practical_guide_bsc.md 19.4 KB
Newer Older
# Practical guide for using startR at BSC

In this guide, some practical examples are shown for you to see how to use startR to process large data sets in parallel on your Earth Sciences department workstation or on the BSC's HPCs. 

In order to do so, you need to understand 4 functions, all of them included in the startR package:
 - **Start()**, for declaing the data sets to process
 - **Step()** and **AddStep()**, for specifying the operation to be applied to the data
 - **Compute()**, for specifying the HPC to be employed, the number of chunks and cores, and to trigger the computation
But, in first place, you must follow the deployment steps to make sure startR will work with the HPC of your choice, and follow some tricks for a better experience.

## Deployment at BSC

The full deployment steps are detailed in the [**Deployment**](inst/doc/deployment.md) section. However at BSC you do not need to follow them since everything is already installed for you. You just need to set up passwordless access:
1- generate an ssh pair of keys if you do not have one, using `ssh-keygen -t rsa`
2- ssh to the HPC login node and create a directory where to store it, using `ssh username@hostname_or_ip mkdir -p .ssh`
3- dump your public key on a new file under that folder, using `cat .ssh/id_rsa.pub | ssh username@hostname_or_ip 'cat >> .ssh/authorized_keys'`
4- adjust the permissions, using `ssh username@hostname_or_ip "chmod 700 .ssh; chmod 640 .ssh/authorized_keys"`
5- if your username is different on your workstation and on the HPC login node, add an entry in the file .ssh/config in your workstation as follows:
```
  Host short_name_of_the_host
    HostName hostname_or_ip
    User username
    IdentityFile ~/.ssh/id_rsa
```

You are almost good to go. Do not forget adding the following lines on your .bashrc on CTE-Power, if you are planning to run on CTE-Power:
```
if [[ $BSC_MACHINE == "power" ]] ; then
  module unuse /apps/modules/modulefiles/applications
  module use /gpfs/projects/bsc32/software/rhel/7.4/ppc64le/POWER9/modules/all/
fi
```

Also, you can add the following lines on your .bashrc on your workstation for convenience:
```
alias ctp='ssh -X username@p9login1.bsc.es'
alias start='module load R CDO ecFlow'
```

Then, when you open a new terminal session, you will just need to run the following commands and a fresh R session will pop up with the startR environment ready to use.
```
start
R
```

52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
## Start()

In order to declare the data sets you want to process, you first need to specify a special path that shows where all the involved NetCDF files you want to process are stored, containing some wildcards in those parts of the path that vary across files. This special path is also called "path pattern".

Before defining an example path pattern, let's introduce some target NetCDF files. In esarchive, we can find the following files:

```
/esarchive/exp/ecmwf/system5_m1/6hourly/
  |--tas/
  |   |--tas_19930101.nc
  |   |--tas_19930201.nc
  |   |        ...
  |   |--tas_20171201.nc
  |--tos/
      |--tos_19930101.nc
      |--tos_19930201.nc
      |        ...
      |--tos_20171201.nc
```

A path pattern that could be used to define the location of these files in a compact way is the following:

```r
repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc'
```

The names of the wildcards used (the pieces wrapped between '$' symbols) can be given any names.

Once the path pattern is specified, a Start() call can be built, requesting the values of interest for each of the wildcards (also called outer dimensions), as well as for each of the dimensions inside the NetCDF files (inner dimensions).

You can check in advance which dimensions are inside the NetCDF files by checking one of them with the basic NetCDF tools:

```
ncdump -h /esarchive/exp/ecmwf/system5_m1/6hourly/tas/tas_19930101.nc
```

This would REVELAR the following inner dimensions: 'ensemble', 'time', 'latitude', and 'longitude'.

We can now put the Start call together:

```r
data <- Start(dat = repos,
              # outer dimensions
              var = 'tas',
              sdate = '19930101',
              # inner dimensions
              ensemble = 'all',
              time = 'all',
              latitude = 'all',
              longitude = 'all')
```

This will yield some output messages:

```r
* Exploring files... This will take a variable amount of time depending
*   on the issued request and the performance of the file server...
* Detected dimension sizes:
*         dat:    1
*         var:    1
*       sdate:    1
*    ensemble:   25
*        time:  860
*    latitude:  640
*   longitude: 1296
* Total size of involved data:
*   1 x 1 x 1 x 25 x 860 x 640 x 1296 x 8 bytes = 132.9 Gb
* Successfully discovered data dimensions.
Warning messages:
1: ! Warning: Parameter 'pattern_dims' not specified. Taking the first dimension,
!   'dat' as 'pattern_dims'. 
2: ! Warning: Could not find any pattern dim with explicit data set descriptions (in
!   the form of list of lists). Taking the first pattern dim, 'dat', as
!   dimension with pattern specifications.
```

The warnings shown are normal, and could be avoided with a more wordy specification of the parameters to the Start function.

The dimensions of the selected data set and the total size are shown.

As you will notice, this Start call is very fast, even though several GB of data are involved. This is because Start is simply discovering the location and dimension of the involved data. You can give a quick look to the collected metadata with `str(data)`.

```r
Class 'startR_header' length 9 Start(dat = "/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc",      var = "tas", sdate = "19930101", ensemble = "all", time = "all", latitude = "all",  ...
  ..- attr(*, "Dimensions")= Named num [1:7] 1 1 1 25 860 ...
  .. ..- attr(*, "names")= chr [1:7] "dat" "var" "sdate" "ensemble" ...
  ..- attr(*, "Variables")=List of 2
  .. ..$ common: NULL
  .. ..$ dat1  : NULL
  ..- attr(*, "ExpectedFiles")= chr [1, 1, 1] "/esarchive/exp/ecmwf/system5_m1/6hourly/tas/tas_19930101.nc"
  ..- attr(*, "FileSelectors")=List of 1
  .. ..$ dat1:List of 3
  .. .. ..$ dat  :List of 1
  .. .. .. ..$ : chr "dat1"
  .. .. ..$ var  :List of 1
  .. .. .. ..$ : chr "tas"
  .. .. ..$ sdate:List of 1
  .. .. .. ..$ : chr "19930101"
  ..- attr(*, "PatternDim")= chr "dat"
```

There are no constrains for the numer or names of the outer or inner dimensions. In other words, Start will handle NetCDF files with any number of dimensions with any name, as well as files distributed in complex ways, since you can use customized wildcards in the path pattern.

If you are interested in actually loading the entire data set in your machine *(be careful!)* you can do so in two ways:
- adding the parameter `retrieve = TRUE` in your Start call.
- evaluating the object returned by Start: `data_load <- eval(data)`

You may realize that this functionality is similar to the `Load()` function in the s2dverification package. In fact, `Start()` is more advanced and flexible, although `Load()` is more mature and consistent for loading classic seasonal to decadal forecasting data. `Load()` will be adapted in the future to use `Start()` internally.

As you can see in the Start call we issued, we have requested specific values for the outer dimensions (e.g. `var = 'tas'` or `sdate = '19930101'`), but vectors of multiple values, numeric indices, or keywords can be used. For example, `var = c('tas', 'tos')`, `sdate = 1:5` or `sdate = 'all'`. See the documentation on the Start function on GitLab (https://earth.bsc.es/gitlab/es/startR/blob/master/vignettes/start.md) or in `?Start` for more information.

## Step() and AddStep()

Once the data sources are declared, we can define the operation to be applied. The operation needs to be encapsulated in the form of an R function receiving one or more multidimensional arrays (plus additional helper parameters) and returning one or more multidimensional arrays. For example:

```r
fun <- function(x) {
  r <- sqrt(sum(x ^ 2) / length(x))
  for (i in 1:100) {
    r <- sqrt(sum(x ^ 2) / length(x))
  }
  dim(r) <- c(time = 1)
  r
}
```

Then, the startR Step for this operation can be defined with the function `Step`, which required for a proper functioning to specify the names of the dimensions of the input arrays expected by the function (in this example, a single array with the dimensions 'ensemble' and 'time'), as well as the names of the dimensions the function returns:

```r
step <- Step(fun = fun, 
             target_dims = c('ensemble', 'time'), 
             output_dims = c('time'))
```

Finally, a workflow of steps can be assembled as follows:

```r
wf <- AddStep(data, step)
```

If multiple data sources were to be provided to a step, they could be provided as a list.

It is not possible for now to define workflows with more than one step. This is pending future work.

what about defining library(blabla) in the code of the function? how to deal with that?


## Compute() locally

Once the data sources are declared and the workflow is defined, we can proceed to specify the execution parameters (including which platform to run on) and trigger the execution.

required ecFlow?
required CDO?

```r
res <- Compute(wf,
               chunks = list(latitude = 2,
                             longitude = 2),
               threads_load = 1,
               threads_compute = 2,
               #cluster = list(queue_host = 'p9login1.bsc.es',
               #               queue_type = 'slurm',
               #               data_dir = '/gpfs/projects/bsc32/share/startR_data_repos/gpfs/archive/bsc32/',
               #               temp_dir = '/gpfs/scratch/bsc32/bsc32473/startR_tests/',
               #               lib_dir = '/gpfs/projects/bsc32/share/R_libs/3.5/',
               #               #init_commands = list('module load intel/16.0.1'),
               #               r_module = 'R/3.5.0',
               #               #ecflow_module = 'ecFlow/4.9.0-foss-2015a',
               #               #node_memory = NULL, #not working
               #               cores_per_job = 2,
               #               job_wallclock = '00:10:00',
               #               max_jobs = 4,
               #               extra_queue_params = list('#SBATCH --qos=bsc_es'),
               #               bidirectional = FALSE,
               #               polling_period = 10#,
               #               #special_setup = 'marenostrum4'
               #              ),
               #ecflow_suite_dir = '/home/Earth/nmanuben/test_remove/',
               #ecflow_server = NULL,
               silent = FALSE,
               debug = FALSE,
               wait = FALSE)
```

compute will return a data array, as if it was a variable in your R session

discuss ecFlow

discuss plotProfiling

discuss use of metadata (dates) in the Step

summary of all code done so far:

## Compute() on HPC

setup steps:

having startR installed on workstation and HPC (done)
having Step dependencies on HPC
having passwordless connection (how to?)
having rsync, ssh, ... on all machines
ecflow??
having the data:
- either on a shared file system
- either on remote file systems (rsync)
- either on remote file systems (with special transfer mechanism, mn4)
not required to ssh manually to the HPC

example on power9

```r
library(startR)

#repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc'
repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$-longitudeS1latitudeS1all/$var$_$sdate$.nc'
data <- Start(dat = repos,
              var = 'tas',
              #sdate = 'all',
              sdate = indices(1),
              ensemble = 'all',
              time = 'all',
              #latitude = 'all',
              latitude = indices(1:40),
              #longitude = 'all',
              longitude = indices(1:40),
              retrieve = FALSE)
lons <- attr(data, 'Variables')$common$longitude
lats <- attr(data, 'Variables')$common$latitude

fun <- function(x) apply(x + 1, 2, mean)
step <- Step(fun, c('ensemble', 'time'), c('time'))
wf <- AddStep(data, step)

res <- Compute(wf,
               chunks = list(latitude = 2,
                             longitude = 2),
               threads_load = 1,
               threads_compute = 2,
               cluster = list(queue_host = 'p9login1.bsc.es',
                              queue_type = 'slurm',
                              data_dir = '/gpfs/projects/bsc32/share/startR_data_repos/gpfs/archive/bsc32/',
                              temp_dir = '/gpfs/scratch/bsc32/bsc32473/startR_tests/',
                              lib_dir = '/gpfs/projects/bsc32/share/R_libs/3.5/',
                              #init_commands = list('module load intel/16.0.1'),
                              r_module = 'R/3.5.0-foss-2018b',
                              #ecflow_module = 'ecFlow/4.9.0-foss-2015a',
                              #node_memory = NULL, #not working
                              cores_per_job = 2,
                              job_wallclock = '00:10:00',
                              max_jobs = 4,
                              extra_queue_params = list('#SBATCH --qos=bsc_es'),
                              bidirectional = FALSE,
                              polling_period = 10#,
                              #special_setup = 'marenostrum4'
                             ),
               ecflow_suite_dir = '/home/Earth/nmanuben/test_remove/',
               ecflow_server = NULL,
               silent = FALSE,
               debug = FALSE,
               wait = TRUE)
```

## Example using obs data / or more than one data source

```r
crps <- function(x, y) {
  mean(SpecsVerification::EnsCrps(x, y, R.new = Inf))
}

library(startR)

repos <- '/perm/ms/spesiccf/c3ah/qa4seas/data/seasonal/g1x1/ecmf-system4/msmm/atmos/seas/tprate/12/ecmf-system4_msmm_atmos_seas_sfc_$date$_tprate_g1x1_init12.nc'

data <- Start(dat = repos,
              var = 'tprate',
              date = 'all',
              time = 'all',
              number = 'all',
              latitude = 'all',
              longitude = 'all',
              return_vars = list(time = 'date'))

dates <- attr(data, 'Variables')$common$time

repos <- '/perm/ms/spesiccf/c3ah/qa4seas/data/ecmf-ei_msmm_atmos_seas_sfc_19910101-20161201_t2m_g1x1_init02.nc'

obs <- Start(dat = repos,
             var = 't2m',
             time = values(dates),
             latitude = 'all',
             longitude = 'all',
             split_multiselected_dims = TRUE)

s <- Step(crps, target_dims = list(c('date', 'number'), c('date')),
                output_dims = NULL)
wf <- AddStep(list(data, obs), s)

r <- Compute(wf,
             chunks = list(latitude = 10,
                           longitude = 3),
             cluster = list(queue_host = 'cca',
                            queue_type = 'pbs',
                            max_jobs = 10,
                            init_commands = list('module load ecflow'),
                            r_module = 'R/3.3.1',
                            extra_queue_params = list('#PBS -l EC_billing_account=spesiccf')),
             ecflow_output_dir = '/perm/ms/spesiccf/c3ah/startR_test/',
             is_ecflow_output_dir_shared = FALSE
            )
```

```r
repos <- paste0('/esnas/exp/ecmwf/system4_m1/6hourly/',
                '$var$/$var$_$sdate$.nc')

system4 <- Start(dat = repos,
                 var = 'sfcWind',
                 #sdate = paste0(1981:2015, '1101'),
                 sdate = paste0(1981:1984, '1101'),
                 #time = indices((30*4+1):(120*4)),
                 time = indices((30*4+1):(30*4+4)),
                 ensemble = 'all',
                 #ensemble = indices(1:6),
                 #latitude = 'all',
                 latitude = indices(1:10),
                 #longitude = 'all',
                 longitude = indices(1:10),
                 return_vars = list(latitude = NULL,
                                    longitude = NULL,
                                    time = c('sdate')))

repos <- paste0('/esnas/recon/ecmwf/erainterim/6hourly/',
                '$var$/$var$_$file_date$.nc')

dates <- attr(system4, 'Variables')$common$time
dates_file <- sort(unique(gsub('-', '', sapply(as.character(dates),
substr, 1, 7))))

erai <-    Start(dat = repos,
                 var = 'sfcWind',
                 file_date = dates_file,
                 time = values(dates),
                 #latitude = 'all',
                 latitude = indices(1:10),
                 #longitude = 'all',
                 longitude = indices(1:10),
                 time_var = 'time',
                 time_tolerance = as.difftime(1, units = 'hours'),
                 time_across = 'file_date',
                 return_vars = list(latitude = NULL,
                                    longitude = NULL,
                                    time = 'file_date'),
                 merge_across_dims = TRUE,
                 split_multiselected_dims = TRUE)

step <- Step(eqmcv_atomic,
             list(a = c('ensemble', 'sdate'),
                  b = c('sdate')),
             list(c = c('ensemble', 'sdate')))

res <- Compute(step, list(system4, erai),
               chunks = list(latitude = 5,
                             longitude = 5,
                             time = 2),
               cluster = list(queue_host = 'bsceslogin01.bsc.es',
                              max_jobs = 4,
                              cores_per_job = 2),
               shared_dir = '/esnas/scratch/nmanuben/test_bychunk',
               wait = FALSE) 
```

## Example on marenostrum 4

```r
library(startR)

#repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$/$var$_$sdate$.nc'
repos <- '/esarchive/exp/ecmwf/system5_m1/6hourly/$var$-longitudeS1latitudeS1all/$var$_$sdate$.nc'
data <- Start(dat = repos,
              var = 'tas',
              #sdate = 'all',
              sdate = indices(1),
              ensemble = 'all',
              time = 'all',
              #latitude = 'all',
              latitude = indices(1:40),
              #longitude = 'all',
              longitude = indices(1:40),
              retrieve = FALSE)
lons <- attr(data, 'Variables')$common$longitude
lats <- attr(data, 'Variables')$common$latitude

fun <- function(x) apply(x + 1, 2, mean)
step <- Step(fun, c('ensemble', 'time'), c('time'))
wf <- AddStep(data, step)

res <- Compute(wf,
               chunks = list(latitude = 2,
                             longitude = 2),
               threads_load = 1,
               threads_compute = 2,
               cluster = list(queue_host = 'mn2.bsc.es',
                              queue_type = 'slurm',
                              data_dir = '/gpfs/projects/bsc32/share/startR_data_repos/',
                              temp_dir = '/gpfs/scratch/pr1efe00/pr1efe03/startR_tests/',
                              lib_dir = '/gpfs/projects/bsc32/share/R_libs/3.4/',
                              #init_commands = list('module load netcdf/4.4.1.1'),
                              r_module = 'R/3.4.0',
                              #ecflow_module = 'ecFlow/4.9.0-foss-2015a',
                              #node_memory = NULL, #not working
                              cores_per_job = 2,
                              job_wallclock = '00:10:00',
                              max_jobs = 4,
                              extra_queue_params = list('#SBATCH --qos=prace'),
                              bidirectional = FALSE,
                              polling_period = 10,
                              special_setup = 'marenostrum4'
                             ),
               ecflow_suite_dir = '/home/Earth/nmanuben/test_remove/',
               ecflow_server = NULL,
               silent = FALSE,
               debug = FALSE,
               wait = TRUE)
```

## Example on cca