system2("cdo", args = '-V', stderr = TRUE))[[1]], ' ')[[1]][5]
    )
    warning("CDORemap: Using CDO version ", cdo_version, ".")
    if ((cdo_version >= as.numeric_version('1.7.0')) && (method == 'con')) {
      method <- 'ycon'
    }
    # CDO takes arrays of 3 dimensions or 4 if one of them is unlimited.
    # The unlimited dimension can only be the left-most (right-most in R).
    # There are no restrictions for the dimension names or variable names.
    # The longitude and latitude are detected by their units.
    # There are no restrictions for the order of the limited dimensions.
    # The longitude/latitude variables and dimensions must have the same name.
    # The procedure consists in:
    # - take out the array metadata
    # - be aware of var dimension (replacing the dimension names would do).
    # - take arrays of 4 dimensions always if possible
    # - make the last dimension unlimited when saving to netcdf
    # - if the last dimension is lon or lat, either reorder the array and 
    #   then reorder back or iterate over the dimensions at the right
    #   side of lon AND lat.
    # If the input array has more than 4 dimensions, it is needed to
    # run CDO on each sub-array of 4 dimensions because it can handle
    # only up to 4 dimensions. The shortest dimensions are chosen to 
    # iterate over.
    is_irregular <- FALSE
    if (length(dim(lats)) > 1 && length(dim(lons)) > 1) {
      is_irregular <- TRUE
    }
    attribute_backup <- attributes(data_array)
    other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
    permutation <- NULL
    unlimited_dim <- NULL
    dims_to_iterate <- NULL
    total_slices <- 1
    other_dims_per_chunk <- ifelse(is_irregular, 1, 2)  # 4 (the maximum accepted by CDO) - 2 (lon, lat) = 2.
    if (length(other_dims) > 1 || (length(other_dims) > 0 && (is_irregular))) {
      if (!(length(dim(data_array)) %in% other_dims)) {
        if (avoid_writes || is_irregular) {
          dims_mod <- dim(data_array)
          dims_mod[which(names(dim(data_array)) %in%
                   c(lon_dim, lat_dim))] <- 0
          dim_to_move <- which.max(dims_mod)
          permutation <- (1:length(dim(data_array)))[-dim_to_move]
          permutation <- c(permutation, dim_to_move)
          permutation_back <- sort(permutation, index.return = TRUE)$ix
          dim_backup <- dim(data_array)
          data_array <- aperm(data_array, permutation)
          dim(data_array) <- dim_backup[permutation]
          other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
        } else {
          # We allow only lon, lat and 1 more dimension per chunk, so 
          # CDO has no restrictions in the order.
          other_dims_per_chunk <- 1
        }
      }
      other_dims_ordered_by_size <- other_dims[sort(dim(data_array)[other_dims], index.return = TRUE)$ix]
      dims_to_iterate <- sort(head(other_dims_ordered_by_size, length(other_dims) - other_dims_per_chunk))
      if (length(dims_to_iterate) == 0) {
        dims_to_iterate <- NULL
      } else {
        slices_to_iterate <- array(1:prod(dim(data_array)[dims_to_iterate]), 
                                    dim(data_array)[dims_to_iterate])
        total_slices <- prod(dim(slices_to_iterate))
      }
      if ((other_dims_per_chunk > 1) || (other_dims_per_chunk > 0 && is_irregular)) {
        unlimited_dim <- tail(sort(tail(other_dims_ordered_by_size, other_dims_per_chunk)), 1)
        #unlimited_dim <- tail(other_dims)
      }
    }

    result_array <- NULL
    lon_pos <- which(names(dim(data_array)) == lon_dim)
    lat_pos <- which(names(dim(data_array)) == lat_dim)
    dim_backup <- dim(data_array)
    attributes(data_array) <- NULL
    dim(data_array) <- dim_backup
    names(dim(data_array)) <- paste0('dim', 1:length(dim(data_array)))
    names(dim(data_array))[c(lon_pos, lat_pos)] <- c(lon_dim, lat_dim)
    if (!is.null(unlimited_dim)) {
      # This will make ArrayToNetCDF create this dim as unlimited.
      names(dim(data_array))[unlimited_dim] <- 'time'
    }
    if (length(dim(lons)) == 1) {
      names(dim(lons)) <- lon_dim
    }
    if (length(dim(lats)) == 1) {
      names(dim(lats)) <- lat_dim
    }
    if (length(dim(lons)) > 1) {
      lon_var_name <- paste0(lon_dim, '_var')
    } else {
      lon_var_name <- lon_dim
    }
    if (length(dim(lats)) > 1) {
      lat_var_name <- paste0(lat_dim, '_var')
    } else {
      lat_var_name <- lat_dim
    }
    if (is_irregular) {
      metadata <- list(list(coordinates = paste(lon_var_name, lat_var_name)))
      names(metadata) <- 'var'
      attr(data_array, 'variables') <- metadata
    }
    names(attr(lons, 'variables')) <- lon_var_name
    names(attr(lats, 'variables')) <- lat_var_name
    if (!is.null(attr(lons, 'variables')[[1]][['dim']])) {
      attr(lons, 'variables')[[1]][['dim']] <- NULL
    }
    if (!is.null(attr(lats, 'variables')[[1]][['dim']])) {
      attr(lats, 'variables')[[1]][['dim']] <- NULL
    }
    lons_lats_taken <- FALSE
    for (i in 1:total_slices) {
      tmp_file <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
      tmp_file2 <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
      if (!is.null(dims_to_iterate)) {
        slice_indices <- which(slices_to_iterate == i, arr.ind = TRUE)
        subset <- Subset(data_array, dims_to_iterate, as.list(slice_indices), drop = 'selected')
#        dims_before_crop <- dim(subset)
        # Make sure subset goes along with metadata
        ArrayToNetCDF(setNames(list(subset, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
      } else {
#        dims_before_crop <- dim(data_array)
        ArrayToNetCDF(setNames(list(data_array, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
      }
      sellonlatbox <- ''
      if (crop) {
        sellonlatbox <- paste0('sellonlatbox,', format(lon_extremes[1], scientific = FALSE), 
                                           ',', format(lon_extremes[2], scientific = FALSE), 
                                           ',', format(lat_extremes[1], scientific = FALSE), 
                                           ',', format(lat_extremes[2], scientific = FALSE), ' -')
      }
      err <- try({
        system(paste0("cdo -s ", sellonlatbox, "remap", method, ",", grid, " ", tmp_file, " ", tmp_file2))
      })
      file.remove(tmp_file)
      if (('try-error' %in% class(err)) || err > 0) {
        stop("CDO remap failed.")
      }
      ncdf_remapped <- nc_open(tmp_file2)
      if (!lons_lats_taken) {
        found_dim_names <- sapply(ncdf_remapped$var$var$dim, '[[', 'name')
        found_lon_dim <- found_dim_names[which(found_dim_names %in% .KnownLonNames())[1]]
        found_lat_dim <- found_dim_names[which(found_dim_names %in% .KnownLatNames())[1]]
        found_lon_dim_size <- length(ncdf_remapped$dim[[found_lon_dim]]$vals)
        found_lat_dim_size <- length(ncdf_remapped$dim[[found_lat_dim]]$vals)
        found_var_names <- names(ncdf_remapped$var)
        found_lon_var_name <- which(found_var_names %in% .KnownLonNames())
        found_lat_var_name <- which(found_var_names %in% .KnownLatNames())
        if (length(found_lon_var_name) > 0) {
          found_lon_var_name <- found_var_names[found_lon_var_name[1]]
        } else {
          found_lon_var_name <- NULL
        }
        if (length(found_lat_var_name) > 0) {
          found_lat_var_name <- found_var_names[found_lat_var_name[1]]
        } else {
          found_lat_var_name <- NULL
        }
        if (length(found_lon_var_name) > 0) {
          found_lons <- ncvar_get(ncdf_remapped, found_lon_var_name, 
                                  collapse_degen = FALSE)
        } else {
          found_lons <- ncdf_remapped$dim[[found_lon_dim]]$vals
          dim(found_lons) <- found_lon_dim_size
        }
        if (length(found_lat_var_name) > 0) {
          found_lats <- ncvar_get(ncdf_remapped, found_lat_var_name, 
                                  collapse_degen = FALSE)
        } else {
          found_lats <- ncdf_remapped$dim[[found_lat_dim]]$vals
          dim(found_lats) <- found_lat_dim_size
        }
        if (length(dim(lons)) == length(dim(found_lons))) {
          new_lon_name <- lon_dim
        } else {
          new_lon_name <- found_lon_dim
        }
        if (length(dim(lats)) == length(dim(found_lats))) {
          new_lat_name <- lat_dim
        } else {
          new_lat_name <- found_lat_dim
        }
        if (length(dim(found_lons)) > 1) {
          if (which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lon_dim) < 
              which(sapply(ncdf_remapped$var$lon$dim, '[[', 'name') == found_lat_dim)) {
            names(dim(found_lons)) <- c(new_lon_name, new_lat_name)
          } else {
            names(dim(found_lons)) <- c(new_lat_name, new_lon_name)
          }
        } else {
          names(dim(found_lons)) <- new_lon_name
        }
        if (length(dim(found_lats)) > 1) {
          if (which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lon_dim) < 
              which(sapply(ncdf_remapped$var$lat$dim, '[[', 'name') == found_lat_dim)) {
            names(dim(found_lats)) <- c(new_lon_name, new_lat_name)
          } else {
            names(dim(found_lats)) <- c(new_lat_name, new_lon_name)
          }
        } else {
          names(dim(found_lats)) <- new_lat_name
        }
        lons_lats_taken <- TRUE
      }
      if (!is.null(dims_to_iterate)) {
        if (is.null(result_array)) {
          if (return_array) {
            new_dims <- dim(data_array)
            new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
            result_array <- array(dim = new_dims)
            store_indices <- as.list(rep(TRUE, length(dim(result_array))))
          }
        }
        if (return_array) {
          store_indices[dims_to_iterate] <- as.list(slice_indices)
          result_array <- do.call('[<-', c(list(x = result_array), store_indices, 
                                           list(value = ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE))))
        }
      } else {
        new_dims <- dim(data_array)
        new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
        result_array <- ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)
        dim(result_array) <- new_dims
      }
      nc_close(ncdf_remapped)
      file.remove(tmp_file2)
    }
    if (!is.null(permutation)) {
      dim_backup <- dim(result_array)
      result_array <- aperm(result_array, permutation_back)
      dim(result_array) <- dim_backup[permutation_back]
    }
    # Now restore the metadata
    result_is_irregular <- FALSE
    if (length(dim(found_lats)) > 1 && length(dim(found_lons)) > 1) {
      result_is_irregular <- TRUE
    }
    attribute_backup[['dim']][which(names(dim(result_array)) == lon_dim)] <- dim(result_array)[lon_dim]
    attribute_backup[['dim']][which(names(dim(result_array)) == lat_dim)] <- dim(result_array)[lat_dim]
    names(attribute_backup[['dim']])[which(names(dim(result_array)) == lon_dim)] <- new_lon_name
    names(attribute_backup[['dim']])[which(names(dim(result_array)) == lat_dim)] <- new_lat_name
    if (!is.null(attribute_backup[['variables']]) && (length(attribute_backup[['variables']]) > 0)) {
      for (var in 1:length(attribute_backup[['variables']])) {
        if (length(attribute_backup[['variables']][[var]][['dim']]) > 0) {
          for (dim in 1:length(attribute_backup[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(attribute_backup[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- attribute_backup[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(attribute_backup[['variables']][[var]][['dim']]))) {
              dim_name <- names(attribute_backup[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                }
                if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['len']])) {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }
                if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']])) {
                  if (!result_is_irregular) {
                    attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
                  } else {
                    attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
                  }
                }
              }
            }
          }
        }
        if (!is_irregular && result_is_irregular) {
          attribute_backup[['coordinates']] <- paste(lon_var_name, lat_var_name)
        } else if (is_irregular && !result_is_irregular) {
          attribute_backup[['coordinates']] <- NULL
        }
      }
    }
    attributes(result_array) <- attribute_backup
    lons_attr_bk[['dim']] <- dim(found_lons)
    if (!is.null(lons_attr_bk[['variables']]) && (length(lons_attr_bk[['variables']]) > 0)) {
      for (var in 1:length(lons_attr_bk[['variables']])) {
        if (length(lons_attr_bk[['variables']][[var]][['dim']]) > 0) {
          dims_to_remove <- NULL
          for (dim in 1:length(lons_attr_bk[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(lons_attr_bk[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(lons_attr_bk[['variables']][[var]][['dim']]))) {
              dim_name <- names(lons_attr_bk[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                  if (!result_is_irregular) {
                    dims_to_remove <- c(dims_to_remove, dim)
                  }
                }
                if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }
                if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) {
                  if (!result_is_irregular) {
                    lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
                  } else {
                    lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
                  }
                }
              }
            }
          }
          if (length(dims_to_remove) > 1) {
            lons_attr_bk[['variables']][[var]][['dim']] <- lons_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]]
          }
        }
      }
      names(lons_attr_bk[['variables']])[1] <- lon_var_name
      lons_attr_bk[['variables']][[1]][['units']] <- 'degrees_east'
    }
    attributes(found_lons) <- lons_attr_bk
    lats_attr_bk[['dim']] <- dim(found_lats)
    if (!is.null(lats_attr_bk[['variables']]) && (length(lats_attr_bk[['variables']]) > 0)) {
      for (var in 1:length(lats_attr_bk[['variables']])) {
        if (length(lats_attr_bk[['variables']][[var]][['dim']]) > 0) {
          dims_to_remove <- NULL
          for (dim in 1:length(lats_attr_bk[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(lats_attr_bk[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- lats_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(lats_attr_bk[['variables']][[var]][['dim']]))) {
              dim_name <- names(lats_attr_bk[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                  if (!result_is_irregular) {
                    dims_to_remove <- c(dims_to_remove, dim)
                  }
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                }
                if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
                  lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }