CDORemap.R 32.2 KB
Newer Older
CDORemap <- function(data_array = NULL, lons, lats, grid, method, 
                     avoid_writes = TRUE, crop = TRUE,
                     force_remap = FALSE, write_dir = tempdir()) {  #, mask = NULL) {
  .isRegularVector <- function(x, tol = 0.1) {
    if (length(x) < 2) {
      #stop("The provided vector must be of length 2 or greater.")
      TRUE
    } else {
      spaces <- x[2:length(x)] - x[1:(length(x) - 1)]
      (sum(abs(spaces - mean(spaces)) > mean(spaces) / (1 / tol)) < 2)
    }
  }
  # Check parameters data_array, lons and lats.
  known_lon_names <- .KnownLonNames()
  known_lat_names <- .KnownLatNames()
  if (!is.numeric(lons) || !is.numeric(lats)) {
    stop("Expected numeric 'lons' and 'lats'.")
  }
  if (any(is.na(lons > 0))) {
    stop("Found invalid values in 'lons'.")
  }
  if (any(is.na(lats > 0))) {
    stop("Found invalid values in 'lats'.")
  }
  if (is.null(dim(lons))) {
    dim(lons) <- length(lons)
  }
  if (is.null(dim(lats))) {
    dim(lats) <- length(lats)
  }
  if (length(dim(lons)) > 2 || length(dim(lats)) > 2) {
    stop("'lons' and 'lats' can only have up to 2 dimensions.")
  }
  if (length(dim(lons)) != length(dim(lats))) {
    stop("'lons' and 'lats' must have the same number of dimensions.")
  }
  if (length(dim(lons)) == 2 && !all(dim(lons) == dim(lats))) {
    stop("'lons' and 'lats' must have the same dimension sizes.")
  }
  return_array <- TRUE
  if (is.null(data_array)) {
    return_array <- FALSE
    if (length(dim(lons)) == 1) {
      array_dims <- c(length(lats), length(lons))
Nicolau Manubens's avatar
Nicolau Manubens committed
      new_lon_dim_name <- 'lon'
      new_lat_dim_name <- 'lat'
    } else {
      array_dims <- dim(lons)
Nicolau Manubens's avatar
Nicolau Manubens committed
      new_lon_dim_name <- 'i'
      new_lat_dim_name <- 'j'
Nicolau Manubens's avatar
Nicolau Manubens committed
    if (!is.null(names(dim(lons)))) {
      if (any(known_lon_names %in% names(dim(lons)))) {
        new_lon_dim_name <- known_lon_names[which(known_lon_names %in% names(dim(lons)))[1]]
      }
    }
    if (!is.null(names(dim(lats)))) {
      if (any(known_lat_names %in% names(dim(lats)))) {
        new_lat_dim_name <- known_lat_names[which(known_lat_names %in% names(dim(lats)))[1]]
      }
    }
    names(array_dims) <- c(new_lat_dim_name, new_lon_dim_name)
    data_array <- array(NA, array_dims)
  }
  if (!(is.logical(data_array) || is.numeric(data_array)) || !is.array(data_array)) {
    stop("Parameter 'data_array' must be a numeric array.")
  }
  if (is.null(names(dim(data_array)))) {
    stop("Parameter 'data_array' must have named dimensions.")
  }
  lon_dim <- which(known_lon_names %in% names(dim(data_array)))
  if (length(lon_dim) < 1) {
    stop("Could not find a known longitude dimension name in the provided 'data_array'.")
  }
  if (length(lon_dim) > 1) {
    stop("Found more than one known longitude dimension names in the provided 'data_array'.")
  }
  lon_dim <- known_lon_names[lon_dim]
  lat_dim <- which(known_lat_names %in% names(dim(data_array)))
  if (length(lat_dim) < 1) {
    stop("Could not find a known latitude dimension name in the provided 'data_array'.")
  }
  if (length(lat_dim) > 1) {
    stop("Found more than one known latitude dimension name in the provided 'data_array'.")
  }
  lat_dim <- known_lat_names[lat_dim]
  if (is.null(names(dim(lons)))) {
    if (length(dim(lons)) == 1) {
      names(dim(lons)) <- lon_dim
    } else {
      stop("Parameter 'lons' must be provided with dimension names.")
    }
  } else {
    if (!(lon_dim %in% names(dim(lons)))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
      stop("Parameter 'lon' must have the same longitude dimension name as the 'data_array'.")
    }
    if (length(dim(lons)) > 1 && !(lat_dim %in% names(dim(lons)))) {
      stop("Parameter 'lon' must have the same latitude dimension name as the 'data_array'.")
    }
  }
  if (is.null(names(dim(lats)))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
    if (length(dim(lats)) == 1) {
      names(dim(lats)) <- lat_dim
    } else {
      stop("Parameter 'lats' must be provided with dimension names.")
    }
  } else {
    if (!(lat_dim %in% names(dim(lats)))) {
Nicolau Manubens's avatar
Nicolau Manubens committed
      stop("Parameter 'lat' must have the same latitude dimension name as the 'data_array'.")
    }
    if (length(dim(lats)) > 1 && !(lon_dim %in% names(dim(lats)))) {
      stop("Parameter 'lat' must have the same longitude dimension name as the 'data_array'.")
    }
  }
  lons_attr_bk <- attributes(lons)
  if (is.null(lons_attr_bk)) {
    lons_attr_bk <- list()
  }
  lats_attr_bk <- attributes(lats)
  if (is.null(lats_attr_bk)) {
    lats_attr_bk <- list()
  }
  if (length(attr(lons, 'variables')) == 0) {
    new_metadata <- list(list())
    if (length(dim(lons)) == 1) {
      names(new_metadata) <- lon_dim
    } else {
      names(new_metadata) <- paste0(lon_dim, '_var')
    }
    attr(lons, 'variables') <- new_metadata
  }
  if (!('units' %in% names(attr(lons, 'variables')[[1]]))) {
    new_metadata <- attr(lons, 'variables')
    #names(new_metadata)[1] <- lon_dim
    new_metadata[[1]][['units']] <- 'degrees_east'
    attr(lons, 'variables') <- new_metadata
  }
  if (length(attr(lats, 'variables')) == 0) {
    new_metadata <- list(list())
    if (length(dim(lats)) == 1) {
      names(new_metadata) <- lat_dim
    } else {
      names(new_metadata) <- paste0(lat_dim, '_var')
    }
    attr(lats, 'variables') <- new_metadata
  }
  if (!('units' %in% names(attr(lats, 'variables')[[1]]))) {
    new_metadata <- attr(lats, 'variables')
    #names(new_metadata)[1] <- lat_dim
    new_metadata[[1]][['units']] <- 'degrees_north'
    attr(lats, 'variables') <- new_metadata
  }
  # Check grid.
  if (!is.character(grid)) {
    stop("Parameter 'grid' must be a character string specifying a ",
         "target CDO grid, 'rXxY' or 'tRESgrid', or a path to another ",
         "NetCDF file.")
  }
  if (grepl('^r[0-9]{1,}x[0-9]{1,}$', grid)) {
    grid_type <- 'regular'
    grid_lons <- as.numeric(strsplit(strsplit(grid, 'x')[[1]][1], 'r')[[1]][2])
    grid_lats <- as.numeric(strsplit(grid, 'x')[[1]][2])
  } else if (grepl('^t[0-9]{1,}grid$', grid)) {
    grid_type <- 'gaussian'
    grid_t <- as.numeric(strsplit(strsplit(grid, 'grid')[[1]][1], 't')[[1]][2])
    grid_size <- .t2nlatlon(grid_t)
    grid_lons <- grid_size[2]
    grid_lats <- grid_size[1]
  } else {
    grid_type <- 'custom'
  }
  # Check method.
  if (method %in% c('bil', 'bilinear')) {
    method <- 'bil'
  } else if (method %in% c('bic', 'bicubic')) {
    method <- 'bic'
  } else if (method %in% c('con', 'conservative')) {
    method <- 'con'
  } else if (method %in% c('dis', 'distance-weighted')) {
    method <- 'dis'
  } else {
    stop("Unsupported CDO remap method. 'bilinear', 'bicubic', 'conservative' or 'distance-weighted' supported only.")
  }
  # Check avoid_writes
  if (!is.logical(avoid_writes)) {
    stop("Parameter 'avoid_writes' must be a logical value.")
  }
  # Check crop
  crop_tight <- FALSE
  if (is.character(crop)) {
    if (crop == 'tight') {
      crop_tight <- TRUE
    } else if (crop != 'preserve') {
      stop("Parameter 'crop' can only take the values 'tight' or 'preserve' if specified as a character string.")
    }
    crop <- TRUE
  }
  if (is.logical(crop)) {
    if (crop) {
      if (length(lons) == 1 || length(lats) == 1) {
        stop("CDORemap cannot remap if crop = TRUE and values for only one ",
             "longitude or one latitude are provided. Either a) provide ",
             "values for more than one longitude/latitude, b) explicitly ",
             "specify the crop limits in the parameter crop, or c) set ",
             "crop = FALSE.")
      }
      if (crop_tight) {
        lon_extremes <- c(min(lons), max(lons))
        lat_extremes <- c(min(lats), max(lats))
      } else {
        # Here we are trying to look for the extreme lons and lats in the data.
        # Not the centers of the extreme cells, but the borders of the extreme cells.
###---
        if (length(dim(lons)) == 1) {
          tmp_lon <- lons
        } else {
          min_pos <- which(lons == min(lons), arr.ind = TRUE)[1, ]
Nicolau Manubens's avatar
Nicolau Manubens committed
          tmp_lon <- Subset(lons, lat_dim, min_pos[which(names(dim(lons)) == lat_dim)], drop = 'selected')
        }
        i <- 1:length(tmp_lon)
Nicolau Manubens's avatar
Nicolau Manubens committed
        degree <- min(3, length(i) - 1)
        lon_model <- lm(tmp_lon ~ poly(i, degree))
        lon_extremes <- c(NA, NA)
        left_is_min <- FALSE
        right_is_max <- FALSE
        if (which.min(tmp_lon) == 1) {
          left_is_min <- TRUE
          prev_lon <- predict(lon_model, data.frame(i = 0))
          first_lon_cell_width <- (tmp_lon[1] - prev_lon)
          lon_extremes[1] <- tmp_lon[1] - first_lon_cell_width / 2
        } else {
          lon_extremes[1] <- min(tmp_lon)
        }
        if (which.max(tmp_lon) == length(tmp_lon)) {
          right_is_max <- TRUE
          next_lon <- predict(lon_model, data.frame(i = length(tmp_lon) + 1))
          last_lon_cell_width <- (next_lon - tmp_lon[length(tmp_lon)])
          lon_extremes[2] <- tmp_lon[length(tmp_lon)] + last_lon_cell_width / 2
        } else {
          lon_extremes[2] <- max(tmp_lon)
        }
        # Adjust the crop window if possible in order to keep lons from 0 to 360 
        # or from -180 to 180 when the extremes of the cropped window are contiguous.
        if (right_is_max) {
          if (lon_extremes[1] < -180) {
            if (!((lon_extremes[2] < 180) && !((180 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
              lon_extremes[1] <- -180
              lon_extremes[2] <- 180
            }
          } else if (lon_extremes[1] < 0) {
            if (!((lon_extremes[2] < 360) && !((360 - lon_extremes[2]) <= last_lon_cell_width / 2))) {
              lon_extremes[1] <- 0
              lon_extremes[2] <- 360
            }
          }
        } 
        if (left_is_min) {
          if (lon_extremes[2] > 360) {
            if (!((lon_extremes[1] > 0) && !(lon_extremes[1] <= first_lon_cell_width / 2))) {
              lon_extremes[1] <- 0
              lon_extremes[2] <- 360
            }
          } else if (lon_extremes[2] > 180) {
            if (!((lon_extremes[1] > -180) && !((180 + lon_extremes[1]) <= first_lon_cell_width / 2))) {
              lon_extremes[1] <- -180
              lon_extremes[2] <- 180
            }
          }
        } 
##      lon_extremes <- signif(lon_extremes, 5)
##      lon_extremes <- lon_extremes + 0.00001
###---
        if (length(dim(lats)) == 1) {
          tmp_lat <- lats
        } else {
Nicolau Manubens's avatar
Nicolau Manubens committed
          min_pos <- which(lats == min(lats), arr.ind = TRUE)[1, ]
Nicolau Manubens's avatar
Nicolau Manubens committed
          tmp_lat <- Subset(lats, lon_dim, min_pos[which(names(dim(lats)) == lon_dim)], drop = 'selected')
        }
        i <- 1:length(tmp_lat)
Nicolau Manubens's avatar
Nicolau Manubens committed
        degree <- min(3, length(i) - 1)
        lat_model <- lm(tmp_lat ~ poly(i, degree))
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
        lat_extremes <- c(NA, NA)
        if (which.min(tmp_lat) == 1) {
          prev_lat <- predict(lat_model, data.frame(i = 0))
          lat_extremes[1] <- tmp_lat[1] - (tmp_lat[1] - prev_lat) / 2
        } else {
          lat_extremes[1] <- min(tmp_lat)
        }
        if (which.max(tmp_lat) == length(tmp_lat)) {
          next_lat <- predict(lat_model, data.frame(i = length(tmp_lat) + 1))
          lat_extremes[2] <- tmp_lat[length(tmp_lat)] + (next_lat - tmp_lat[length(tmp_lat)]) / 2
        } else {
          lat_extremes[2] <- max(tmp_lat)
        }
##      lat_extremes <- signif(lat_extremes, 5)
        # Adjust crop window
        if (lat_extremes[1] < -90) {
          lat_extremes[1] <- -90
        } else if (lat_extremes[1] > 90) {
          lat_extremes[1] <- 90
        }
        if (lat_extremes[2] < -90) {
          lat_extremes[2] <- -90
        } else if (lat_extremes[2] > 90) {
          lat_extremes[2] <- 90
        }
###---
      }
    }
  } else if (is.numeric(crop)) {
    if (length(crop) != 4) {
      stop("Paramrter 'crop' must be a logical value or a numeric vector of length 4: c(western border, eastern border, southern border, northern border.")
    } else {
      lon_extremes <- crop[1:2]
      lat_extremes <- crop[3:4]
      crop <- TRUE
    }
  } else {
    stop("Parameter 'crop' must be a logical value or a numeric vector.")
  }
  # Check force_remap
  if (!is.logical(force_remap)) {
    stop("Parameter 'force_remap' must be a logical value.")
  }
  # Check write_dir
  if (!is.character(write_dir)) {
    stop("Parameter 'write_dir' must be a character string.")
  }
  if (!dir.exists(write_dir)) {
    stop("Parameter 'write_dir' must point to an existing directory.")
  }
#  if (!is.null(mask)) {
#    if (!is.numeric(mask) || !is.array(mask)) {
#      stop("Parameter 'mask' must be a numeric array.")
#    }
#    if (length(dim(mask)) != 2) {
#      stop("Parameter 'mask' must have two dimensions.")
#    }
#    if (is.null(names(dim(mask)))) {
#      if (dim(data_array)[lat_dim] == dim(data_array)[lon_dim]) {
#        stop("Cannot disambiguate which is the longitude dimension of ",
#             "the provided 'mask'. Provide it with dimension names.")
#      }
#      names(dim(mask)) <- c('', '')
#      found_lon_dim <- which(dim(mask) == dim(data_array)[lon_dim])
#      if (length(found_lon_dim) < 0) {
#        stop("The dimension sizes of the provided 'mask' do not match ",
#             "the spatial dimension sizes of the array to interpolate.")
#      } else {
#        names(dim(mask)[found_lon_dim]) <- lon_dim
#      }
#      found_lat_dim <- which(dim(mask) == dim(data_array)[lat_dim])
#      if (length(found_lat_dim) < 0) {
#        stop("The dimension sizes of the provided 'mask' do not match ",
#             "the spatial dimension sizes of the array to interpolate.")
#      } else {
#        names(dim(mask)[found_lat_dim]) <- lat_dim
#      }
#    }
#    lon_position <- which(names(dim(data_array)) == lon_dim)
#    lat_position <- which(names(dim(data_array)) == lat_dim)
#    if (lon_position > lat_position) {
#      if (names(dim(mask))[1] == lon_dim) {
#        mask <- t(mask)
#      }
#    } else {
#      if (names(dim(mask))[1] == lat_dim) {
#        mask <- t(mask)
#      }
#    }
#    ## TODO: Apply mask!!! Preserve attributes
#  }
  # Check if interpolation can be skipped.
  interpolation_needed <- TRUE
  if (!force_remap) {
    if (!(grid_type == 'custom')) {
      if (length(lons) == grid_lons && length(lats) == grid_lats) {
        if (grid_type == 'regular') {
          if (.isRegularVector(lons) && .isRegularVector(lats)) {
            interpolation_needed <- FALSE
          }
        } else if (grid_type == 'gaussian') {
          # TODO: improve this check. Gaussian quadrature should be used.
          if (.isRegularVector(lons) && !.isRegularVector(lats)) {
            interpolation_needed <- FALSE
          }
        }
      }
    }
  }
  found_lons <- lons
  found_lats <- lats
  if (interpolation_needed) {
    if (nchar(Sys.which('cdo')[1]) < 1) {
      stop("CDO must be installed in order to use the .CDORemap.")
    }
    # CDO takes arrays of 3 dimensions or 4 if one of them is unlimited.
    # The unlimited dimension can only be the left-most (right-most in R).
    # There are no restrictions for the dimension names or variable names.
    # The longitude and latitude are detected by their units.
    # There are no restrictions for the order of the limited dimensions.
    # The longitude/latitude variables and dimensions must have the same name.
    # The procedure consists in:
    # - take out the array metadata
    # - be aware of var dimension (replacing the dimension names would do).
    # - take arrays of 4 dimensions always if possible
    # - make the last dimension unlimited when saving to netcdf
    # - if the last dimension is lon or lat, either reorder the array and 
    #   then reorder back or iterate over the dimensions at the right
    #   side of lon AND lat.
    # If the input array has more than 4 dimensions, it is needed to
    # run CDO on each sub-array of 4 dimensions because it can handle
    # only up to 4 dimensions. The shortest dimensions are chosen to 
    # iterate over.
    is_irregular <- FALSE
    if (length(dim(lats)) > 1 && length(dim(lons)) > 1) {
      is_irregular <- TRUE
    }
    attribute_backup <- attributes(data_array)
    other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
    permutation <- NULL
    unlimited_dim <- NULL
    dims_to_iterate <- NULL
    total_slices <- 1
    other_dims_per_chunk <- ifelse(is_irregular, 1, 2)  # 4 (the maximum accepted by CDO) - 2 (lon, lat) = 2.
    if (length(other_dims) > 1 || (length(other_dims) > 0 && (is_irregular))) {
      if (!(length(dim(data_array)) %in% other_dims)) {
        if (avoid_writes || is_irregular) {
          dim_to_move <- max(other_dims)
          permutation <- (1:length(dim(data_array)))[-dim_to_move]
          permutation <- c(permutation, dim_to_move)
          permutation_back <- 1:length(dim(data_array))
          permutation_back[dim_to_move] <- length(dim(data_array))
          permutation_back[length(dim(data_array))] <- dim_to_move
          dim_backup <- dim(data_array)
          data_array <- aperm(data_array, permutation)
          dim(data_array) <- dim_backup[permutation]
          other_dims <- which(!(names(dim(data_array)) %in% c(lon_dim, lat_dim)))
        } else {
          # We allow only lon, lat and 1 more dimension per chunk, so 
          # CDO has no restrictions in the order.
          other_dims_per_chunk <- 1
        }
      }
      other_dims_ordered_by_size <- other_dims[sort(dim(data_array)[other_dims], index.return = TRUE)$ix]
      dims_to_iterate <- sort(head(other_dims_ordered_by_size, length(other_dims) - other_dims_per_chunk))
      if (length(dims_to_iterate) == 0) {
        dims_to_iterate <- NULL
      } else {
        slices_to_iterate <- array(1:prod(dim(data_array)[dims_to_iterate]), 
                                    dim(data_array)[dims_to_iterate])
        total_slices <- prod(dim(slices_to_iterate))
      }
      if ((other_dims_per_chunk > 1) || (other_dims_per_chunk > 0 && is_irregular)) {
        unlimited_dim <- tail(sort(tail(other_dims_ordered_by_size, other_dims_per_chunk)), 1)
      }
    }

    result_array <- NULL
    lon_pos <- which(names(dim(data_array)) == lon_dim)
    lat_pos <- which(names(dim(data_array)) == lat_dim)
    dim_backup <- dim(data_array)
    attributes(data_array) <- NULL
    dim(data_array) <- dim_backup
    names(dim(data_array)) <- paste0('dim', 1:length(dim(data_array)))
    names(dim(data_array))[c(lon_pos, lat_pos)] <- c(lon_dim, lat_dim)
    if (!is.null(unlimited_dim)) {
      # This will make ArrayToNetCDF create this dim as unlimited.
      names(dim(data_array))[unlimited_dim] <- 'time'
    }
    if (length(dim(lons)) == 1) {
      names(dim(lons)) <- lon_dim
    }
    if (length(dim(lats)) == 1) {
      names(dim(lats)) <- lat_dim
    }
    if (length(dim(lons)) > 1) {
      lon_var_name <- paste0(lon_dim, '_var')
    } else {
      lon_var_name <- lon_dim
    }
    if (length(dim(lats)) > 1) {
      lat_var_name <- paste0(lat_dim, '_var')
    } else {
      lat_var_name <- lat_dim
    }
    if (is_irregular) {
      metadata <- list(list(coordinates = paste(lon_var_name, lat_var_name)))
      names(metadata) <- 'var'
      attr(data_array, 'variables') <- metadata
    }
    names(attr(lons, 'variables')) <- lon_var_name
    names(attr(lats, 'variables')) <- lat_var_name
    for (i in 1:total_slices) {
      tmp_file <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
      tmp_file2 <- tempfile('R_CDORemap_', write_dir, fileext = '.nc')
      if (!is.null(dims_to_iterate)) {
        slice_indices <- which(slices_to_iterate == i, arr.ind = TRUE)
        subset <- Subset(data_array, dims_to_iterate, as.list(slice_indices), drop = 'selected')
        # Make sure subset goes along with metadata
        ArrayToNetCDF(setNames(list(subset, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
      } else {
        ArrayToNetCDF(setNames(list(data_array, lons, lats), c('var', lon_var_name, lat_var_name)), tmp_file)
      }
      sellonlatbox <- ''
      if (crop) {
        sellonlatbox <- paste0('sellonlatbox,', lon_extremes[1], ',', lon_extremes[2], 
                                           ',', lat_extremes[1], ',', lat_extremes[2], ' -')
      }
      err <- try({
## TODO: Here add sellonlatbox. Also check constantin's issue, may contain hint. Also search if possible to crop without
        system(paste0("cdo -s ", sellonlatbox, "remap", method, ",", grid, " ", tmp_file, " ", tmp_file2))
      })
      file.remove(tmp_file)
      if (('try-error' %in% class(err)) || err > 0) {
        stop("CDO remap failed.")
      }
      ncdf_remapped <- nc_open(tmp_file2)
      found_dim_names <- sapply(ncdf_remapped$var$var$dim, '[[', 'name')
      found_lon_dim <- found_dim_names[which(found_dim_names %in% .KnownLonNames())[1]]
      found_lat_dim <- found_dim_names[which(found_dim_names %in% .KnownLatNames())[1]]
      found_lon_dim_size <- length(ncdf_remapped$dim[[found_lon_dim]]$vals)
      found_lat_dim_size <- length(ncdf_remapped$dim[[found_lat_dim]]$vals)
      found_lons <- ncvar_get(ncdf_remapped, 'lon', collapse_degen = FALSE)
      found_lats <- ncvar_get(ncdf_remapped, 'lat', collapse_degen = FALSE)
      if (length(dim(found_lons)) > 1) {
        if (found_lon_dim < found_lat_dim) {
          names(dim(found_lons)) <- c(found_lon_dim, found_lat_dim)
        } else {
          names(dim(found_lons)) <- c(found_lat_dim, found_lon_dim)
        }
      } else {
        names(dim(found_lons)) <- found_lon_dim
      }
      if (length(dim(found_lats)) > 1) {
        if (found_lon_dim < found_lat_dim) {
          names(dim(found_lats)) <- c(found_lon_dim, found_lat_dim)
        } else {
          names(dim(found_lats)) <- c(found_lat_dim, found_lon_dim)
        }
      } else {
        names(dim(found_lats)) <- found_lat_dim
      }
      if (!is.null(dims_to_iterate)) {
        if (is.null(result_array)) {
          if (return_array) {
            new_dims <- dim(data_array)
            new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
            result_array <- array(dim = new_dims)
            store_indices <- as.list(rep(TRUE, length(dim(result_array))))
          }
        }
        if (return_array) {
          store_indices[dims_to_iterate] <- as.list(slice_indices)
          result_array <- do.call('[<-', c(list(x = result_array), store_indices, 
                                           list(value = ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE))))
        }
      } else {
        new_dims <- dim(data_array)
        new_dims[c(lon_dim, lat_dim)] <- c(found_lon_dim_size, found_lat_dim_size)
        result_array <- ncvar_get(ncdf_remapped, 'var', collapse_degen = FALSE)
        names(dim(result_array)) <- names(new_dims)
      }
      nc_close(ncdf_remapped)
      file.remove(tmp_file2)
    }
    if (!is.null(permutation)) {
      dim_backup <- dim(result_array)
      result_array <- aperm(result_array, permutation_back)
      dim(result_array) <- dim_backup[permutation_back]
    }
    # Now restore the metadata
    result_is_irregular <- FALSE
    if (length(dim(found_lats)) > 1 && length(dim(found_lons)) > 1) {
      result_is_irregular <- TRUE
    }
    attribute_backup[['dim']][which(names(dim(result_array)) == lon_dim)] <- dim(result_array)[lon_dim]
    attribute_backup[['dim']][which(names(dim(result_array)) == lat_dim)] <- dim(result_array)[lat_dim]
    new_lon_name <- names(dim(found_lons))[which(names(dim(found_lons)) %in% .KnownLonNames())]
    new_lat_name <- names(dim(found_lats))[which(names(dim(found_lats)) %in% .KnownLatNames())]
    names(attribute_backup[['dim']])[which(names(dim(result_array)) == lon_dim)] <- new_lon_name
    names(attribute_backup[['dim']])[which(names(dim(result_array)) == lat_dim)] <- new_lat_name
    if (!is.null(attribute_backup[['variables']]) && (length(attribute_backup[['variables']]) > 0)) {
      for (var in 1:length(attribute_backup[['variables']])) {
        if (length(attribute_backup[['variables']][[var]][['dim']]) > 0) {
          for (dim in 1:length(attribute_backup[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(attribute_backup[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- attribute_backup[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(attribute_backup[['variables']][[var]][['dim']]))) {
              dim_name <- names(attribute_backup[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(attribute_backup[['variables']][[var]][['dim']])[which(names(attribute_backup[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                }
                if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['len']])) {
                  attribute_backup[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }
                if (!is.null(attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']])) {
                  if (!result_is_irregular) {
                    attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
                  } else {
                    attribute_backup[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
                  }
                }
              }
            }
          }
        }
        if (!is_irregular && result_is_irregular) {
          attribute_backup[['coordinates']] <- paste(lon_var_name, lat_var_name)
        } else if (is_irregular && !result_is_irregular) {
          attribute_backup[['coordinates']] <- NULL
        }
      }
    }
    attributes(result_array) <- attribute_backup
    lons_attr_bk[['dim']] <- dim(found_lons)
    if (!is.null(lons_attr_bk[['variables']]) && (length(lons_attr_bk[['variables']]) > 0)) {
      for (var in 1:length(lons_attr_bk[['variables']])) {
        if (length(lons_attr_bk[['variables']][[var]][['dim']]) > 0) {
          dims_to_remove <- NULL
          for (dim in 1:length(lons_attr_bk[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(lons_attr_bk[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(lons_attr_bk[['variables']][[var]][['dim']]))) {
              dim_name <- names(lons_attr_bk[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(lons_attr_bk[['variables']][[var]][['dim']])[which(names(lons_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                  if (!result_is_irregular) {
                    dims_to_remove <- c(dims_to_remove, dim)
                  }
                }
                if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }
                if (!is.null(lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) {
                  if (!result_is_irregular) {
                    lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
                  } else {
                    lons_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
                  }
                }
              }
            }
          }
          if (length(dims_to_remove) > 1) {
            lons_attr_bk[['variables']][[var]][['dim']] <- lons_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]]
          }
        }
      }
      names(lons_attr_bk[['variables']])[1] <- lon_var_name
      lons_attr_bk[['variables']][[1]][['units']] <- 'degrees_east'
    }
    attributes(found_lons) <- lons_attr_bk
    lats_attr_bk[['dim']] <- dim(found_lats)
    if (!is.null(lats_attr_bk[['variables']]) && (length(lats_attr_bk[['variables']]) > 0)) {
      for (var in 1:length(lats_attr_bk[['variables']])) {
        if (length(lats_attr_bk[['variables']][[var]][['dim']]) > 0) {
          dims_to_remove <- NULL
          for (dim in 1:length(lats_attr_bk[['variables']][[var]][['dim']])) {
            dim_name <- NULL
            if ('name' %in% names(lats_attr_bk[['variables']][[var]][['dim']][[dim]])) {
              dim_name <- lats_attr_bk[['variables']][[var]][['dim']][[dim]][['name']]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lon_name
                } else {
                  lons_attr_bk[['variables']][[var]][['dim']][[dim]][['name']] <- new_lat_name
                }
              }
            } else if (!is.null(names(lats_attr_bk[['variables']][[var]][['dim']]))) {
              dim_name <- names(lats_attr_bk[['variables']][[var]][['dim']])[dim]
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lon_dim)] <- new_lon_name
                } else {
                  names(lats_attr_bk[['variables']][[var]][['dim']])[which(names(lats_attr_bk[['variables']][[var]][['dim']]) == lat_dim)] <- new_lat_name
                }
              }
            }
            if (!is.null(dim_name)) {
              if (dim_name %in% c(lon_dim, lat_dim)) {
                if (dim_name == lon_dim) {
                  new_vals <- found_lons[TRUE]
                  if (!result_is_irregular) {
                    dims_to_remove <- c(dims_to_remove, dim)
                  }
                } else if (dim_name == lat_dim) {
                  new_vals <- found_lats[TRUE]
                }
                if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']])) {
                  lats_attr_bk[['variables']][[var]][['dim']][[dim]][['len']] <- length(new_vals)
                }
                if (!is.null(lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']])) {
                  if (!result_is_irregular) {
                    lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- new_vals
                  } else {
                    lats_attr_bk[['variables']][[var]][['dim']][[dim]][['vals']] <- 1:length(new_vals)
                  }
                }
              }
            }
          }
          if (length(dims_to_remove) > 1) {
            lats_attr_bk[['variables']][[var]][['dim']] <- lats_attr_bk[['variables']][[var]][['dim']][[-dims_to_remove]]
          }
        }
      }
      names(lats_attr_bk[['variables']])[1] <- lat_var_name
      lats_attr_bk[['variables']][[1]][['units']] <- 'degrees_north'
    }
    attributes(found_lats) <- lats_attr_bk
  }
  list(data_array = if (return_array) {
                      if (interpolation_needed) {
                        result_array
                      } else {
                        data_array
                      }
                    } else {
                      NULL
                    },
       lons = found_lons, lats = found_lats)
}